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Four hours of simulated LISA data

-2x10-20
-1x10-20

0

1x10-20
2x10-20
3x10-20
4x10-20

A

-3x10-20

-2x10-20

-1x10-20

0

1x10-20

2x10-20

2.494x107 2.4944x107 2.4948x107 2.4952x107

E

t (s)
3



Four hours of simulated LISA data (Fourier domain)
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Four hours of simulated LISA data - noise removed

10-42

10-40

10-38

10-36

A

10-42

10-40

10-38

10-36

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

E

f (Hz)
5



1 SMBHB,  1 EMRI,  25  Galactic Binaries
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Likelihood function 
for Gaussian noise

C = noise correlation matrix

The LISA Global Solution

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)

d = data

M = size of data

h =
NX

i=1

hi = GW signal model

~� = model parameters (signals, noise)

7



Likelihood function 
for Gaussian noise

The LISA Global Solution

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)

Note: Number of resolvable sources a priori unknown - requires trans-dimensional model selection

Galactic Binaries 
Massive Black Holes 
Extreme Mass Ratio Inspirals 
Stellar Origin Black Holes 
Astrophysics Backgrounds 
Primordial Backgrounds 
Un-modeled Bursts 

dim[ ⃗λ ] ∼ 200,000 → 500,000

Acceleration Noise 
Position Noise 
Glitches 
Gaps 
Orbital Dynamics

⃗λ = model parameters (Signals, Noise)
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The Global Solution

�2 = (d� h) ·C�1 · (d� h) = (d� h|d� h)

�2 =
X

i

(d� hi|d� hi) + (N � 1)(d|d)�
X

i 6=j

(hi|hj)

Individual source chi-squared Overlap between sources

If the overlap terms were zero we wouldn’t need a global solution

The overlaps between any two sources are typically small, but there are lots of sources
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• Trans-dimensional Bayesian 
Inference


• Time-Frequency (Wavelet) 
Domain Analysis


• Blocked Gibbs - update each 
component of the signal/noise 
model in circular sweeps


• Time-evolving solution as new 
data arrives
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Trans-dimensional Markov Chain Monte Carlo
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Ultra Compact Binaries

https://github.com/tlittenberg/ldasoft
[Littenberg, Cornish, Lackeos  & Robson, PRD 101 123021 (2020)] 12

https://github.com/tlittenberg/ldasoft


Joint Inference of Signals and Power Spectra
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Example from month 2 of the 
LDC “Sangria” data set 

Loud SMBHB merger distorts 
the power spectrum
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2. [“Wavelet processes and adaptive estimation of the evolutionary wavelet 
spectrum”, Nason, von Sachs, & Kroisandt, J. R. Statist. Soc. Series B62, 271 (2000)]

1. [“Fitting time series models to nonstationary processes”. Dahlhaus, Ann. Statist.,  25, 1 (1997)]

p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

Cost of computing the likelihood is far less in a representation where the noise correlation matrix C is diagonal

For a large class of discrete wavelet transformations and locally stationary noise   

C(i,j)(k,l) = �ij�kl Cik

[1]

Time

[2]

Frequency

This is the likelihood used by the LIGO coherent WaveBurst algorithm 

Non-stationary Noise
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p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

C(i,j)(k,l) = �ij�kl Cik

Model the wavelet spectrum          as a smooth function in 
frequency and time. E.g. Trans-dimensional Bicubic spline

Cik

Non-stationary Noise - Moving LISA analysis to the wavelet domain

[Cornish,  Phys Rev D 102, 124038 (2020)] 15

LISA data whitened assuming the noise is stationary



Non-stationary Noise

[Cornish,  Phys Rev D 102, 124038 (2020)] 

Non-stationary time series Bi-cubic spline fit to the dynamic spectrum

16



Fast wavelet transforms of the signals for 
computational efficiency 

[Cornish,  Phys Rev D 102, 124038 (2020)] 

Wavelet domain waveforms

Faster than frequency domain,  scalingN

Wavelet domain - Faster, Better, Cheaper!
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How do cosmological stochastic signals 
fit into the LISA global solution?
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Stochastic Signals

We are not interested in the value of each GW signal sample         . Want to infer the power spectrum h̃(f) Sh(f)

Marginalize over h:    p(Sh|d) =
Z

p(d|h)p(h)
p(d)

dh =
p(d|Sh)p(Sh)

p(d)

p(h) =
1p

det(2⇡Sh)
e�

1
2 (h

†S�1
h h) p(Sh)

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)Likelihood

Prior
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Stochastic Signals

The integration over h is easy as it just involves Gaussians    [Cornish & Romano, PRD 2013]  

p(d|Sh) / e�
1
2 (d|d)S

Where   

and    SIJ(f) = Sn,I(f) �IJ + Sh(f) �IJ(f)

(a|b)S = 2
X

I,J

Z 1

0

⇣
ãI(f)b̃

⇤
J(f) + ã⇤I(f)b̃J(f)

⌘
S�1
IJ (f) df
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Stochastic Signals: Putting the signal on the denominator

SIJ(f) = Sn,I(f) �IJ + Sh(f) �IJ(f)

The quantity               is a geometrical factor that encodes the response of the detectors. In 
the long wavelength limit it is called the overlap reduction function     

�IJ(f)

�IJ(f) =
1

4⇡

Z
(F+

I (n̂)F+
J (n̂) + F+

I (n̂)F+
J (n̂))e2⇡if(~xI�~xJ )·n̂d⌦n̂
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Stochastic Signals: LISA
SIJ(f) = Sn,I(f) �IJ + Sh(f) �IJ(f)

γIJ( f ) ≃ 0
Channels have zero 

overlap at low frequencies

Have to use spectral separation - works 
when there are different spectra for noise 
and signals 
[Adams & Cornish 1307.4116 (2013)]

[Boileau, Christensen, Meyer & Cornish 2011.05055 (2020)]
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CMB Spectral Component Separation
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LISA Cosmology Working Group Workshop  
DESY Hamburg (October 2016) 

Chiara Caprini Germano Nadini

“How well can you subtract a stochastic signal?” 
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Stochastic Signals - Toy model for subtraction

Sh( f ) = 2A2
s

( f
f* )

αs
+ ( f*

f )
αsSn( f ) = A2

n

fαn
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Stochastic Signals - Toy model for subtraction

Sh( f ) = 2A2
s

( f
f* )

αs
+ ( f*

f )
αs

Sn( f ) = A2
n

fαn

Not only do we recover the signal and noise 
model (hyper) parameters, we also reconstruct 
the stochastic signal pretty well - match of 0.45 
for one detector, 0.58 for two detectors. 
Decent signal subtraction!
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Keeping stochastic waveforms in the numerator
[Lentati, Alexander, Hobson, Taylor, Gair, Balan & van Haasteren, 1210.3578 (2012)]

Modern pulsar timing analysis solves 
directly for the stochastic signals using 
a pseudo Fourier basis 

[Arzoumanian et al, 2009.04496  (2012)]
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where C(f) =

�

⇤
�AA⇥ �AE⇥ �AT ⇥
�EA⇥ �EE⇥ �ET ⇥
�TA⇥ �TE⇥ �TT ⇥

⇥

⌅

Likelihood

Spectral Priors p(Sa), p(Sp) p(Sh)

Back to LISA - Modeling Instrument Noise, Galactic Binaries and an Isotropic Stochastic Background

p(X|Sa, Sp, Sh) =
�

f

1
(2�)3/2|C|

e�(XiC
�1
ij Xj)/2

Galaxy Shape Priors �(x, y, z) = �0 e�
�

x2+y2/Rd sech2(z/Zd)
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Key Point: The resolved galactic binaries fix 
the time variation and spectra of the 
unresolved “confusion noise”  

[Adams & Cornish 1307.4116 (2013)]
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[Adams & Cornish 1307.4116 (2013)]
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Simultaneously solve for amplitude of instrument noise, stochastic 
background and galactic white dwarf density and distribution

GW amplitude GW slope Position noise Acceleration noise

[Adams & Cornish 1307.4116 (2013)]
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Conclusions

• Stochastic signals fit naturally into the LISA 
global solution

• You can indeed “subtract” stochastic signals

• Stochastic components due to unresolved 
astrophysical signals are highly constrained by 
the resolved component
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