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Observational Window
on gravity

The detection of gravitational waves (GW150914) has opened a new
window on the physics of our universe:

e For the first time detection and test of GR in the “strong” gravity
coupling regime

e For the first time dynamics of BH/NS (not just static object curving
space-time)
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Gravitational Binary Problem

Merger Ringdown

Renewed interest in the gravitational binary problem:
e Phenomenological importance for the inspiral phase
e Theoretical interest for tests of GR extensions and quantum regime
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GR community

/ (a lot of progress has been done)
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Need for analytic results:

Particle Physics community

(application of novel techniques)




Gravity as an

Effective Field Theory
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e Non-Renormalizable QFT: (local, unitary, Lorentz invariant)

® GR as a first order approximation

e Standard symmetries of GR

e | ow energy dof’s: graviton + matter fields

T
o Weak field approximation: . = 7). + E”>l h ()



From Loops

to Classical Physics

Important observation: Quantum Scattering Amplitudes give
classical corrections to all loop orders

Restoring units (O - m Vo(x) = 0 massive propagators
in Klein-Gordon: 2 suppress h/bar
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Particle Physics approach in a nutshell
for gravitational binary problem

Gravity as an From Loops
Effective Field Theory to Classical Physics

On-shell methods Isolation of Classical

for Amplitudes Amplitude
A—— -
- | |
Classical Amplitude — Classical
as a seed - Observables
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Formalism suitable both for GR extensions and quantum contributions
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Black hole

as a testing lab

Black holes:

e Robust predictions of GR

¢ | Analytic solutiorﬂof vacuum Einstein’s eq.

e \ery important for gravitational waves physics

Careful
treatment
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Perfect testing lab of
\GREF Il perturbative treatment
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adaptable for
=% Quantum effects
GR extensions
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In linearised
de Donder gauge:
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as a testing lab |
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General Relativity

In usual coords:

2o(r,d) (% - d7)?
_ d%%p(r* d) 7,2
Transformation

to de Donder
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General Relativity

d—2 4225(r,d) (7 - dT)?
In usual coords: R 2 _ g2 4=l
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ha(r) == f(r)?,
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Black hole
as a testing lab

General Relativity

d—2 p(r,d)

7. A7\2 .
ds? = ho(r, d)dt*> — hi(r,d)di? — ho(r, d) G igl') ho(r) :=1—4 d—1 f(r)d—2’
hi(r) == f(r)?,
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(f(r) + 95
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By solving iteratively the de Donder gauge condition:

ha(r) := —f(r)? — f(r)*?
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~ we derive a perturbative, as expected from the linearised nature of de Donder gauge,
expression for f(r)
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Black hole
as a testing lab
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General Relativity Ambiguity up to

one independent
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D=4 f(r)=1+GN—m 2(GNm) +glog(@>(GNm) 9
r r 3 GNm r

2 4 rlCs Gym\? 21 32 1C: Gym\°®
(53100 () ) (55 H-walog(—am))( )
6
+

2Gym 10 G (Gym\*_ 4 3\ (Gym)\®
=5, — 142 1 8 + 451
o=s: )= 1+3%7+ e () (%) - (s voome (E2)) (2)
2
67+ 378010g (%) /Gymy* 32963+ 15642010 (£9)) - 43200108 (H)" /s
972 mr? 21870 mr2

Gyvm 5 /Gym\? 2/Gym\> 775 [Gym\? 545977 [Gym)\®
D=6: f(r)=1+—3—3 | t35 5| — 3| T 3
Amr 8 r 3 r 1344 Tr 537600 r

12



Black hole
as a testing lab

In linearised
de Donder gauge:
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Black hole
as a testing lab

Feynman diagrams
X




Black hole
as a testing lab

GREFT
Classical limit

Classical
limit

l [ quq
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Metric determined by a single master integral:
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Black hole
as a testing lab
e

GREFT

Divergencies

Divergencies in stress-tensor and metric are removed by
introducing non-minimal couplings in the GREFT
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Perfect Match to 3-loops (G"4)

Constants of integration in GR
coincide with

renormalisation scale in GREFT
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Outlook

+
Advanced understanding of Black Holes in GREFT

e Understanding of classical limit of guantum Amplitudes is consistent

e Explicit display of the importance and resolution of gauge choice

e Generalizable to charged and spinning black holes

e Generalizable for quantum effects and GR extensions

e Non- trivial behaviour of gravity in higher dimensions
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