Gravitational waves as a probe of the very early universe

Valerie Domcke CERN/EPFL

@ GWMess2021 31.03.2021

based mainly on 1912.03695 & 2009.10649,

w. W. Buchmüller, H. Murayama and K. Schmitz

2006.01161

w. C. Garcia-Cely

2011.12414

w. N. Aggarwal, F. Muia, F. Quevedo,

J. & S. Steinlechner et al

Outline

GWs from metastable cosmic strings

Hunting for ultra high frequency GWs

cosmic strings in a nutshell

- one-dimensional topological defects formed in an early Universe phase transition
- symmetry breaking pattern $G \to H$ produces cosmic strings iff $\Pi_1(G/H) \neq \mathbb{1}$

- form cosmic string network, evolves through
 - string (self-)intersection & loop formation
 - · emission of particles and gravitational waves

Allen & Shellard `90

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

$$\Pi_1(G_{SM} \times U(1)/G_{SM}) = \Pi_1(U(1)) \neq 1$$

 $\Pi_1(SO(10)/G_{SM}) = 1$

cosmic strings no cosmic strings

consider $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

$$\Pi_1(G_{\mathrm{SM}} \times U(1)/G_{\mathrm{SM}}) = \Pi_1(U(1)) \neq \mathbb{1}$$

$$\Pi_1(SO(10)/G_{SM}) = \mathbb{1}$$

cosmic strings no cosmic strings

resolution: no topologically stable cosmic strings

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$$

generates monopoles

metastable string & monopole network

$$G_{SM} \times U(1)_{B-L} \to G_{SM}$$

generates cosmic strings,

consider $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin '08/09; Dror et al '19

$$\Pi_1(G_{\mathrm{SM}} \times U(1)/G_{\mathrm{SM}}) = \Pi_1(U(1)) \neq 1 \longrightarrow$$

$$\Pi_1(SO(10)/G_{SM}) = \mathbb{1}$$

cosmic strings no cosmic strings

resolution: no topologically stable cosmic strings

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$$

generates monopoles

cosmic inflation

$$G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

dilutes monopoles

metastable string & monopole network

generates cosmic strings,

decay via Schwinger production of monopoles

$$\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$$

$$\mu \sim v_{B-L}^2$$
 string tension $m \sim v_{GUT}$ monopole mass

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figuera et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\text{GW}}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$

$$C_n(f) = \frac{2n}{f^2} \int_{z_{\min}}^{z_{\max}} dz \frac{\mathcal{N}(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop

of loops emitting GWs observed at frequency f today

of loops with length ℓ at time t

$$N_r(\ell,t) = 0.18 \ t^{-3/2} (\ell + 50 G \mu t)^{-5/2}$$
 with $\ell = 2n/((1+z)f)$

cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figuera et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$

$$C_n(f) = \frac{2n}{f^2} \int_{z_{\min}}^{z_{\max}} dz \frac{\mathcal{N}(\ell(z), t(z))}{H(z)(1+z)^6}$$

decay of cosmic string network at

$$\bar{\ell} \Gamma_d = H$$

GW power spectrum of a single loop

of loops emitting GWs observed at frequency f today

of loops with length ℓ at time t

$$N_r(\ell,t) = 0.18 \ t^{-3/2} (\ell + 50 G \mu t)^{-5/2}$$
 with $\ell = 2n/((1+z)f)$

cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figuera et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$

$$C_n(f) = \frac{2n}{f^2} \int_{z_{\min}}^{z_{\max}} dz \frac{\mathcal{N}(\ell(z), t(z))}{H(z)(1+z)^6}$$

decay of cosmic string network at

$$\bar{\ell} \Gamma_d = H$$

GW power spectrum of a single loop

of loops emitting GWs observed at frequency f today

of loops with length ℓ at time t

$$N_r(\ell,t) = 0.18 \ t^{-3/2} (\ell + 50 G \mu t)^{-5/2}$$
 with $\ell = 2n/((1+z)f)$

cosmological history

evaluated analytically for $\ell \ll 50\,G\mu t$ and $\ell \gg 50\,G\mu t$:

Buchmüller, VD, Murayama, Schmitz `19

$$\Omega_{\rm GW}(f) = 3.3 \cdot 10^{-8} \left(\frac{G\mu}{10^{-7}}\right)^{1/2} \min[(f/f_*)^{3/2}, 1], \quad f_* = 3.0 \cdot 10^{14} \text{ Hz } e^{-\pi\kappa/4} \left(\frac{10^{-7}}{G\mu}\right)^{1/2}$$

 $\sqrt{\kappa} \sim v_{\rm SO(10)}/v_{U(1)}$

 $SO(10) \to G_{\rm SM} \times U(1)_{B-L} \to G_{\rm SM}$ with $v_{B-L} \lesssim v_{GUT}$ can be tested with GWs!

 $\sqrt{\kappa} \sim v_{\rm SO(10)}/v_{U(1)}$

 $SO(10) \to G_{\rm SM} \times U(1)_{B-L} \to G_{\rm SM}$ with $v_{B-L} \lesssim v_{GUT}$ can be tested with GWs!

Has NANOGrav seen metastable strings?

Maybe. Stay tuned for more data!

Outline

GWs from metastable cosmic strings

Hunting for ultra high frequency GWs

challenges in HFGW detection

CMB/BBN bound constrains energy

challenges in HFGW detection

CMB/BBN bound constrains energy

experiments measure displacement

challenges in HFGW detection

CMB/BBN bound constrains energy

experiments measure displacement

- frequencies >> 100 Hz are very challenging
- laser interferometers seem impossible

UHF Gws – sources & detector concepts

		Proposed sensitivity	Proposed sensitivity
Technical concept	Frequency	(dimensionless)	$\sqrt{S_n(f)}$
Spherical resonant mass, Sec. 4.1.3 [286]			•
Mini-GRAIL (built) [293]	2942.9 Hz	10^{-20}	$5 \cdot 10^{-20} \mathrm{Hz}^{-\frac{1}{2}}$
		$2.3 \cdot 10^{-23} (*)$	$10^{-22}\mathrm{Hz}^{-\frac{1}{2}}(*)$
Schenberg antenna (built) [290]	3.2 kHz	$2.6 \cdot 10^{-20}$	$1.1 \cdot 10^{-19} \mathrm{Hz}^{-\frac{1}{2}}$
	-	$2.4 \cdot 10^{-23} (*)$	$10^{-22}\mathrm{Hz}^{-\frac{1}{2}}(*)$
Laser interferometers			
NEMO (devised), Sec. 4.1.1 [25, 276]	$[1-2.5]~\mathrm{kHz}$	$9.4 \cdot 10^{-26}$	$10^{-24}\mathrm{Hz}^{-\frac{1}{2}}$
Akutsu's proposal (built), Sec. 4.1.2 [281,332]	100 MHz	$7 \cdot 10^{-14}$ $2 \cdot 10^{-19} (*)$	$10^{-16} \text{ Hz}^{-\frac{1}{2}}$ $10^{-20} \text{ Hz}^{-\frac{1}{2}} (*)$
Holometer (built), Sec. 4.1.2 [283]	[1 – 13] MHz	$8 \cdot 10^{-22}$	$10^{-21}{\rm Hz}^{-\frac{1}{2}}$
Optically levitated sensors, Sec. 4.2.1 [59]			
1-meter prototype (under construction)	(10 – 100) kHz	$2.4 \cdot 10^{-20} - 4.2 \cdot 10^{-22}$	$(10^{-19} - 10^{-21}) \mathrm{Hz}^{-\frac{1}{2}}$
100-meter instrument (devised)	(10 – 100) kHz	$2.4 \cdot 10^{-22} - 4.2 \cdot 10^{-24}$	$(10^{-21} - 10^{-23}) \mathrm{Hz}^{-\frac{1}{2}}$
Inverse Gertsenshtein effect, Sec. 4.2.2			
GW-OSQAR II (built) [301]	[200 - 800] THz	$h_{c,n} \simeq 8 \cdot 10^{-26}$	×
GW-CAST (built) [301]	$[0.5-1.5]10^6~{\rm THz}$	$h_{c,n} \simeq 7 \cdot 10^{-28}$	×
GW-ALPs II (devised) [301]	[200 - 800] THz	$h_{c,n} \simeq 2.8 \cdot 10^{-30}$	×
Resonant polarization rotation, Sec. 4.2.4 [311]			
Cruise's detector (devised) [312]	$(0.1 - 10^5) \mathrm{GHz}$	$h \simeq 10^{-17}$	×
Cruise & Ingley's detector (prototype) [313,314]	100 MHz	$8.9 \cdot 10^{-14}$	$10^{-14}\mathrm{Hz}^{-\frac{1}{2}}$
Enhanced magnetic conversion	5 GHz	$h \simeq 10^{-30} - 10^{-26}$	×
(theory), Sec. 4.2.5 [315]			
Bulk acoustic wave resonators	(MHz - GHz)	$4.2 \cdot 10^{-21} - 2.4 \cdot 10^{-20}$	$10^{-22}\mathrm{Hz}^{-\frac{1}{2}}$
(built), Sec. 4.2.6 [320, 321] Superconducting rings, (theory), Sec. 4.2.7 [322]	10 GHz	$h_{0,n,mono} \simeq 10^{-31}$	×
	10 0112	700,n,mono = 10	
Microwave cavities, Sec. 4.2.8	500 W	1 - 2 10=21	
Caves' detector (devised) [324]	500 Hz	$h \simeq 2 \cdot 10^{-21}$	×
Reece's 1st detector (built) [325]	1 MHz	$h \simeq 4 \cdot 10^{-17}$	×
Reece's 2nd detector (built) [326]	$10~\mathrm{GHz}$	$h \simeq 6 \cdot 10^{-14}$	×
	(1 - 10) GHz	$h \simeq 10^{-25}$	×
Pegoraro's detector (devised) [327]	(1 – 10) 0112		

White Paper: Aggarwal, VD, Muia, J. Steinlechner, S. Steinlechner, Quevedos et al `20

UHF Gws – sources & detector concepts

a cosmological high frequency GW detector

(inverse) Gertsenshtein effect

Gertsenshtein `62; Boccaletti et al `70

GW source

radio telescopes ARCADE 2 and EDGES, Rayleigh-Jeans tail of CMB spectrum

VD, Garcia-Cely `20

cosmic magnetic fields

inhomogeneities in B and n_e set coherence length of oscillation

$$\mathcal{P} \equiv \int_{l.o.s.} \langle \Gamma_{h \leftrightarrow \gamma} \rangle dt = \int_0^{z_{\text{ini}}} \frac{\langle \Gamma_{h \leftrightarrow \gamma} \rangle}{(1+z)H} dz$$

similar to neutrino oscillations, or axion-photon oscillations

the potential of radio telescopes

$$\delta f_{\gamma}(\omega/T, T_0) = \mathcal{P} \cdot f_{gw}(\omega/T, T_{ini})$$

VD, Garcia-Cely `20

c) Akutsu et al '08, d) Ito, Soda '04, e) Cruise'12

21cm astronomy has promising opportunities for GW searches

Conclusions & Outlook

 Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at NANOGrav, LIGO or LISA

- UHF GWs are an exciting but challenging window to the Early Universe
 - UHF GW initiative taking shape
 - radio telescopes can probe UHF GWs

Conclusions & Outlook

 Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at NANOGrav, LIGO or LISA

- UHF GWs are an exciting but challenging window to the Early Universe
 - UHF GW initiative taking shape
 - radio telescopes can probe UHF GWs

"such detectors [laser interferometers] have so low sensitivity that they are of little experimental interest" [Misner, Thorne, Wheeler 1974]

nobel prize 2016 for detection of GWs with LIGO

Conclusions & Outlook

 Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at NANOGrav, LIGO or LISA

- UHF GWs are an exciting but challenging window to the Early Universe
 - UHF GW initiative taking shape
 - radio telescopes can probe UHF GWs

Questions 2

"such detectors [laser interferometers] have so low sensitivity that they are of little experimental interest" [Misner, Thorne, Wheeler 1974]

nobel prize 2016 for detection of GWs with LIGO

backup

NANOGrav: A first glimpse of the SGWB?

Pulsar timing array NANOGrav, Sept 2020:

"Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars."

NANOGrav collaboration `20

"However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with General Relativity."

Cosmological B-L breaking

extend SM by gauging $U(1)_{B-L}$ & adding 3 RH neutrinos:

 $U(1)_{B-L}$ unbroken: hybrid inflation

 $U(1)_{B-L}$ breaking: cosmic strings, tachyonic preheating

 $U(1)_{B-L}$ broken: reheating, leptogenesis, DM

Buchmüller, VD, Schmitz `12, Buchmüller, VD, Kamada, Schmitz `13+`14 Buchmüller, VD, Murayama, Schmitz `19

parameters:

 $v_{B-L}, T_{rh}, \widetilde{m}_1, m_{3/2}, m_{LSP}$

observables:

 $A_s, n_s, \Omega_{DM}, \eta_B$

Cosmological B-L breaking

SO(10) embedding:

Buchmüller, VD, Murayama, Schmitz `19

Testable with LIGO + PTA!

Cosmological B-L breaking

SO(10) embedding:

Buchmüller, VD, Murayama, Schmitz `19

Testable with LIGO + PTA!

BBN bound

radiation energy after electron decoupling:

decoupling: photons fleutinos basis
$$\rho_{rad} = \frac{\pi^2}{30} \left(2 + \frac{7}{4} \left(\frac{4}{11}\right)^{4/3} (3.046 + \Delta N_{eff})\right) T^4$$

at BBN or CMB decoupling:

$$\rho_{GW}(T) < \Delta \rho_{rad}(T) \quad \Rightarrow \quad \left(\frac{\rho_{GW}}{\rho_{\gamma}}\right)_{T_{BBN,CMB}} \le \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{eff} \simeq 0.05$$

at BBN, CMB decoupling ~ 5 % GW energy density allowed

today:
$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_\gamma^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \frac{\rho_{GW}(T)}{\rho_\gamma(T)} \leq 10^{-5} \Delta N_{eff} \simeq 10^{-6} \qquad \text{note: constraint on total GW energy}$$

on *total* GW energy

today, energy fraction $< 10^{-6}$ (for GWs present at BBN / CMB decoupling)

CMB Rayleigh Jeans tail

VD, Garcia-Cely `20

Rayleigh Jeans tail: sizable contribution possible without violating BBN/CMB bound