Reeb flows in dimension three with exactly two

periodic orbits

Joint with Cristofaro-Gardiner, Hutchings and Liu

Umberto L. Hryniewicz

(RWTH Aachen)

Advances in Symplectic Topology — Institut Henri Poincaré

“Symplectic topology, contact topology, and interactions”

Umberto L. Hryniewicz



Question. Can we understand a Reeb flow on a closed 3-manifold
with precisely two periodic orbits?
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Irrational rotation numbers

Reeb flows with precisely two periodic orbits the analogues in
dimension three of pseudo-rotations of the 2-disk.

Definition

A pseudo-rotation of the closed disk is an area-preserving and
orientation-preserving homeomorphism of the closed disk with
precisely one interior periodic point.

Question. What can we say about the boundary rotation number
of a pseudo-rotation?

Theorem (Franks)

It is irrational!

Umberto L. Hryniewicz



Irrational rotation numbers

Theorem (Franks)
Let the homeomorphism

f:R/Z x(0,1] - R/Z x (0,1]
preserve area and be isotopic to the identity.

If f has no interior periodic point then its boundary rotation
number is irrational.
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Irrational rotation numbers

Proof.
Step 1.

Theorem (Franks)

Let f be an area- and orientation-preserving homeomorphism of
R/Z x (0,1).

If some lift f to R x (0,1) has positively and negatively returning
disks, then f has a fixed point.

Step 2.

Theorem (Franks)

M = S2\ {k points}, k > 2, f : M — M homeomorphism isotopic
to the identity preserving a Borel probability measure 1 positive on
open sets, with no atoms.

If for some lift f to M we have y - 1 =0 for all y € HY(M;R),
then f has a fixed point.
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Irrational rotation numbers
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Irrational rotation numbers
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Irrational rotation numbers

Step 3.

Let  be a lift to R x (0,1], and let p € R be the boundary
rotation number.

If p= p/q then g = f9 — (p,0) has zero boundary rotation
number.

If g satisfies hor - area = 0, then apply Step 2 to get an interior
fixed point of f9.

If g satisfies hor - area # 0, choose n/m between 0 and hor - area.
Then g™ — (n,0) has positively and negatively returning disks.
Apply Step 1 to get an interior periodic point.

O
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Irrational rotation numbers

What is the analogous statement for Reeb flows?

Theorem (Cristofaro-Gardiner, H., Hutchings, Liu)

Let a Reeb flow on a closed 3-manifold have exactly two periodic
orbits y1,72. Let p(;) € R/Z be their rotation numbers.

Then these orbits are irrationally elliptic:

p(m), p(72) € Q/Z.

In other words, the contact form is non-degenerate and CZ(+f) = odd
for all n > 1.
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Characterizing the Reeb flow

Corollary
Let M = closed 3-manifold, A\ = contact form on M.

Assume that )\ has exactly two periodic Reeb orbits ~y1, 2. Denote
their primitive periods by

Tl,T2>0

the contact volume by

vol(\) :/ A A dA
M

and the contact structure by £ = ker A.

Then:
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Characterizing the Reeb flow

> (M, &) ~ (L(p, q),&sta), for some p, q.

P> 1,72 are the core circles of a genus one Heegaard
decomposition, hence are p-unknotted, linkg(y1,72) = 1/p.
Moreover, slg(vj) = —1/p.

» The Seifert rotation numbers ¢, ¢ are irrational.

> We have identities

T2 T2
vol(A :pT1T2:71:72.
) $1 P2
> ) is dynamically convex.

» Both ~; span rational disk-like GSS, and Reeb dynamics can
be described by a pseudo-rotation.

Umberto L. Hryniewicz



Characterizing the Reeb flow

Proof.

» Hutchings-Taubes = M is a lens space, 1,72 are the core
circles of a genus one Heegaard decomposition,
linkg(y1,72) = 1/p where p = |m1(M)].
Both ~1, 72 are p-unknotted.
Each «; has a unique lift 7; to M = S3, there are exactly two
A-Reeb orbits, link(51,%2) = 1, both are unknotted.

» The contact form A on M = §3 ~has no hyperbolic orbits.
Hofer-Wysocki-Zehnder = (M, ) is tight.

Honda = (M,f) = (L(p7 q)v‘ﬁstd) (Some q)
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Characterizing the Reeb flow

» Hofer-Wysocki-Zehnder = one of the lifted orbits, say 41, has
sl(71) = —1 and CZ(51) = 3. In particular, 0 < p¢; < 1.
From the identities p?¢1¢po = 1 = pehp > 1.

H.-Salom3o = sl(%2) = —1 = CZ(52) > 5, hence dynamical
convexity.

In particular slg(y1) = slg(2) = —1/p.

H.-Licata-Salomao = both 71,2 span rational disk-like GSS.
Return maps extend to closed disk and are conjugated (by a

homeomorphism) to a pseudo-rotation.

O
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The structure of the proof

The proof is based on Hutchings' ECH.

(M, &) = closed contact 3-manifold
e Hi(M)

ECH..(&,T) is a vector space over Z /27 graded by Z/dZ where d is the
divisibility of ¢;(&) + 2PD(T).

If A is a non-degenerate contact form, £ = ker A, and J is an admissible
almost complex structure on R x M, then the chain complex ECC,(\, )
is generated by orbit sets

a = {(a;, m;)} m; €N aj is a (prime) closed Reeb orbit

satisfying
«; hyperbolic = m;=1.
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The structure of the proof

There is a degree —1 differential
0y ECC.(N\,T) — ECC_1(N\,T)
defined by declaring that (0 a, 8) is a Z /27 count of J-holomorphic

curves on asymptotic to « at its positive ends, to [ at its negative ends,
with ECH index 1.

If o = {(ci, m;)}, B ={(Bj,n;)} and Z is a 2-chain satisfying
0Z = Zi mio; — ZJ nj,é’j then
I(a, 8,2) = c(Z) + Q:(Z) + CZ' (o) — CZ'(B)

where
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The structure of the proof
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The structure of the proof

6Ja: Z#Z{C EM(O[,ﬂ) | I(Oé,ﬁ, C) = 1} ﬁ
B

where M(a, ) is a space whose elements are certain weighted
collections of holomorphic curves, asymptotic to /(5 at
positive/negative ends.

There is a degree —2 map in homology defined by a chain map

Usa =3 #2{C € M(a, 5) through pt | I(a, 5, C) = 2} §
B

where pt is a point not in a closed Reeb orbit. It is called the
U-map.
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The structure of the proof

o€ ECH(,,T)
A non-degenerate contact form, & = ker A

o can be represented by
c(o,A) =inf ¢ a > 0a cycle made of orbit sets

with action < a

If X is degenerate then

c(o,\) = AI/iLnA c(o, \)
N non-deg.
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The structure of the proof

Theorem (Cristofaro-Gardiner, Hutchings, Ramos)

Let M = closed 3-manifold, A\ contact form on M, & = ker A.
If c1(&) + 2PD(T) is torsion for some I' € Hi(M) then
3 {ok}ken C ECH(E,T) such that

C(O‘k, )\)2

Uoky1 = ok oK

— vol(A) .

Theorem (Cristofaro-Gardiner, Mazzucchelli)
If c(ok,A\) = c(0ks1,A) for some k, then X is BESSE.

Corollary

If X has exactly two periodic Reeb orbits then their periods are
incommensurable.
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The structure of the proof

From now on X is a contact form on a closed 3-manifold M with
exactly two periodic Reeb orbits 71,2 with periods T1, To. The
contact structure is & = ker A.

Lemma
c1(€) is torsion in H>(M), 1,72 are torsion in Hy(M).

Proof. Choose I' € Hi(M) such that ¢;(&) + 2PD(I) is torsion. Let {ox} be a U-sequence in ECH(&,T). Then
c(ok, A) = my kT1 +my kT2 and T = my k[y1] + my k[v2]. Hence the kernel of (my, mp) — m1[v1] + ma[v2]
has rank at least equal to 1. If this rank is 1 then c(o, \) is increasing and contained in an arithmetic sequence,
hence grows at least linearly, in contradiction to the ECH-asymptotics. O

Hence we can take [ = 0 and still have U-sequences {4}
satisfying the ECH-asymptotics, since ¢1(£) + 0 = ¢1(€) is torsion.

The advantage is that there is a “simple” absolute grading on the
chain complex ECC,(X',0), X' non-degenerate, given by

(") =1(c,0,2) (0Z =d).
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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The structure of the proof
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Question: Is a smooth pseudo-rotation with Diophantine boundary
rotation number smoothly conjugated to a rigid rotation?

Question (Hofer): If a contact form on S3 has exactly two periodic
Reeb orbits, and one of the rotation numbers (equivalently both)
of these orbits is Diophantine, then is it strictly contactomorphic to
the boundary of an irrational ellipsoid?

Thank youl!
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