

Why cosmological phase transitions?

▶ Why not? Are there really no phase transitions in particle cosmology? From $T \ll \text{GeV}$, all the way up to inflation $(10^{\text{lots}} \text{ GeV})$?

▶ Observable remnants Such as $(n_B - n_{\bar{B}})/s$, topological defects, magnetic fields, gravitational waves, . . . ⇒ new probe of particle physics

1^{st} -order phase transitions

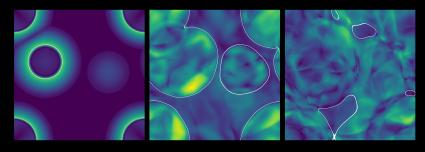


Figure: Cutting et al. arXiv:1906.00480.

- ▶ Bubbles nucleate, expand and collide
- ► This creates long-lived fluid flows (sound waves)
- ► Which in turn create gravitational waves

Gravitational waves from phase transitions

► Stochastic GW background
Bubble collisions produce a stochastic GW background.
So too do any topological defects created.

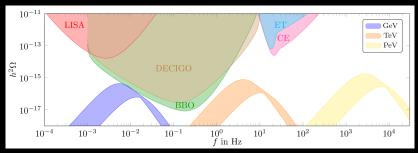


Figure: SU(N) confinement transitions, Huang et al. arXiv:2012.11614

▶ Probing uncharted GW (f,Ω) -space LIGO, Virgo, KAGRA, NANOGrav, Taiji (2033), LISA (2034), DECIGO (B-DECIGO late 2020s), Einstein Telescope (2035?), BBO, Cosmic Explorer, ...

The pipeline for phase transitions

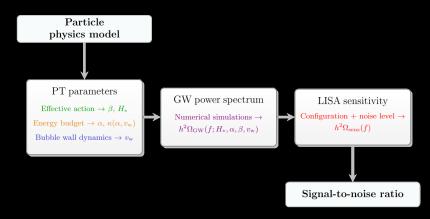


Figure: The LISA pipeline $\mathscr{L} \to \mathsf{SNR}(f)$, Caprini et al. arXiv:19 $\overline{10.13125}$

The inverse pipeline for phase transitions

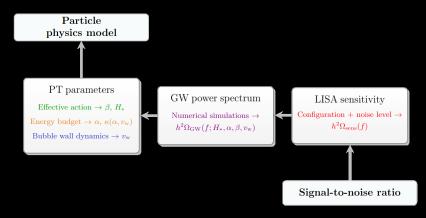


Figure: The inverse LISA pipeline $\mathsf{SNR}(f) \to \mathscr{L}$, see e.g. Croon et al. arXiv:1806.02332

Theoretical uncertainties

- ► How large are they?
- ▶ Where do they come from?
- ► How to overcome them?

Perturbative sensitivity

► GW spectra of first-order phase transitions in any given specific model are very sensitive to details of calculation.

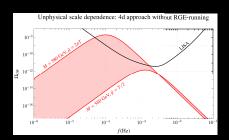


Figure: Theoretical uncertainty at one single parameter point in SMEFT, Croon et al. arXiv:2009.10080.



Figure: Scan of Z_2 -xSM at $O(g^2)$ versus $O(g^3)$, Carena et al. arXiv:1911.10206. Difference is $\Delta\Omega_{\rm GW}/\Omega_{\rm GW}\sim 10^{10}!$

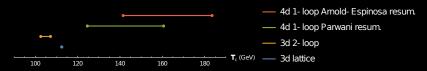
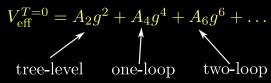
Unwrapping perturbative sensitivity

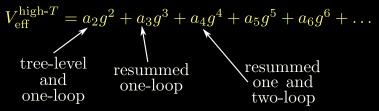
 $ightharpoonup \Omega_{GW}$ depends very strongly on the temperature of the transition,

$$\Omega_{\sf GW} \propto rac{(\Delta V_*)^2}{T_*^8},$$

so an apparently innocuous uncertainty in T_* can still result in a huge uncertainty in Ω_{GW} .

 Uncertainties in thermodynamic parameters are themselves quite large


Figure: Theoretical uncertainties for T_c at one benchmark point in the 2HDM, Niemi et al. arXiv:1904.01329

The perturbative expansion

► At zero temperature the loop and coupling expansions line up

► At high temperature the two expansions are misaligned

So you have to work harder to achieve the same accuracy.

Comparing orders

Dramatic improvements at $\mathcal{O}(g^4)$

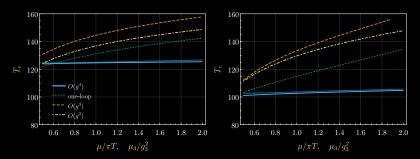


Figure: Unphysical renormalisation scale dependence of critical temperature at benchmark points in xSM, OG and T. Tenkanen (forthcoming).

This is great for T_c but not known how to extend this to bubble nucleation.

Comparing uncertainties

- ▶ Renormalisation scale dependence appears to be the largest source of theoretical uncertainty, $\Delta\Omega_{\rm GW}/\Omega_{\rm GW}\sim 10^{2-3}$ in the SMEFT, and can be as large as $\sim 10^{10}$ in e.g. xSM.
- ► Some sources (e.g. inconsistencies) are hard to estimate.

Figure: Sources of theoretical uncertainty in Ω_{GW} for the SMEFT, Croon et al. arXiv:2009.10080. See also Guo et al. arXiv:2103.06933.

Conclusions

- Cosmological phase transitions may be observable by GW detectors
- lacktriangle Typically several orders of magnitude uncertainty in Ω_{GW}
- ▶ Dramatic improvements apparent at $\mathcal{O}(g^4)$ \Rightarrow Necessary for LISA inverse problem $\Omega_{\mathsf{GW}} \to \mathscr{L}$
- ► Can test perturbation theory versus lattice simulations Niemi et al. arXiv:1904.01329, OG arXiv:2101.05528

Conclusions

- Cosmological phase transitions may be observable by GW detectors
- lacktriangle Typically several orders of magnitude uncertainty in Ω_{GW}
- ▶ Dramatic improvements apparent at $\mathcal{O}(g^4)$ \Rightarrow Necessary for LISA inverse problem $\Omega_{\mathsf{GW}} \to \mathscr{L}$
- ► Can test perturbation theory versus lattice simulations Niemi et al. arXiv:1904.01329, OG arXiv:2101.05528

Thanks for listening!