Dynamical process impact on the CBC background

C.Périgois, F. Santoliquido, Y. Bouffanais, U. Di Carlo, N. Giacobbo, S. Rastello , M. Mapelli, T. Regimbau

March 31, 2021

perigois@lapp.in2p3.fr

1/9

Stochastic background presentation

Definition

Signal composed by the superposition of every non-resolved gravitational wave.

Stochastic background sources

- Astrophysical background : From phenomena after the stellar activity like compact binaries coalescences.
- Cosmological background : From phenomena from early universe.

Characterization

$$\Omega_{gw}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$$

Introduction	and	context
000		

Total background

Residual stochastic background

Theorical aspects

Ω_{GW} calculation

$$\Omega_{gw}(f) = \frac{f}{c\rho_c}\phi(f), \qquad (1)$$

$$\phi(f) = T^{-1} \sum_{k=1}^{N} \frac{1}{4\pi r^2} \frac{dE_{gw}^k}{df}(f),$$
(2)

Energy density from a CBC k

$$\frac{1}{4\pi r^2} \frac{dE_{gw}^k}{df}(f) = \frac{5}{48G} \frac{\left[G\mathcal{M}_k^{(z)}\right]^{5/3}}{\pi^{1/3} d_L^2(z)} \Gamma_k(f, \chi_{eff}) F_{\iota}$$
(3)

Inspiral merger and ringdown waveforms.

Ajith et al. 2011

$$\Gamma(f, \chi_{eff}) \propto \begin{cases} f^{-1/3} & \text{si } f < f_{\text{merg}} \\ f^{2/3} & \text{si } f_{\text{merg}} \le f < f_{\text{ring}} \\ L(f, f_{\text{ring}}, \sigma) & \text{si } f_{\text{ring}} \le f < f_{\text{cut}} \end{cases}$$
(4)

Introduction	and	context	
000			

Total background

Residual stochastic background

Problematic of the study

Isolated binaries (50%)	Giacobbo et al. 2018
• $R_0^{BNS} = 283^{+97}_{-75} \text{Gpc}^{-3} \text{yr}^{-1}$, $R_0^{BBH} = 50^{+71}_{-37} \text{Gpc}^{-3} \text{yr}^{-1}$	r^{-1}
	Santoliquido et al. 2020
Young star clusters binaries (50%)	Di Carlo et al. 2020
	Rastello et al. 2020
• Age < 100 Myr	
• Density $\sim 10^3$ star.pc ⁻³	
 Original (Orig) and Exchanged (Exch) binaries 	
• $R_0^{BNS} = 151^{+59}_{-38} \text{Gpc}^{-3} \text{yr}^{-1}$, $R_0^{BBH} = 64^{+34}_{-20} \text{Gpc}^{-3} \text{yr}^{-1}$	r ⁻¹
	Santoliquido et al. 2020
LVK rates	LVK collaboration 2021

$R_0^{BNS} = 320^{+490}_{-240} { m Gpc}^{-3} { m yr}^{-1}$, $R_0^{BBH} = 19^{+18}_{-8} { m Gpc}^{-3} { m yr}^{-1}$

< ロ > < 部 > < 돌 > < 돌 > 三日 のQで 4/9

Total background ●00 Residual stochastic background

Total background from BBHs

	StarTrack	lso	Total
$\Omega^{BBH}_{gw}(25 { m Hz})$	7.27×10^{-10}	7.96×10^{-10}	1.04×10^{-9}

Table: Values of BBHs background Ω_{gw}^{BBH} (25Hz). Comparison with StarTrack model.

Périgois et al. 2021

Revealing BBHs formation channels with the background shape

Parameters impacting the background

- Mass and redshift distributions.
- Stellar formation uncertainties.
- Proportion of dynamical binaries.

Figure: Impact of masses on original (Orig) BBHs background shape. $\langle \Box \rangle \langle \Box \rangle \langle$

Total background 00● Residual stochastic background

Total background

Table: Values background. Comparison with O3a. ^(UL) stands for upper limits from LVK observations. LVK collaboration. 2021 Total background

Residual stochastic background

Detectability and residual backgrounds

$$SNR = \frac{3H_0^2}{10\pi^2}\sqrt{2T} \left[\int_0^\infty df \, \sum_{i=1}^n \sum_{j>i} \frac{\gamma_{ij}^2(f)\Omega_{gw}^2(f)}{f^6 P_i(f)P_j(f)} \right]^{1/2}$$
(5)

Allen, Romano 1999

	HLV	HLVIK
Total	1.31	1.57
Residual	1.07	1.03

Table: SNR of total and residual backgrounds. $f_{Dyn} = 0.5$

		BBHs	BNSs	BHNSs	All
Tatal	Ωgw	1.04×10 ⁻⁹	6.65×10^{-11}	1.03×10^{-10}	1.21×10^{-9}
Iotai	N _{tot}	106136	275337	151525	532898
	$\Omega_{gW}(r_{O})$	8.19×10 ⁻¹⁰ (78%)	6.47×10 ⁻¹¹ (97%)	1.01×10 ⁻¹⁰ (97%)	9.85×10 ⁻¹⁰ (80%)
	#N _{det}	617 (<1%)	5 (~0%)	6 (~0%)	628 (~0%)
HLVIK	$\Omega_{gw}(r_{\Omega})$	6.35×10 ⁻¹⁰ (61%)	6.32×10 ⁻¹¹ (95%)	9.73×10 ⁻¹¹ (94%)	7.96×10 ⁻¹⁰ (65%)
	#N _{det}	3051 (~3%)	20 (~0%)	37 (~0%)	3108(<1%)

8/9

Will be resolved with 3G detectors.

- CBCs background will reflect formation channels of binaries.
- Substracting this background, we may highlight other contributions.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ■ □ ● ○ ○ ○

Impact of mass distribution

Figure: Impact of masses on original BBHs background shape.

Impact of star formation rate and metallicity

Figure: Pessimistic(left) and optimistic(right) catalogues stands for upper and lower quartile of SFR/redshift and metallicity/redshift relations. Bottom : Contribution proportions for the different channels. Dashed lines : Fiducial catalogue.

Proportion of dynamical binaries f_{Dyn}

Figure: Left (Right) : BBH Energy density for $f_{Dyn} = 0.25$ (0.93). Extreme proportions from GWTC-2. LIGO-Virgo collaboration. 2020

Stellaf formation uncertainties

Figure: Merger rate uncertainties from SFR/redshift and metallicity/redshift relations. Santoliquido et al. 2020