Crystallizations of compact 4-manifolds minimizing combinatorially defined PL-invariants

https://arxiv.org/abs/2004.07894 joint work with M.R. Casali and C. Gagliardi

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Crystallization theory: a representation theory for compact PL *n*-manifolds

(n+1)-colored graph $(\mathsf{\Gamma},\gamma)$

- $\Gamma = (V(\Gamma), E(\Gamma))$ regular graph of degree n + 1,
- $\gamma: E(\Gamma) \to \Delta_n = \{0, \dots, n\}$ such that $\gamma(e) \neq \gamma(f)$ for each pair of adjacent edges $e, f \in E(\Gamma)$ (edge-coloration)

graph = multigraph (multiple edges allowed, loops forbidden)

The pseudocomplex $K(\Gamma)$

- 1) take a *n*-simplex $\sigma(x)$ for every vertex $x \in V(\Gamma)$, and label its vertices by Δ_n ;
- 2) if $x, y \in V(\Gamma)$ are joined by a *c*-colored edge, identify the (n 1)-faces of $\sigma(x)$ and $\sigma(y)$ opposite to *c*-labelled vertices, so that equally labelled vertices coincide.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- * for each $c \in \Delta_n$, each connected component of $\Gamma_{\hat{c}} = \Gamma_{\Delta_d \{c\}}$ (\hat{c} -residue of Γ) represents $Lk(v_c, K'(\Gamma))$, $v_c \in V(K(\Gamma))$.
- ★ $|K(\Gamma)|$ is a closed *n*-manifold if and only if, for every *c* ∈ Δ_n, each \hat{c} -residue of Γ represents \mathbb{S}^{n-1} .
- * $|K(\Gamma)|$ is a singular *n*-manifold if and only if, for every $c \in \Delta_n$, each \hat{c} -residue of Γ represents a closed connected PL (n-1)-manifold.

A singular (PL) *n*-manifold (n > 1) is a compact connected *n*-dimensional polyhedron admitting a simplicial triangulation where the links of vertices are closed connected PL (n - 1)-manifolds. Vertices whose links are not PL (n - 1)-spheres are called singular.

イロト 不得 トイヨト イヨト

 $\{(\mathsf{closed}) \; \mathsf{manifolds}\} \subset \{\mathsf{singular} \; \mathsf{manifolds}\} \subset \{\mathsf{pseudomanifolds}\}$

From a singular *n*-manifold N to a *n*-manifold with boundary \check{N} (by deleting regular neighbourhoods of singular vertices)

From a *n*-manifold M with boundary to a singular *n*-manifold \hat{M} (by capping off the boundary components with cones over them)

(日) (同) (三) (三)

Existence Theorem (Pezzana, Casali - C. - Grasselli)

Any orientable (resp. non-orientable) compact PL *n*-manifold M^n can be represented by a bipartite (resp. non-bipartite) (n + 1)-colored graph (Γ, γ) that can always be supposed to be contracted, i.e. for each color $c \in \Delta_n$, either $\Gamma_{\hat{c}}$ is connected or no connected component of $\Gamma_{\hat{c}}$ represents an (n-1)-sphere (= either $K(\Gamma)$ has only one *c*-colored vertex or all *c*-colored vertices of $K(\Gamma)$ are singular).

イロト 不得 トイヨト イヨト

Existence Theorem (Pezzana, Casali - C. - Grasselli)

Any orientable (resp. non-orientable) compact PL *n*-manifold M^n can be represented by a bipartite (resp. non-bipartite) (n + 1)-colored graph (Γ, γ) that can always be supposed to be contracted, i.e. for each color $c \in \Delta_n$, either $\Gamma_{\hat{c}}$ is connected or no connected component of $\Gamma_{\hat{c}}$ represents an (n-1)-sphere (= either $K(\Gamma)$ has only one *c*-colored vertex or all *c*-colored vertices of $K(\Gamma)$ are singular).

The gem-complexity of a compact PL n-manifold M^n is

```
k(M^n)=p-1
```

where 2p = minimum order of an (n + 1)-colored graph representing M^n

(日) (四) (E) (E) (E) (E)

A cellular embedding $\phi : |\Gamma| \to F$ of a (n + 1)-colored graph (Γ, γ) into a (closed) surface F is called a regular embedding if there exists a cyclic permutation $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_n)$ of Δ_n s.t. each connected component of $F - \phi(|\Gamma|)$ is an open ball bounded by the image of an $\{\varepsilon_i, \varepsilon_{i+1}\}$ - colored cycle of Γ ($\forall i \in \mathbb{Z}_n$).

・ロン ・四 と ・ ヨ と ・ ヨ と …

The regular genus

Gagliardi, 1981

For each (n + 1)-colored graph (Γ, γ) and for every cyclic permutation ε of Δ_n , there exists a *regular embedding* of Γ into a suitable surface F_{ε} . Moreover:

- F_{ε} is orientable if and only if Γ is bipartite;
- ε and ε^{-1} induce the same embedding.

Definition

The regular genus $\rho_{\epsilon}(\Gamma)$ of Γ with respect to ε is the classical genus (resp. half of the genus) of the orientable (resp. non-orientable) surface F_{ε} :

$$\sum_{i\in\mathbb{Z}_{d+1}}g_{\varepsilon_i\varepsilon_{i+1}}+(1-n)p=2-2\rho_{\varepsilon}(\Gamma)$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Heegaard splitting of M^3 : (H_0, H_1) s.t. $M^3 = H_0 \cup H_1$, $H_0 \cap H_1 = F$ $H_0 = N(K_{02}) H_1 = N(K_{13}) \qquad \mathcal{H}(M^3) = \mathcal{G}(M^3)$

イロン イヨン イヨン イヨン

Regular embeddings and Gurau degree

Regular genus of Γ

$$\rho(\Gamma) = \min \left\{ \rho_{\varepsilon}(\Gamma) \ / \ \varepsilon \text{ cyclic permutation of } \Delta_n \right\}$$

Gurau degree

Given a (n + 1)-colored graph (Γ, γ) , then

$$\omega_{G}(\Gamma) = \sum_{i=1}^{\frac{n!}{2}} \rho_{\varepsilon^{(i)}}(\Gamma)$$

where the $\varepsilon^{(i)}$'s are the cyclic permutations of Δ_n up to inverse.

イロト 不得 トイヨト イヨト

Definition

Regular genus of a compact PL n-manifold M^n :

 $\mathcal{G}(M^n) = \min \{ \rho(\Gamma) \mid (\Gamma, \gamma) \text{ represents } M^n \}$

Gurau degree (G-degree) of a compact PL n-manifold M^n :

 $\mathcal{D}_{G}(M^{n}) = \min \{ \omega_{G}(\Gamma) \mid (\Gamma, \gamma) \text{ represents } M^{n} \}$

The minimum is always realized by a contracted graph.

ヘロト 人間ト 人間ト 人間トー

Simple crystallizations of closed PL 4-manifolds

Dimension 4: $TOP \neq PL PL = DIFF$

2

・ロト ・個ト ・ヨト ・ヨト

Simple crystallizations of closed PL 4-manifolds

Dimension 4: $TOP \neq PL PL = DIFF$

Definition (B. Basak - J. Spreer 2016)

A simple crystallization of a closed PL 4-manifold M^4 is a contracted 5-colored graph Γ , representing M^4 , such that $g_{i,j,k} = 1, \ \forall i, j, k \in \Delta_4$

Equivalently, the 1-skeleton of $K(\Gamma)$ coincides with 1-skeleton of the standard 4-simplex

If M^4 admits simple crystallizations, then M^4 is simply-connected

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Basak - Spreer, 2016

- * all closed "standard" simply-connected PL 4-manifolds^a have simple crystallizations
- \star connected sums of simple crystallizations of closed PL 4-manifolds are simple crystallizations of the connected sum
- * examples of simple crystallizations of pairs of homeomorphic but not PL-homeomorphic closed 4-manifolds ($K3\#\overline{\mathbb{CP}^2}$ and $3\mathbb{CP}^2\#20\overline{\mathbb{CP}^2}$)

^{*a*}i.e., \mathbb{S}^4 , \mathbb{CP}^2 , $\mathbb{S}^2 \times \mathbb{S}^2$, *K*3

イロト イポト イヨト イヨト

The (unique) simple crystallizations of \mathbb{S}^4 and \mathbb{CP}^2

A simple crystallization of $\mathbb{S}^2\times\mathbb{S}^2$

2

イロン 不通と 不通と 不通と

Simple crystallizations and PL invariants

Casali - Cristofori - Gagliardi, 2016

A closed simply-connected PL 4-manifold M^4 admits simple crystallizations if and only if $k(M) = 3\beta_2(M)$.

If M^4 admits simple crystallizations, then $\mathcal{G}(M) = 2\beta_2(M)$.

・ロン ・四 と ・ ヨン ・ ヨン

Generalizations:

- semi-simple: not simply-connected (Basak-Casali 2017), not closed (Casali-Cristofori 2019)
- * weak semi-simple: crystallizations for which formula $\mathcal{G}(M) = 2\beta_2(M)$ is a characterization (Basak 2018)
- * larger class where the invariants are not determined only by the TOP structure, but are easily computable (Casali-Cristofori 2020)
- \star taking into consideration the G-degree (Casali-Cristofori-Gagliardi 2020)

Lower bounds

Notations: M^4 = a compact 4-manifold with empty or connected boundary; \widehat{M}^4 = associated singular manifold $rk(\pi_1(M^4)) = m \quad rk(\pi_1(\widehat{M}^4)) = m' \quad (0 \le m' \le m)$ χ = Euler characteristic

Casali-Cristofori-Gagliardi 2020

$$\mathcal{G}(M^4) \geq 2\chi(\widehat{M}^4) + 5m - 2(m-m') - 4$$

$$\mathcal{D}_{G}(M^{4}) \geq 12\Big[2\chi(\widehat{M}^{4})+5m-2(m-m')-4\Big]$$

$$k(M^4) \geq 3\chi(\widehat{M}^4) + 10m - 4(m-m') - 6$$

Lower bounds

Notations: M^4 = a compact 4-manifold with empty or connected boundary; \widehat{M}^4 = associated singular manifold $rk(\pi_1(M^4)) = m \quad rk(\pi_1(\widehat{M}^4)) = m' \quad (0 \le m' \le m)$ χ = Euler characteristic

Casali-Cristofori-Gagliardi 2020

$$\mathcal{G}(M^4) \geq 2\chi(\widehat{M}^4) + 5m - 2(m-m') - 4$$

$$\mathcal{D}_{\mathcal{G}}(M^4) \geq 12\Big[2\chi(\widehat{M}^4) + 5m - 2(m-m') - 4\Big]$$

$$k(M^4) \ge 3\chi(\widehat{M}^4) + 10m - 4(m - m') - 6$$

Corollary

$$\mathcal{D}_G(M^4) = 6\Big[\chi(\widehat{M}^4) - 2 + k(M^4)\Big].$$

э

イロン イヨン イヨン イヨン

 $\begin{array}{l} \mbox{color 4 is the unique singular color} \\ t_{j,k,l} = (g_{j,k,l} - 1) - m' \geq 0 \quad \forall j,k,l \in \Delta_3 \\ t_{j,k,4} = (g_{j,k,4} - 1) - m \geq 0 \quad \forall j,k \in \Delta_3 \end{array}$

イロン イロン イヨン イヨン 三日

 $\begin{array}{l} \mbox{color 4 is the unique singular color} \\ t_{j,k,l} = (g_{j,k,l} - 1) - m' \geq 0 \quad \forall j,k,l \in \Delta_3 \\ t_{j,k,4} = (g_{j,k,4} - 1) - m \geq 0 \quad \forall j,k \in \Delta_3 \end{array}$

Let Γ be an order 2*p* crystallization of a compact 4-manifold M^4 with empty or connected boundary and $\varepsilon \in \mathcal{P}_4$:

$$\rho_{\varepsilon}(\Gamma) = 2\chi(\widehat{M}^{4}) + 5m - 2(m - m') - 4 + \sum_{i \in \mathbb{Z}_{5}} t_{\varepsilon_{i},\varepsilon_{i+2},\varepsilon_{i+4}}$$
$$\omega_{G}(\Gamma) = 6 \Big[4\chi(\widehat{M}^{4}) + 10m - 4(m - m') - 8 + \sum_{i,j,k \in \mathbb{Z}_{5}} t_{i,j,k} \Big]$$
$$p - 1 = 3\chi(\widehat{M}^{4}) + 10m - 4(m - m') - 6 + \sum_{i,j,k \in \mathbb{Z}_{5}} t_{i,j,k}$$

 $\mathcal{P}_4 = \text{set of all cyclic permutations } \varepsilon = (\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4 = 4) \text{ of } \Delta_4.$

Definition (Basak 2017, Casali-Cristofori 2019)

Let Γ be a crystallization of a compact PL 4-manifold M^4 with empty or connected boundary and let color 4 be its (unique) possible singular color. Γ is called semi-simple if $g_{j,k,l} = 1 + m' \quad \forall j, k, l \in \Delta_3$ and $g_{j,k,4} = 1 + m \quad \forall j, k \in \Delta_3$. Γ is called weak semi-simple with respect to a permutation $\varepsilon \in \mathcal{P}_4$ if $g_{\varepsilon_i, \varepsilon_{i+2}, \varepsilon_{i+4}} = 1 + m \quad \forall i \in \{0, 2, 4\}$ and $g_{\varepsilon_i, \varepsilon_{i+2}, \varepsilon_{i+4}} = 1 + m' \quad \forall i \in \{1, 3\}.$

・ロト ・四ト ・ヨト ・ヨト

Semi-simple crystallizations of \mathbb{RP}^4 and $\mathbb{S}^1\times\mathbb{D}^3$

・ロン ・個人 ・モン ・モン ・モー

$$\mathcal{G}(M^4) \geq 2\chi(\widehat{M}^4) + 5m - 2(m-m') - 4$$

equality holds if and only if M^4 admits a weak semi-simple crystallization.

$$\mathcal{D}_G(M^4) \geq 12\Big[2\chi(\widehat{M}^4) + 5m - 2(m-m') - 4\Big]$$

equality holds if and only if M^4 admits a semi-simple crystallization.

$$k(M^4) \geq 3\chi(\widehat{M}^4) + 10m - 4(m - m') - 6$$

equality holds if and only if M^4 admits a semi-simple crystallization.

M^4	$\mathcal{G}(M^4)$	$\mathcal{D}_G(M^4)$	k(M ⁴)	
\mathbb{S}^4	0	0	0	simple
\mathbb{CP}^2	2	24	3	simple
$\mathbb{S}^2 imes \mathbb{S}^2$	4	48	6	simple
$\mathbb{S}^1 imes \mathbb{S}^3$ and $\mathbb{S}^1\widetilde{ imes}\mathbb{S}^3$	1	12	4	semi-simple .
\mathbb{RP}^4	3	36	7	semi-simple
<i>K</i> 3	44	528	66	simple
ξ2	2	24	3	simple
$\mathbb{S}^2 imes \mathbb{D}^2$	2	24	3	simple
\mathbb{Y}_{h}^{4} and $\widetilde{\mathbb{Y}}_{h}^{4}$	h	12 <i>h</i>	3 <i>h</i>	semi-simple
$\xi_c \ (c \in \mathbb{Z}^+ - \{1,2\})$	2	$\leq 12c$	$\leq 2c-1$	weak simple

★ロト ★問 と ★ 注 と ★ 注 と 二 注

$$\varepsilon_{\hat{i}} = (\varepsilon_0, \ldots, \varepsilon_{i-1}, \varepsilon_{i+1}, \ldots, \varepsilon_n)$$

Casali-Cristofori-Gagliardi 2020

 Γ is weak semi-simple with respect to the cyclic permutation $\varepsilon \in \mathcal{P}_4$ if and only if

$$\mathcal{G}(M^4) =
ho(\Gamma) =
ho_arepsilon(\Gamma) = 2\chi(\widehat{M}^4) + 5m - 2(m - m') - 4$$

equivalently, if and if

$$\rho_{\varepsilon_{\hat{i}}}(\Gamma_{\hat{i}}) = \chi(\widehat{M}^4) + m + m' - 2 \quad \forall i \in \Delta_3 \quad \text{ and } \quad \rho_{\hat{4}}(\Gamma_{\hat{4}}) = \chi(\widehat{M}^4) + 2m - 2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\varepsilon_{\hat{i}} = (\varepsilon_0, \ldots, \varepsilon_{i-1}, \varepsilon_{i+1}, \ldots, \varepsilon_n)$$

Casali-Cristofori-Gagliardi 2020

 Γ is weak semi-simple with respect to the cyclic permutation $\varepsilon \in \mathcal{P}_4$ if and only if

$$\mathcal{G}(M^4)=
ho(\Gamma)=
ho_arepsilon(\Gamma)=2\chi(\widehat{M}^4)+5m-2(m-m')-4$$

equivalently, if and if

$$\rho_{\varepsilon_{\hat{i}}}(\Gamma_{\hat{i}}) = \chi(\widehat{M}^4) + m + m' - 2 \quad \forall i \in \Delta_3 \quad \text{ and } \quad \rho_{\hat{4}}(\Gamma_{\hat{4}}) = \chi(\widehat{M}^4) + 2m - 2.$$

 M^4 admits a semi-simple crystallization if and only of

$$k(M^4) = \frac{3\mathcal{G}(M^4) + 5m - 2(m - m')}{2}$$

(日) (同) (三) (三)

Heegaard splitting of M^3 : (H_0, H_1) s.t. $M^3 = H_0 \cup H_1$, $H_0 \cap H_1 = F$ $H_0 = N(K_{02}) H_1 = N(K_{13}) \qquad \mathcal{H}(M^3) = \mathcal{G}(M^3)$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Definition (Gay-Kirby 2016)

A trisection of a closed PL orientable 4-manifold M^4 is a triple $\mathcal{T} = (H_0, H_1, H_2)$ of 4-dimensional submanifolds of M^4 , such that:

- (a) $M^4 = H_0 \cup H_1 \cup H_2$ and H_0, H_1, H_2 have pairwise disjoint interiors
- (b) H_0, H_1, H_2 are 4-dimensional handlebodies
- (c) $H_{01} = H_0 \cap H_1$, $H_{02} = H_0 \cap H_2$ and $H_{12} = H_1 \cap H_2$ are 3-dimensional handlebodies;
- (d) $\Sigma(T) = H_0 \cap H_1 \cap H_2$ is a closed connected surface (which is called *central surface*).

→ < ∃ →</p>

- * Any closed orientable smooth 4-manifold admits a trisection (Gay-Kirby 2016)
- * There is an algorithm to obtain a trisection from any triangulation of a closed orientable PL 4-manifold (Bell-Hass-Rubinstein-Tillmann 2018)
- * Computation of the trisection genus of all closed simply-connected standard PL 4-manifolds (Spreer-Tillmann 2018)

イロト 不得 トイヨト イヨト

Casali-Cristofori 2019

For each crystallization (Γ, γ) of a compact orientable PL 4-manifold with empty (resp. connected boundary) M^4 and for each $\varepsilon \in \mathcal{P}_4$, a triple $\mathcal{T}(\Gamma, \varepsilon) = (H_0, H_1, H_2)$ of submanifolds of M^4 is constructed, such that (a') $M^4 = H_0 \cup H_1 \cup H_2$ and H_0, H_1, H_2 have pairwise disjoint interiors

- (b') H_1, H_2 are 4-dimensional handlebodies; H_0 is a 4-disk (resp. is (PL) homeomorphic to $\partial M^4 \times [0, 1]$)
- (c') $H_{01} = H_0 \cap H_1$, $H_{02} = H_0 \cap H_2$ are 3-dimensional handlebodies
- (d') the central surface $\Sigma(\mathcal{T}(\Gamma, \varepsilon)) = H_0 \cap H_1 \cap H_2$ is a closed connected surface of genus $\rho_{\hat{4}}(\Gamma_{\hat{4}})$

イロト 不得下 イヨト イヨト 二日

Casali-Cristofori 2019

For each crystallization (Γ, γ) of a compact orientable PL 4-manifold with empty (resp. connected boundary) M^4 and for each $\varepsilon \in \mathcal{P}_4$, a triple $\mathcal{T}(\Gamma, \varepsilon) = (H_0, H_1, H_2)$ of submanifolds of M^4 is constructed, such that (a') $M^4 = H_0 \cup H_1 \cup H_2$ and H_0, H_1, H_2 have pairwise disjoint interiors

- (b') H_1, H_2 are 4-dimensional handlebodies; H_0 is a 4-disk (resp. is (PL) homeomorphic to $\partial M^4 \times [0, 1]$)
- (c') $H_{01} = H_0 \cap H_1$, $H_{02} = H_0 \cap H_2$ are 3-dimensional handlebodies
- (d') the central surface $\Sigma(\mathcal{T}(\Gamma, \varepsilon)) = H_0 \cap H_1 \cap H_2$ is a closed connected surface of genus $\rho_{\hat{4}}(\Gamma_{\hat{4}})$

G-trisection genus of M^4 :

$$g_{GT}(M^4) = min\{genus(\Sigma(\mathcal{T}(\Gamma, \varepsilon))) \mid \mathcal{T}(\Gamma, \varepsilon) \text{ is a B-trisection of } M^4\}$$

イロン イロン イヨン イヨン 三日

Casali-Cristofori 2019

If Γ is a weak semi-simple crystallization of M^4 with respect to $\varepsilon \in \mathcal{P}_4$, then

- Σ(T(Γ, ε)) is of minimal genus among all central surfaces relative to crystallizations of M⁴ and permutations of P₄
- furthermore, if $\mathcal{T}(\Gamma, \varepsilon)$ is a B-trisection

$$g_{GT}(M^4) = \frac{1}{2}(\rho_{\varepsilon}(\Gamma) + m) = \beta_2(M^4) + \beta_1(M^4) + 2(m - \beta_1(M^4))$$

In particular, if M^4 is simply-connected,

$$g_{GT}(M^4) = \frac{1}{2}\rho_{\varepsilon}(\Gamma) = \beta_2(M^4)$$

イロト イポト イヨト イヨト

Additivity of the invariants and finiteness-to-one

Exotic structures and \mathcal{D}_{G}

 \mathcal{D}_{G} does not satisfy the additivity property, within the set of closed PL 4-manifolds.

Example: let *N* and *N'* be two of the infinitely many different PL manifolds homeomorphic to $\mathbb{CP}^2 \# (\#_2(-\mathbb{CP}^2))$.

By Wall theorem: $\exists h \ge 0 \text{ s.t. } N \# (\#_h \mathbb{S}^2 \times \mathbb{S}^2) \cong_{PL} N' \# (\#_h \mathbb{S}^2 \times \mathbb{S}^2)$

By Wall theorem and additivity: $\overline{\mathcal{D}_G(N)} = \overline{\mathcal{D}_G(N')} \implies \text{impossible by finiteness property of } \mathcal{D}_G.$

- Graph-connected sums of weak semi-simple (resp. semi-simple) crystallizations are weak semi-simple (resp. semi-simple)
- If M_1 and M_2 admit weak semi-simple (resp. semi-simple) crystallizations, then, $M_1 \# M_2$ admits weak semi-simple (resp. semi-simple) crystallizations
- Gem-complexity and G-degree are additive within the class of compact PL 4-manifolds admitting semi-simple crystallizations
- Regular genus and G-trisection genus are additive within the class of compact PL 4-manifolds admitting weak semi-simple crystallizations

イロト イポト イヨト イヨト

Work in progress

(Picture from S. Akbulut's book "4-manifolds")

2

イロト イヨト イヨト イヨト

◆□→ ◆□→ ◆注→ ◆注→ □注

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 ● ○○○

THANK YOU

2

イロト イヨト イヨト イヨト