METRIC RECONSTRUCTION WITH GRAVITATIONAL WAVES AND SHADOWS

Sebastian H. Völkel

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy Institute for Fundamental Physics of the Universe (IFPU), Trieste, Italy

SHV, Enrico Barausse, PRD 102 084025, arXiv:2007.02986 SHV, Enrico Barausse, Nicola Franchini, Avery E. Broderick, arXiv:2011.06812 Arthur G. Suvorov, SHV, PRD 103 044027, arXiv:2101.09697

Meeting of the National Research Group on Gravitational Waves Institut Henri Poincaré, Paris, (online)

01.04.2021

ERC-2018-COG GRAMS 815673

SEBASTIAN H. VÖLKEL

Two complementary ways to test black holes

gravitational waves (LIGO/Virgo/KAGRA)

BH imaging (EHT collaboration)

METHODS OVERVIEW

Rezzolla-Zhidenko metric:

$$ds^2 = -N^2(r)dt^2 + \frac{B^2(r)}{N^2(r)}dr^2 + r^2d\Omega^2$$

Perturbation potential:

$$V_l(r) = \frac{l(l+1)}{r^2} N^2(r) - \frac{K}{r} \frac{d}{dr^*} \frac{N^2(r)}{B(r)}$$

QNM computation:

$$\frac{iQ_0}{\sqrt{2Q_0''}} - \sum_i \Lambda_i = n + \frac{1}{2}$$

Shadow size:

$$p_{\rm ph} = rac{r_{\rm ph}}{\sqrt{-g_{tt}(r_{\rm ph})}}$$

¹Rezzolla, Zhidenko, Phys. Rev. D 90, 084009 (2014)
 ²Iyer, Will, Phys. Rev. D 35, 3621 (1987); Konoplya, Phys. Rev. D 68, 024018 (2003); ...
 ³MCMC sampling with PyMC3

SEBASTIAN H. VÖLKEL

Part I

Bayesian Metric Reconstruction with Gravitational Wave Observations **SHV**, Enrico Barausse

MODEL₂ WITH SPECTRUM₂ AT 1%

Results for model₂ obtained by using spectrum₂ with $\pm 1\%$ relative error. Left: MCMC parameter estimation. Right top: Exact (black lines) and reconstructed (color lines) potentials $V_2(r)$ and $V_3(r)$. Right bottom: Exact (black lines) and reconstructed (color lines) metric functions $g_{tt}(r)$ and $g_{rr}(r)$.

MODEL_{K2} WITH SPECTRUM₂ AT 1%

Results for model_{*K*2} obtained by using spectrum₂ with $\pm 1\%$ relative error. Left: MCMC parameter estimation. Right top: Exact (black lines) and reconstructed (color lines) potentials $V_2(r)$ and $V_3(r)$. Right bottom: Exact (black lines) and reconstructed (color lines) metric functions $g_{tt}(r)$ and $g_{rr}(r)$.

Part II

EHT tests of the strong-field regime of General Relativity SHV, Enrico Barausse, Nicola Franchini, Avery E. Broderick

EHT TESTS OF THE STRONG-FIELD REGIME OF GENERAL RELATIVITY

Using the BH image to test GR?⁴

- involved data analysis, GRMHD simulations, feature extraction,...
- + EHT: shadow size robust and identified in image as predicted ($\sim 17\%)^5$
- Recently: claiming gravitational tests beyond first PN order ⁶

How robust are shadow-size measurements to test GR?7

⁴E.g., Cunha, Herdeiro, & Radu, PRL 123, 011101, (more Refs. in paper!)
⁵The Event Horizon Telescope Collaboration et al 2019 ApJL 875 L1
⁶Psaltis et al. (EHT Collaboration), PRL 125, 141104
⁷SHV, Barausse, Franchini, and Broderick, arXiv:2011.06812

SEBASTIAN H. VÖLKEL

EHT TESTS OF THE STRONG-FIELD REGIME OF GENERAL RELATIVITY

PN metric: $-g_{tt} = 1 - \frac{2M}{r} + \sum_{i=1}^{\infty} P_i \left(\frac{M}{r}\right)^{i+1}$, "shadow-size": $b_{ph} = \frac{r_{ph}}{\sqrt{-g_{tt}(r_{ph})}}$

Optimistic (blue) and conservative (orange) posterior distributions for the PN coefficients P_i using the 17% relative error margin for the observed shadow-size of M87* as observed by the EHT collaboration with the expected shadow-size predicted by the independent measurement of the BH mass coming from stellar dynamics.

SEBASTIAN H. VÖLKEL

Part III

Exact theory for the Rezzolla-Zhidenko metric and self-consistent calculation of quasinormal modes Arthur G. Suvorov, **SHV**

"SELF CONSISTENT" QNMS BEYOND GR

Building a theory around a given RZ metric ⁸

• full details in our paper, basic summary:

$$\mathcal{A} = \kappa \int d^4 x \sqrt{-g} f(X),$$

with

$$f(X) = X^{1+\sigma}$$
, and $X \equiv F(\phi)R + \mathcal{V}(\phi) - \chi(\phi)\nabla_{\alpha}\phi\nabla^{\alpha}\phi$,

- choosing metric determines $\chi(\phi)$
- axial perturbations still Schrödinger like wave equation

⁸Based on Arthur G. Suvorov, Gen.Rel.Grav. 53 (2021) 1, 6, https://arxiv.org/abs/2008.02510

SEBASTIAN H. VÖLKEL

GR-LIKE VS SPECIFIC THEORY

Fixing RZ metric, varying theory within "family":

SEBASTIAN H. VÖLKEL

GR-LIKE VS SPECIFIC THEORY

Sebastian H. Völkel

Hope to see all of you in person next time!

We use the Rezzolla-Zhidenko (RZ) metric⁹

- · parametrization for spherically symmetric and static black holes
- continued fraction expansion for $\tilde{A}(x)$ and $\tilde{B}(x)$
- relation to PPN parameters β and γ possible

$$ds^{2} = -N^{2}(r)dt^{2} + \frac{B^{2}(r)}{N^{2}(r)}dr^{2} + r^{2}d\Omega^{2}, \qquad x \equiv 1 - \frac{r_{0}}{r}, \qquad N^{2} = xA(x),$$
(1)

$$A(x) = 1 - \varepsilon (1 - x) + (a_0 - \varepsilon)(1 - x)^2 + \tilde{A}(x)(1 - x)^3,$$
(2)

$$B(x) = 1 + b_0(1-x) + \tilde{B}(x)(1-x)^2.$$
(3)

$$\varepsilon = -\left(1 - \frac{2M}{r_0}\right), \qquad a_0 = \frac{(\beta - \gamma)(1 + \varepsilon)^2}{2}, \qquad b_0 = \frac{(\gamma - 1)(1 + \varepsilon)}{2}.$$
 (4)

⁹Phys. Rev. D 90, 084009, 2014

SEBASTIAN H. VÖLKEL

PERTURBATION EQUATIONS

We study "theory agnostic" gravitational axial perturbations

- we consider $\delta R_{\mu\nu} = 0$ for the RZ metric
- · corresponds to GR, but also holds for some scalar tensor theories

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}Z + \left[\omega^2 - V_l(r)\right]Z = 0, \qquad (5)$$

PERTURBATION EQUATIONS

We study "theory agnostic" gravitational axial perturbations

- we consider $\delta R_{\mu\nu} = 0$ for the RZ metric
- · corresponds to GR, but also holds for some scalar tensor theories

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}Z + \left[\omega^2 - V_l(r)\right]Z = 0, \qquad (5)$$

• also include parametrized modification of the potential (K)

$$V_l(r) = \frac{l(l+1)}{r^2} N^2(r) - \frac{K}{r} \frac{\mathsf{d}}{\mathsf{d}r^*} \frac{N^2(r)}{B(r)},\tag{6}$$

QUASI-NORMAL MODES / WKB

Quasi-Normal Modes (QNMs) describe ringdown of black holes

- defined by purely outgoing $(r \rightarrow \infty)$ and ingoing $(r \rightarrow r_0)$ waves
- computation of QNMs via higher order WKB method

$$\frac{iQ_0}{\sqrt{2Q_0''}} - \Lambda_2 - \Lambda_3 - \Lambda_4 - \Lambda_5 - \Lambda_6 = n + \frac{1}{2},$$
(7)

with $Q(r^*) \equiv \omega_n^2 - V_l(r^*)$ evaluated at the maximum of potential¹⁰.

$$\Lambda_2(n) = \left((-11(V^{(3)})^2 + 9V^{(2)}V^{(4)} - (30(V^{(3)})^2)n + \right)$$
(8)

$$18V^{(2)}V^{(4)}n - (30(V^{(3)})^2)n^2 + 18V^{(2)}V^{(4)}n^2) \Big) / 144(V^{(2)})^2$$
(9)

¹⁰R. A. Konoplya, Phys. Rev. D 68, 024018, 2003

SEBASTIAN H. VÖLKEL

BAYESIAN ANALYSIS

Bayes theorem:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$
(10)

with

- θ parameters of a model
- D observed data

and

- **posterior** $P(\theta|D)$: probability of parameters given the data
- likelihood $P(D|\theta)$: probability of data given the parameters
- prior $P(\theta)$: probability of parameters before looking at data
- evidence P(D): probability of Data