Dynamics of Screening in Modified Gravity

ERC-2018-COG GRAMS 815673

Established by the European Commission

April 2021

Dynamics of Screening in Modified Gravity

Based on Phys.Rev.Lett. 126 (2021) 091102, in collaboration with

Miguel Bezares, Marco Crisostomi, Enrico Barausse, and Carlos Palenzuela

(Picture by Eric Nyquist for Quanta Magazine)

Neutron stars

Compact Objects in Modified Gravity

 $g_{\mu\nu}, \phi \rightarrow k$ -essence

Dark Energy^{1,2}

No Ostrogradski ghosts

Unconstrained by GW170817³

¹T. Chiba, T. Okabe, and M. Yamaguchi, astro-ph/9912463 ²C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, PRL 85 (2000), 4438 ³P. Creminelli, G. Tambalo, F. Vernizzi, and V. Yingcharoenrat, 1910.14035

$S = \int d^4 x \sqrt{-\tilde{g}} \left(\frac{M_{\rm Pl}^2}{2} \tilde{R} + K(\tilde{X}) + \mathscr{L}_{\rm m} \left(A(\phi) \tilde{g}_{\mu\nu}, \psi \right) \right)$ $K(\tilde{X}) = -\frac{1}{2} \tilde{X} + \frac{\beta}{4\Lambda^4} \tilde{X}^2 - \frac{\gamma}{8\Lambda^8} \tilde{X}^3 - A(\phi) = e^{\alpha \phi/M_{\rm Pl}}$

Screening: Scalar modes are damped by non-linearities within the screening radius.

 $\tilde{X}^2/\Lambda^4, \ \tilde{X}^4/\Lambda^8 \gg \tilde{X}$

Neutron Stars in k-essence $\tilde{X} \equiv \nabla_{\mu} \phi \, \nabla^{\mu} \phi$ $\alpha, \beta, \gamma \sim \mathcal{O}(1)$

 $\tilde{X} \gg \tilde{X}^2 / \Lambda^4, \ \tilde{X}^4 / \Lambda^8$ $\tilde{X}/\Lambda^4 \sim 1$

 r_k

deviations w.r.t. GR

¹E. Babichev, C. Deffayet, and R. Ziour, 0905.2943

What questions did we have?

Does k-mouflage survive in the strong-field regime?

Are the obtained screened solutions stable?

Do we still see screening if we solve the full non-linear system numerically?

What questions did we have?

Does k-mouflage survive in the strong-field regime?

Are the obtained screened solutions stable?

Screening for Neutron Stars

LtH, M. Bezares, M. Crisostomi, E. Barausse, and C. Palenzuela, 2009.03354

Newtonian Fifth Force

LtH, M. Bezares, M. Crisostomi, E. Barausse, and C. Palenzuela, 2009.03354

What questions did we have?

Do we still see screening if we solve the full non-linear system numerically?

Does k-mouflage survive in the strong-field regime?

Are the obtained screened solutions stable?

65

Evolution of K-mouflage

A: static B: small perturbation C: large perturbation D: perturbation that triggers gravitational collapse

Evolution of K-mouflage

 \rightarrow

We define an **effective metric**

$$\gamma^{\mu\nu} \equiv \tilde{g}^{\mu\nu} + \frac{2K''(\tilde{X})}{K'(\tilde{X})} \tilde{\nabla}^{\mu}\phi \,\tilde{\nabla}^{\nu}\phi$$

The characteristic matrix of the principal part is...

$$M = \begin{pmatrix} 0 & \frac{\sqrt{-\tilde{g}_{tt}}}{\sqrt{\tilde{g}_{rr}}} \\ -\frac{\sqrt{\tilde{g}_{rr}}}{\sqrt{-\tilde{g}_{tt}}} \frac{\gamma^{rr}}{\gamma^{tt}} & -\frac{2\gamma^{tr}}{\gamma^{tt}} \end{pmatrix}$$
$$\gamma^{tt} \to 0$$

 \rightarrow

$$\gamma^{\mu\nu}\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi = \frac{1}{4K'(\tilde{X})}A^{-1}(\phi)A'(\phi)\tilde{T}$$

And its eigenvalues read...

characteristic speeds

$$V_{\pm} = -\frac{\gamma^{tr}}{\gamma^{tt}} \pm \sqrt{\frac{-\det\left(\gamma^{\mu\nu}\right)}{(\gamma^{tt})^2}}$$

Keldysh problem: The necessary time-step goes to zero when the speeds diverge.

References

Dynamics of Screening in Modified Gravity LtH, M. Bezares, M. Crisostomi, E. Barausse, and C. Palenzuela, *Phys. Rev. Lett.* 126 (2021) 091102, arXiv:2009.03354 [gr-qc]

k-dynamics: well-posed initial value 1+1 evolutions in *k*-essence M. Bezares, M. Crisostomi, C. Palenzuela, E. Barausse, *JCAP* 03 (2021) 072, arXiv:2008.07546 [gr-qc]

Conclusions

We have shown by solving numerically the full field equations that **screened** solutions in k-essence do not only exist for Sun-like stars, but also for **neutron stars**.

These k-mouflage solutions are **stable** to small perturbations, and also to large ones as long as they do not cause gravitational collapse.

However, in some cases we run into a so-called Keldysh problem, and we cannot evolve the k-essence field equations starting from a k-mouflage configuration.

Outlook: solve Keldysh problem, evolve in 3+1.

Thank you for your attention!