30 March - 1 April 2021

THE MASSIVE BINARY BLACK HOLE POPULATION ACROSS COSMIC TIME SEEN UNDER A SEMI-ANALYTICAL PERSPECTIVE

David Izquierdo-Villalba (Università degli studi di Milano-Bicocca)

Alberto Sesana (Università degli studi di Milano-Bicocca) Monica Colpi (Università degli studi di Milano-Bicocca) Silvia Bonoli (DIPC)

OUTLINE

* The model used to study the massive (binary) black holes in a cosmological context

* Results

* Conclusions

- * Our relationship with massive black holes started in 1963 when Schmidt M. found the first quasar
- * More and more people studied the population of quasars: Luminosity functions, scaling relations ...

* We reached the **CONCLUSION** that

* MASSIVE BLACK HOLES (>10 $\rm ^6~M_{sun})~$ ARE UBIQUITOUS IN ALL GALAXIES

HIERARCHICAL GROWTH OF THE STRUCTURES:

Mergers are one of the main drivers of galaxy evolution

GALAXIES MIGHT HOST MORE THAN ONE MASSIVE BLACK HOLE

BLACK HOLES ARE DEPOSITED FAR AWAY (> kpc)

IS POSSIBLE BRING THE TWO BLACK HOLES TOGETHER (~pc) ?

Many works have tackled this problem...

INTRODUCTION THE MODEL RESULTS CONCLUSIONS

THE MODEL

In order to study the population and hosts of massive binary black holes (>10 6 M $_{sun}$) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

INTRODUCTION THE MODEL RESULTS CONCLUSIONS

THE MODEL

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

Proof of concept

2) SEMI-ANALYTICAL MODEL

L-Galaxies, Munich Galaxy Formation Model Guo et al. 2011, Henriques et al. 2015

Evolution of the STELLAR MASS FUNCTION

Henriques et al. 2015

In order to study the population and hosts of massive binary black holes (>10 6 M $_{\rm sun}$) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

1) MILLENNIUM SIMULATION

2) SEMI-ANALYTICAL MODEL

- Growth → Mergers & Disk instabilities
- Spin evolution → Link with the bulge formation and evolution
- Recoil velocities
- Wandering black holes

Izquierdo-Villalba et al. 2020

Evolution of the QUASAR BOLOMETRIC LUMINOSITY FUNCTION

In order to study the population and hosts of massive binary black holes (>10 6 M $_{\rm sun}$) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

1) MILLENNIUM SIMULATION

2) SEMI-ANALYTICAL MODEL

- Growth → Mergers & Disk instabilities
- Spin evolution → Link with the bulge formation and evolution
- Recoil velocities
- Wandering black holes

Izquierdo-Villalba et al. 2020

SPIN PARAMETER AT z = 0

In order to study the population and hosts of massive binary black holes (>10 6 M $_{sun}$) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase
- Hardening phase

In order to study the population and hosts of massive binary black holes (>106 M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase

$$t_{
m dyn}^{
m BH} = 19 f(\varepsilon) \left(\frac{r_0}{4\,{
m kpc}}\right)^2 \left(\frac{\sigma}{200{
m km/s}}\right) \left(\frac{10^8\,{
m M}_\odot}{{
m M}_{
m BH}}\right) \, \frac{1}{\Lambda} \, [{
m Gyr}]$$

CIRCULARITY of the black hole orbit

Computed form the circularity of the GALAXY ORBIT

- Hardening phase

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase

$$t_{\mathrm{dyn}}^{\mathrm{BH}} = 19 f(\varepsilon) \left(\frac{r_0}{4 \,\mathrm{kpc}}\right)^2 \left(\frac{\sigma}{200 \mathrm{km/s}}\right) \left(\frac{10^8 \,\mathrm{M}_{\odot}}{\mathrm{M}_{\mathrm{BH}}}\right) \,\frac{1}{\Lambda} \,[\mathrm{Gyr}]$$

INITIAL POSITION of the black hole

Computed according to the galaxy **TIDAL RADIUS**

- Hardening phase

$$r_t = \left(\frac{G\,\mathrm{M_{sat}}}{\omega^2 - d^2\Phi/dr^2}\right)^{1/3}$$

In order to study the population and hosts of massive binary black holes (>10⁶ M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

In order to study the population and hosts of massive binary black holes (>106 M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase
- Hardening phase: We have assumed a Sércic model profile

$$\rho_{\rm B}(r) = \rho_0 \left(\frac{r}{\rm R_e}\right)^{\rm -p} e^{-{\rm b}\left(\frac{r}{\rm R_e}\right)^{\rm 1/n}}$$
 Biava et al. 2019

1) Gas rich mergers: Disk torques driven the binary merge

$$t_{\text{delay}} = R_c \frac{G(M_{\text{BH},1} + M_{\text{BH},2})}{\sigma_{\text{inf}}^2}$$

2) Gas poor mergers: The stellar background drives the binary merge Sesana & Khan 2015

$$\frac{da_{\rm BH}}{dt} = \left(\frac{da_{\rm BH}}{dt}\right)_{\rm Hard} + \left(\frac{da_{\rm BH}}{dt}\right)_{\rm GW} = -\frac{GH\rho_{\rm inf}}{\sigma_{\rm inf}}a_{\rm BH}^2 - \frac{64G^3(M_{\rm BH_1} + M_{\rm BH_2})^3F(e)}{5c^5(1+q)^2a_{\rm BH}^3}$$

$$\frac{de}{dt} = a_{\rm BH}\frac{G\rho_{\rm inf}HK}{\sigma_{\rm inf}} - \frac{304}{15}\frac{G^3q(M_{\rm BH_1} + M_{\rm BH_2})^3}{c^5(1+q)^2a_{\rm BH}^4(1-e^2)^{5/2}}\left(e + \frac{121}{304}e^3\right)$$

- a) The initial eccentricity is assumed to be random between [0,1]
- b) The initial separation is computed as ${\rm ^{M_{Bulge}}}($ < $a_{0})$ = $2{\rm M_{BH,2}}$

In order to study the population and hosts of massive binary black holes (>106 M_{sun}) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

- Dynamical friction phase
- Hardening phase
- Merger caused by intruder massive black hole (Bonetti et al. 2018)

RESULTS

MERGER RATE

RESULTS

AMPLITUDE OF THE GRAVITATIONAL WAVE BACKGROUND IN THE PTA BAND

RESULTS

PROPERTIES OF THE GALAXIES HOSTING MERGING MASSIVE BLACK HOLES

CONCLUSIONS

- * We have tackled the formation and evolution of massive black hole binaries (>10 6 M $_{sun}$) in the PTA band
 - Dark matter merger trees from N-body simulations
 - Semi-analytical model
 - Proper treatment of the growth and spin evolution
- * For galaxies $M_{stellar} > 10^9 M_{sun}$ only black holes $> 10^6 M_{sun}$ can reach the nucleus of its central galaxy
 - After baryonic merger with merger ratios > 0.1
 - Seems to have a correlation between the wandering time and the galaxy morphology
- * The merger rate of binary black holes of $>10^6 \, \mathrm{M}_{\mathrm{sun}}$ is quite low < 0.01 event per year
- * The amplitude of the gravitational wave background at nHz is consistent with the expectations AND most of the signal comes form binary black holes merging in elliptical galaxies
- * The encounter with an intruder black hole lead to the final coalescence of the
 - ~30% of binary black holes in elliptical galaxies
 - ~10% of binary black holes in spiral galaxies hosting a classical bulge
 - ~0% of binary black holes in spiral galaxies hosting a pseudobulge

THANKS

In order to study the population and hosts of massive binary black holes (>10 6 M $_{\rm sun}$) we need several ingredients

RELIABLE GALAXY POPULATION

RELIABLE BLACK HOLE POPULATION

MODEL FOR THE BINARY POPULATION

1) MILLENNIUM SIMULATION

2) SEMI-ANALYTICAL MODEL

- Growth → Mergers & Disk instabilities
- Spin evolution → Link with the bulge formation and evolution
- Recoil velocities
- Wandering black holes

Izquierdo-Villalba et al. 2020

Evolution of the BLACK HOLE MASS FUNCTION

