What can be learned from a protoneutron star's mass and radius?

Authors: Edwan PREAU, Aurélien PASCAL, Jérôme NOVAK, Micaela OERTEL

https://arxiv.org/abs/2102.05923

1) Introduction

1.1) What is a Neutron Star?

- ❖ Very dense stars → supranuclear density
- **❖** Large fraction of neutrons
- ❖ $M \sim 1.4 M_*$ and $R \sim 10$ km $\sim 10^{-5} R_*$
- → most compact stars known in the Universe
- The observation of NS offers a unique opportunity to test our understanding of matter at high densities:
 - no experimental data
 - strongly coupled

1.2) Neutron star structure and Equation of state

- ❖ <u>here:</u> structure = distribution of energy and pressure
- Determined by the Einstein Equations of GR
 - → (Tolman-Oppenheimer-Volkov) TOV system

$$\begin{split} \frac{dm}{dr} &= \frac{4\pi}{c^2} r^2 \varepsilon , \\ \frac{dP}{dr} &= -\frac{G\varepsilon m}{r^2 c^2} \left(1 + \frac{P}{\varepsilon} \right) \left(1 + \frac{4\pi P r^3}{mc^2} \right) \left(1 - \frac{2Gm}{rc^2} \right)^{-1} . \end{split}$$

Closed by an EoS, $P = P(\varepsilon)$

M-R diagram

- \clubsuit Curve $M_g(R)$, parametrized by the central ε
- **♦** EoS ↔ M-R diagrams
 ♦ constraints on the EoS from M&R

M-R diagram for a polytropic EoS

1.3) The formation of a neutron star and gravitational wave emission

- ❖ NS formed as remnants of CCSN of massive stars $(M > 10M_*)$
- An iron core forms, stabilized against gravity by the pressure of degenerate electrons
- **Gravitational instability** initiated by electron captures $e+p \rightarrow n+\nu_e$, $e+(A,Z) \rightarrow (A,Z-1)+\nu_e$.
- ❖ The implosion stops due to the short-range N-N repulsive interaction → new stable state = PNS embryo
- ❖ The inner core bounces back → propagating shock
- ❖ As it propagates, the post-shock pressure diminishes → shock stagnation
- ❖ Shock revival (v absorption, ...) → supernova explosion

Collapse & Bounce of the Stellar Core

Shock Stagnation

Gravitational Wave Emission during a CCSN

- Shock-core system subject to non-radial fluid instabilities
 - →break spherical symmetry
 - →GW signal
- GW spectrum studied for several CCSN simulations by [Torres-Forné et al.], from the analysis of PNS oscillations.

- The frequency of the modes depends on the general properties of the PNS such as its M&R.
- Frequency of the dominant g-modes can be directly related to M/R^2

https://arxiv.org/abs/1902.10048

Can the measurement of the mass and radius of a PNS in a CCSN put constraints on the EoS of *cold* NS?

1.4) Structure of a PNS

Structure of a PNS still determined by the TOV system (quasi-static)

$$\begin{split} \frac{dm}{dr} &= \frac{4\pi}{c^2} r^2 \varepsilon , \\ \frac{dP}{dr} &= -\frac{G\varepsilon m}{r^2 c^2} \left(1 + \frac{P}{\varepsilon} \right) \left(1 + \frac{4\pi P r^3}{mc^2} \right) \left(1 - \frac{2Gm}{rc^2} \right)^{-1} . \end{split}$$

- Still closed by an EoS $P = P(\varepsilon)$, but the EoS depends on:
 - -The temperature T
 - -The electron fraction $Y_e = \frac{n_{electron}}{n_{baryon}}$
 - \rightarrow written $P = P(\varepsilon, T, Y_e)$ (3D EoS).
- Profiles T(r) and $Y_e(r)$ necessary to integrate the TOV
- High variability of the profiles
- → should be taken into account when investigating PNS structures

Ye(r) (top) and T(r) (bottom) profiles from CCSN simulations

2) Methods and Results

2.1) Parametrization of the profiles

Need to have an idea of the ensemble of possible PNS structures that could arise in a CCSN

❖ Method:

- Build parametrized profiles for T and Y_e at the bounce
- Simulate the PNS evolution during ~1 s after the bounce
- For several post-bounce times, and for various EoS, derive the PNS structure

- ❖ Instead of T(r) and $Y_e(r)$, it is more convenient to parametrize $s(m_b)$ and $Y_e(m_b)$.
- ❖ 5 parametrizations for the initial profiles, for each of 3 initial baryon masses $M_b = 1.6 M_*, 1.8 M_*, 2 M_*$.

2.2) PNS evolution

- Next step: simulate the evolution of a PNS.
- → evolution code developed by A. Pascal (A. Pascal et al.; in preparation).
- ❖ The evolution depends on the EoS, that has been chosen among four : HSDD2, SLY4, SFHO and SRO(APR).

❖ We produce profiles every 0.1s after the bounce.

Results: Constraints on the EoS of cold NS?

- ❖ Need to measure the cold NS M&R
- → Can we put constraints on the cold NS M&R from the observation of the PNS M&R?
- For each evolved profile, derive the PNS structure from the TOV

- ❖ After 1 s, M is larger by about 6-10% and R by about 40-200% compared with the cold configuration.
- The measure of R cannot be used to constrain the cold NS radius
 - \rightarrow Neither can M/R²

Conclusion

- New method to investigate the structure of PNS newly born in a CCSN, taking into account our ignorance of the profiles of entropy and electron fraction inside the star.
- Used this method to determine whether the observation of the M&R of PNS in CCSN would be able to put constraints on the EoS of cold NS
- M: upper bound quite close to the value for the cold NS
- R : much less reliable
- In particular, the measure of M/R² of a PNS proposed by (Torres-Forné et al.) is not expected to give a reliable estimate of the same quantity in the cold configuration.
- Other question: constraints on the 3D EoS of the observed PNS?