CATCHING BLACK HOLES WITH TIDAL DISRUPTION EVENTS

Martina Toscani

3rd year PhD student at University of Milano

Gravitational waves: a new way to explore the Universe Paris, March 1st-April 9th 2021

Supervisors: Rossi E.M. (UniLei) & Lodato G. (UniMi)

Luminet, Carter, Rees, Frank, Phinney

How can we see TDEs?

□ debris falls back

see Lodato and Rossi 2011

 \Box lightcurve $\propto t^{-5/3}$

super-Eddington

□ X-ray, optical and radio

□ detected since 90s

Recent reviews: Saxton et al. 2020, van Velzen et al. 2020, Alexander et al. 2020, Roth et al. 2020

with the accretion of material,

after the disruption,

TDEs can enlight dormant black holes

How can we see TDES?

Gravitational wave (GW) emission from tidal disruptions

See for more about TDEs and GWs: Kobayashi et al. 2004, Guillochon & Ramirez-Ruiz 2009, Stone et al. 2013

Sun-like star disrupted by a $10^6 M_{\odot}$ BH at 20 Mpc

$$h \approx 10^{-22},$$
$$f \approx 10^{-4} \, \text{Hz}$$

GWs from disruption +

EM radiation from circularization

SPH code with general relativity by Liptai and Price 2019

$$h^{\mathrm{TT}}(t, \mathbf{n}) \propto \ddot{M}^{\mathrm{kl}}$$

$$M^{\mathrm{kl}} = \frac{1}{c^2} \int d\mathbf{x} T_{00} x^{\mathrm{k}} x^{\mathrm{l}} \Rightarrow M^{\mathrm{kl}} = \sum_{\mathrm{a}} m_{\mathrm{a}} x_{\mathrm{a}}^{\mathrm{k}} x_{\mathrm{a}}^{\mathrm{l}},$$

M: inertia moment of the system

a: index that runs over the number of particles

$$\dot{M}^{kl} = \sum_{a} m_{a} (\ddot{x}^{l} x^{k} + 2\dot{x}^{k} \dot{x}^{l} + x^{l} \ddot{x}^{k})_{a}$$

What is the GW signals from TDES?

Toscani et al. in prep

0

40

Toscani et al. in prep

50

45

55

t (ks)

60

65

70

spanning all the parameters space

- eccentricity
- BH spin
- orbital inclination
- penetration factor

SOON available online for everyone

Building a GW wave catalogue !!

What is the GW background from TDES?

GW signal from single TDE not very strong

unlikely single detection (at least for LISA)

Pfister et al. 2021 (submitted), already on the ArXiv (2103.05883)

gravitational wave background from the entire population of TDEs

nuclear TDEs

globular TDEs

Toscani et al. 2020

Toscani et al. 2020

Conclusions

Thanks for your attention

Merci pour votre attention