GPE: GPU-accelerated Parameter Estimation for gravitational waves with x360 acceleration

YUN-JING HUANG ACADEMIA SINICA, TAIWAN

2021 MAR 30

yunjinghuang14@gmail.com

Outline

- ► Introduction
- Motivation
- ▶ Parallelization Methods
 - 1) Waveform
 - 2) Nested Sampling
- ► Comparison with LALInference GW150914
 - ▶ Parameter Estimation Result
 - ▶ Performance Test

Gravitational wave parameter estimation

- Use Bayes' theorem to estimate the posterior distribution of the source parameters.
- Stochastically sample the posterior
- Time-consuming process
 - One parameter estimation run requires collecting tens of thousands of samples from the posterior.
 - Each sample is found by conducting thousands of random walks.
 - ▶ Each random walk involves one waveform generation.
 - One parameter estimation run requires more than millions of waveform calculations
- May take several days to several weeks to run parameter estimation on a single event.

Bayes' theorem

posterior prior likelihood
$$p(\theta|d,H) = \frac{p(\theta|H)p(d|\theta,H)}{p(d|H)}$$
 evidence

Speedup Motivation

- Increase in detection rate
- Statistical studies
 - ▶ e.g. detector observing scenarios
 - Parameter estimation of large number of events.
- ► EM follow-up
 - ▶ Fast and accurate production of sky localization regions.

GPE Overview

- Adapted from the nested sampling flavor of LALInference (lalinference_nest)
- Newly written in C++ and CUDA
- Produces same output for cbcBayesPostProc
- Precision choices
 - ▶ Double precision
 - ► Single precision

Parallelization method #1: Waveform

- Dominant source of time consumption
- Two frequency-domain waveforms:
 - ► TaylorF2
 - ► IMRPhenomPv2
- Calculations in each frequency bin are independent from each other, therefore they are highly parallelizable.
- Calculations for each detector are also independent.
- Each GPU thread -> each frequency bin of each detector

- ~33,000 parallel calculations per waveform call (two detectors)
- ~1,000 calls per iteration
- ~16,000 iterations per run
- ➤ ~10¹¹ calculations per run

Parallelization method #2: Nested Sampling

- Calculates the evidence (Z) and produces the posterior as a by product
- Maps multi-dimensional parameter space into one-dimensional priormass space.
 - By defining "nested" likelihood contours and their enclosed priormass
- Algorithm:
 - Sprinkle several samples uniformly in prior.
 - At each iteration, replace lowest likelihood sample with new sample within a likelhood contour.
 - Finding a new sample => Parallelization!

Parallelization method #2: Nested Sampling

- ► LALInference:
 - Copy one existing sample
 - Perform several random walks
 - ▶ Find one new point
- ► GPE:
 - Copy many existing samples
 - Perform several random walks for many points at the same time
 - Find **many** new points
 - Save additional points for later use

LALInference

GPE

- Existing sample
- New sample

Comparison with LALInference: GW150914

- ▶ Use GW150914 data from LIGO Open Science Center
- Number of live points: 500
- ▶ LAL: use lalinference_nest with IMRPhenomPv2 waveform
- ► GPE: parallelized IMRPhenomPv2 waveform
 - Double precision
 - Single precision

Parameter estimation result

Performance test: 1 CPU v.s. 1 GPU

Code	Parallelization Method	Precision	Hardware	Cores	Max Clock rate	Wall time	Speedup w.r.t. LAL
LAL		Double	Core™ i7-8700 CPU	1	3.20 GHz	20h53m37.7s	
GPE	Waveform	Double	GeForce GTX 1080 Ti	3584	1.58 GHz	26m2.0s	×48.2
		Single				13m45.9s	×91.1
	Waveform + Nested Sampling	Double				10m56.0s	×114.7
		Single				3m27.4s	×362.7

Summary

- ▶ GPE can achieve a 360 times acceleration
- ► GPE can produce consistent results with LALInference
- Speedup is essential for
 - Parameter estimation of real events in multi-detection era
 - Large simulations
 - ► EM follow-up