

Populations/multi-messenger meeting 10/03/2021

Discriminating between different scenarios for the formation and evolution of massive black holes with LISA

With S. Babak, E. Barausse, E. Berti, J. Gair, N. Pol, S. Taylor, K. Wong

Inferring the MBH population

Credits: NASA/ESA/ Hubble Space Telescope

- Massive black hole (MBH) binaries are LISA main target
- Inform us on MBH formation and evolution, e.g. seeding mechanism and "final parsec problem"
- Use MBHs to trace the history of their host galaxies

Semi-analytic models

- Use Press-Schechter formalism to build dark matter merger tree
- Evolve black holes and baryonic components with semi-analytic prescriptions
- Computationally "cheap"
- Bonetti, Sesana, Haardt, Barausse, Colpi 2018:
 - Light (Pop III star remnants, $M_{\rm seed} \sim 300 M_{\odot}$) vs heavy seeds (collapse of protogalactic disks, $M_{\rm seed} \sim 10^5 M_{\odot}$)
 - Binary merger triggered by interaction with gas, stars or triplet interactions

z = 0 $z \sim 15 - 20$

Model mixing

Pure models:
- M₁: Light seed
- M₂: Heavy seed

Sesana, Berti Gair,Volonteri 2010

• Mixing scheme:

 $M = \lambda M_1 + (1 - \lambda)M_2$ $R = \lambda R_1 + (1 - \lambda)R_2$

Distributions

$$\chi_{+,-} = \frac{m_1\chi_1 \pm m_2\chi_2}{m_1 + m_2}$$

Distributions

$$\chi_{+,-} = \frac{m_1\chi_1 \pm m_2\chi_2}{m_1 + m_2}$$

SNR cut, threshold=10

Hierarchical Bayesian analysis

$$p(\lambda|d) = \pi(\lambda)\pi(N_{\text{int}})e^{-N_{\text{det}}(\lambda)}N_{\text{det}}(\lambda)^{N_{\text{obs}}}\prod_{i=1}^{N_{\text{obs}}}\int \frac{p_i(\theta|d)}{\pi_i(\theta)}\frac{p_{\text{pop}}(\theta|\lambda)}{\int p_{\text{pop}}(\theta|\lambda)p_{\text{det}}(\theta)}d\theta$$

 $\log(p(\lambda|d)) = \text{geometric} - \text{selection} + \text{poisson}$

Marginalising over the rate:

$$p(\lambda|d) \propto \pi(\lambda) \prod_{i=1}^{N_{\text{obs}}} \int \frac{p_i(\theta|d)}{\pi_i(\theta)} \frac{p_{\text{pop}}(\theta|\lambda)}{\int p_{\text{pop}}(\theta|\lambda) p_{\text{det}}(\theta)} d\theta$$

Improvement with number of ⁹ events

Improvement with number of¹⁰ events

Parameters: $\mathcal{M}_c + z$

Posterrior predictive distribution

$\left| \text{PPD}(\theta | d) = \int d\lambda \ p(\theta | \lambda) p(\lambda | d) \right|$

Worse case

Average cases

11

- Use different models for pipeline and data
- E.g. model from Barausse, Dvorkin, Tremmel, Volonteri, Bonetti 2020
- Same seeding mechanisms but consider SN feedback and additional delays

Robustness (SN delays)

Observable

Intrinsic

 $\lambda_0 = 0$

Data=Heavy new model

Conclusions

- We have introduced mixing scheme between "pure" models
- Allow to infer the MBH population self-consistently
- But not robust to the "unknown"
- Currently developing model agnostic approach

Thank you for your attention!

Credits: NASA's Goddard Space Flight Center

KDE

$$\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K_{\mathbf{H}}(\mathbf{x} - \mathbf{x}_{i}) \quad \mathbf{H}: \text{bandwith}$$
$$K_{\mathbf{H}}(\mathbf{y}) = \frac{1}{(2\pi)^{-\mathbf{d}/2}} |\mathbf{H}|^{-1/2} \mathbf{e}^{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{H}^{-1}\mathbf{y}}$$

Integ

Integrated square error:
$$\int d\theta (f(\theta) - f(\theta))^2$$

Minimize: $CV = \int d\theta \hat{f}(\theta)^2 - \frac{2}{n} \sum_{i=1}^n \hat{f}_{-i}(\theta_i)$

ſ

ゝ

 $\lambda_0 = 0.2$

PPD

Biased to the left

Biased to the right

25

Results

Obs

PPD

 $\log_{10}(\mathcal{M}_{c})$ $= \int_{PPD} \int_{PD} \int_{PD}$

 $\overline{\lambda_0} = 0.5$

Biased to the right

Biased to the left

Obs

PPD

Biased to the left

 $\lambda_0 = 0.8$

Biased to the right

PP plot

Robustness (SN delays)

29