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Overview

* Gravitational waves (GVVs) now available for probing fundamental physics in
unexplored regimes

* Interpretation of GWV signals from binaries relies on theoretical models

* Required: detailed understanding of GW signatures of matter

* Focus in this talk on the inspiral: clean, cumulative, currently accessible regime

* What have we learned so far?

* Outlook to future prospects



Neutron stars (NSs)

» Gravity compresses matter to up to several times nuclear density

Earth’s mass ~ peutron star

compactness ~ black hole

crushed crushed

Credit:

» Thousands observed to date, some masses > 2 Msun
» Quantum pressure (neutron degeneracy) can only support up to ~ 0.7 Msun

» Unique window onto strongly-interacting subatomic matter



Conjectured NS structure

[ density of iron ~ 10g/cm3]

crust ~ km

/ Lattice of neutron rich nuclei ~ 106 g/cm3 inverse f-decay
|00 times stronger than steel

‘ \ free neutrons ~ 1011 g/cm3 neutron drip

outer core
uniform liquid (neutron superfluid,
superconducting protons, electrons, muons)

deep core ~ few x 1014 g/cm3
=2x nuclear density, nucleons overlap -

new degrees of freedom relevant

condensates?! deconfined quarks?



Neutron stars as QCD labs
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* Deeper understanding of strong interactions, their unusual properties, e.g.

- asymptotic freedom (weaker force at shorter distances)

- Vacuum (condensate) has important effects, e.g. mass

proton mass: ~ 938 MeV
N &l only ~ 1% due to Higgs



NSs as labs for emergent structural complexity

Building blocks of matter

Electrons ( \

Protons, Quarks, :
neutrons gluons

Atom

* Collective phenomena, multi-body interactions

* Effects of the excess of neutrons over protons (isospin asymmetry)?

* How do nucleons and their quarks and gluons assemble and interact to create the
structure of matter?



Gravitational waves (GWs) from binary systems

inspiral

merger .

Time evolution of cLagiet N

the GW signal [two black holes, equal masses, aligned spins]

» Details of the waveform encode fundamental source properties

mass ratio 1:10 L .
misaligned spins

» Measurements: data cross-correlated with theoretical waveform models



GW signatures of matter

— BH-BH (low mass) —— BH-NS

ringdown,
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R s tidal effects:
Spin-induced Absorption
multipoles | excitation of characteristic quasi-normal modes
— i V\/\/\.» V‘/bwjf i Od
o : J Q resonant +
| - ) non-resonant

GW spectroscopy of NS interiors

Generic phenomena (any objects that are not classical GR black holes in 4d),

associated characteristic parameters encode object’s internal structure



Example of a characteristic matter parameter

° In a binary: tidal field & due to curvature from companion

When variations in tidal field are much faster than

® NS’s internal timescales (adiabatic limit):

of spacetime
away from spherical symmetry

Induced deformation: L= A gl]

i= —

/

tidal deformability parameter

=0 for a BH

[Kol,Smolkin “11,Chia ’20, Casals, LeTiec '20,...]

computed from Einstein’s equations for
linearized perturbations to equilibrium

[TH 2008]



Properties of NS matter reflected in global observables
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Influence on GWs

°* Energy goes into deforming the NS

1
E ~ Eorbit + ZQ E

* moving multipoles contribute to gravitational radiation

: 5 2
Ecw ~ |25 (Qorbit + Q)

— _— = tidal
T dt  dF/dw Adgw ~ A

d E
° approx. GW phase: dpaw w GwW \ (Mw)10/3

» for two NSs: most sensitive to:

mla)\l

~ 13 Mo mq
A= 14+12— | A 14+12— | A
@ g A () ()

[Flanagan,TH 2008, Vines, Flanagan, TH 2011, Damour, Nagar, Villain 2012, Henry, Faye, Blanchet 2020]



Example: nonspinning inspirals starting from 30 Hz

GW frequency ~ 30Hz

T " " N N

h(t)

[from Guerra, TH 2019]

— BHBH —— NSNS MPA1
NSNS WFF1 — NSNS H4
—— NSNS SLy
~ 350Hz

Dashed lines: | kHz




More general tidal coupling of NS matter to dynamics for slowly rotating NSs

spacetime near the NS viewed on the orbital scale:

/& a i\h o o
/i/, “==*% | worldline + multipoles
\g‘f\ & W ﬂ\

- ‘\Yff Q - f #

/ /"*;zfx T~ \n\ / *,a Z Z /Z/
~— m, S Q J 9 .
J

A4

tidally induced mass & current multipoles (* matter contributions to them)

Effective action describing the binary dynamics:

p redshift magnetic piece of curvature, no Newtonian analog
» j
B Coriolis FD 0SC
| A / A
point-particle multipoles interact with Effects of NS’s frame-dragging: Q’s angular
part companion’s spacetime spin on its tidal momentum interacts with orbital
curvature response angular mom. & companion’s spin

[Steinhoff, TH +2016, 2020, 2021]
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More general tidal coupling of NS matter to dynamics for slowly rotating NSs

é ™
Multipoles (due to quasi-normal modes) behave as harmonic oscillators, e.g. one mode each:
2z dQ;; dQii 2
= — Qij dQi — —@Q;;Q;j + ... dominated by fundamental (f-)modes
dNz2ws dr dr
| 32 Q Q | 220tat BB 4 subdominant, but mode
' 32(Ustat _ Uirrot) d+r dr 3 ANy frequencies OC NS'’s spin
NS
ktwo different magnetic tidal deformabilities [Landry, Poisson, Pani+, Damour, Nagar, ...] )
1/
VB Coriolis FD
T A / ‘
| — / =
point-particle multipoles interact with Effects of NS’s frame-dragging: Q’s angular
part companion’s spacetime spin on its tidal momentum interacts with orbital
curvature response angular mom. & companion’s spin

[Steinhoff, TH +2016, 2020, 2021]
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Impact of finite f-mode frequency during inspiral

Scalings:

m, R, O
i—fx/, s f-mode frequency: ~ \/m/R3 (internal structure - dependent)
) * tidal forcing frequency: ~ 2w ~ 2\/M/7=3
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Enhanced tidal effects even if the resonance is not fully excited

Example tidal response during a quasi-circular inspiral
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f-modes effects included in the effective one body model SEOBNRv4T

[TH + 2016, Steinhoff, TH,+ 2017, Steinhoff, TH + 2021] 13



Results from NS binary GW events (low spin priors)

GW170817 GW 190425 (2)

LVC GWTC-1
LVC ApJ Lett. 892 L3 (2020)
90% credible interval
different state-of-the-an

. waveform models): =
) :

 of
:+190% upper limit

GWI170817
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Joint EoS constraints: 2.14 Me pulsar, GWs, NICER

+ subatomic physics inputs: ° Low density: Fermi liquid theory, chiral effective theory
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GW constraints on f-mode frequency

* Measuring both A and wf (@ quadrupole & octupole for each NS - 8 matter parameters total)

* using an approximate efficient frequency-domain model

f-mode frequency

Results for GW 170817
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Dimensionless tidal deformability

[Schmidt, TH 2019]

Pratten, Schmidt, TH 2020



Planned detector developments

— Next observing run O4 to start ~ mid-2022

(Near/reaching design sensitivity)

Further upgrades in mid-2020s

2030s (?): 3G detectors (Einstein Telescope, Cosmic Explorers):

|Ox better sensitivity, wider bandwidth

More accurate measurements of nearby Sources,

greater number & diversity of events

* map out tidal deformability vs mass
—d .
@ (5N * look for subdominant effects
- GW spectroscopy of NSs during inspiral

* tidal disruption/merger/postmerger




Conclusions

Neutron stars are unique testbeds for important questions in subatomic physics

QCD Emergent structure
quarks and gluons

=

’ ; T, '
hadrons _—{ .8 y_—
Q NS mesergers ! : \\@ ~—
NSs \ | '

* Progress and prospects for exploring them with GWs

* Significant further effort on accurate theoretical modeling required

* Important interdisciplinary connections, e.g. with
* astronomy (NICER, radio, EM counterparts ...)
* experiments (neutron rich nuclei, heavy ion collisions, ...)

* theoretical advances (nuclear, QCD,...)



