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Resources
Papers/Reviews

Books
Maggiore, “Gravitational Waves: Volume 1: Theory and Experiments” 

Creighton & Anderson “Gravitational-Wave Physics and Astronomy: 
An Introduction to Theory, Experiment and Data Analysis” 

LIGO/Virgo, “A guide to LIGO–Virgo detector noise and extraction of 
transient gravitational-wave signals”, CQG 37, 055002 (2020) 

Cornish “Black Hole Merging and Gravitational Waves”, Black Hole 
Formation and Growth, Saas-Fee Advanced Course 48, (2019)
https://www.dropbox.com/s/l8nusg5fd5x3ak1/2019_Book_BlackHoleFormationAndGrowth.pdf?dl=0

Romano & Cornish “Detection methods for stochastic gravitational-wave 
backgrounds: a unified treatment” Living Rev.Rel. 20, 1 (2017)
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Outline of lectures
• Detector Response Functions 

• Source localization 

• Data Analysis 101 - the Likelihood function 

• Statistical Framework, Bayesian and Frequentist 

• Searching for signals 

• Bayesian Inference, parameter estimation 

• Transdimensional inference 

• Noise modeling 

• Recent developments
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H-L Time delay 7 ms 
H-L  Phase Shift  2.9 radians
H-L  Amplitude ratio 1.24
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Gravitational Wave Detectors - Time of Flight 

6



T(t)Δ

end mirror 1

end mirror 2

^

^
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^

beam splitterû

v̂
^

Detector Response to GWs

Pulsar Timing Spacecraft tracking Laser Interferometers

�T (t)
�⌫(t)

⌫0
=

d�T (t)

dt
�(t) = 2⇡⌫0�T (t)
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The Long and the Short of it

f⇤ =
c

L

LIGO LISA PTA
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Time of flight computed in TT gauge

ds2 = �dt2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

= �dvdu+ dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy

where u = t� z, v = t+ z

All time-of-flight detectors require us to compute the time it takes a photon to travel from 
one event to another in the spacetime perturbed by a GW. Some require multiple trips

T(t)Δ

end mirror 1

end mirror 2

^

^

t

^

beam splitterû

v̂
^

dx

dx
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Time of flight computed in TT gauge

ds2 = �dudv2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

Have to solve for null geodesics in this metric. We could integrate the geodesic equations, but 
the spacetime has lots of symmetry, and hence conserved quantities. No integration needed!

Killing vectors ⇤⇥x, ⇤⇥y, ⇤⇥v S� =
dx�

d�
x�(�)Photon worldline Photon 4-velocity

[Derivation follows N. J. Cornish, Phys.Rev.D80:087101,2009, arXiv:0910.4372]  

S�S� = 0Killing vectors yield three constants of motion and the conditionSx, Sy, Sv

dx

[Based on F. B. Estabrook and H. D. Wahlquist, Gen. Rel. Grav. 6,  439 (1975)]
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Time of flight computed in TT gauge

ds2 = �dudv2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

(0, 0, 0, 0)

(L, x, y, z)

Path from                  to                  in unperturbed spacetime has(0, 0, 0, 0) (L, x, y, z)

�1

�2

t = L =
p
x2 + y2 + z2S�S� = 0 )

Sx =
x

��
, Sy =

y

��
, Sv =

z � L

2��

dx
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Time of flight computed in TT gauge

ds2 = �dudv2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

(0, 0, 0, 0)

(L+ �t, x, y, z)

When GWs are present the trajectory is perturbed

xµ(�) = xµ
0 (�) + �xµ(�)

Spatial endpoints fixed TT gauge: �xi(0) = �xi(��) = 0

Sx = (1 + h+)u
x + h⇥u

y

Sy = (1� h+)u
y + h⇥u

x

Sv = �1

2
uu

0 = ↵xu
x + ↵yu

y + 2↵vu
v

Conserved quantities are:

Sµ ! S0
µ + �SµExpand and solve for perturbations:

dx
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Time of flight computed in TT gauge

ds2 = �dudv2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

(0, 0, 0, 0)

(L+ �t, x, y, z)

For example:

Becomes �Sx =
d�x

d�
+ h+u

x
0 + h⇥u

y
0

) �Sx�� = �x(��)� �x(0) + ux
0

Z
h+ d�+ uy

0

Z
h⇥ d�

) �Sx =
x

uu��2

Z
h+ du+

y

uu��2

Z
h⇥ du

dx

Sx = (1 + h+)u
x + h⇥u

y
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Time of flight computed in TT gauge

ds2 = �dudv2 + dx2(1 + h+(u)) + dy2(1� h+(u)) + 2h⇥(u)dydy + dz2

(0, 0, 0, 0)

When GWs are present we have to change our aim:

�t =
1

2L(L� z)
(x2Hxx + y2Hyy + 2xyHxy)

Hij =
� L�z

0
hij(u)du

(hxx = �hyy = h+, hxy = h⇥)

(L+ �t, x, y, z)
�Sx =

xHxx + yHxy

��(L� z)

�Sy =
yHyy + xHxy

��(L� z)

�Sv = � �t

2��

dx
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Time of flight computed in TT gauge

(0, 0, 0, 0)

�t =
1

2L(L� z)
(x2Hxx + y2Hyy + 2xyHxy)

�t}

â k̂

Coordinate independent version:

(u = k�x�)

Here     is a unit vector along the detector arm and     is the GW propagation direction     

h = h+(u) ✏
+ + h⇥(u) ✏

⇥H[u1, u2] =

Z u2

u1

h(u) du

�⌧12 =
(â⌦ â) : H[u1, u2]

2(1� k̂ · â)

â

15



General coordinate system

x

y

z

n̂û

v̂

n̂ = sin � cos � x̂ + sin � sin� ŷ + cos � ẑ
û = cos � cos � x̂ + cos � sin� ŷ � sin � ẑ

v̂ = sin� x̂� cos � ŷ

e� = û� v̂ + v̂ � û
e+ = û� û� v̂ � v̂

p̂

q̂

(�

�� = p̂� q̂ + q̂ � p̂

= sin 2� e+ + cos 2� e�

�+ = p̂� p̂� q̂ � q̂

= cos 2� e+ � sin 2� e�
�

�

h = h+�+ + h���� �k̂
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T(t)Δ

end mirror 1

end mirror 2

^

^

t

^

beam splitterû

v̂
^

â
b̂

Example: Laser interferometer in the long wavelength limit

1

2

3

4
�T (t) = �⌧12 +�⌧24 ��⌧13 ��⌧34

h(t) ⌘ �T (t)

2L
⇡ 1

2

h
â⌦ â� b̂⌦ b̂

i
: h(t)

Detector tensor

h(t) = h+(t)✏
+ + h⇥(t)✏

⇥

Polarization tensors
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Antenna Pattern Functions

x

y

z

n̂û

v̂

n̂ = sin � cos � x̂ + sin � sin� ŷ + cos � ẑ
û = cos � cos � x̂ + cos � sin� ŷ � sin � ẑ

v̂ = sin� x̂� cos � ŷ

â
b̂

e� = û� v̂ + v̂ � û
e+ = û� û� v̂ � v̂

p̂

q̂

(�

k̂

(â� â) : e+ = cos2 � cos2 �� sin2 �

(â� â) : e� = cos � sin 2�

(b̂� b̂) : e+ = cos2 � sin2 �� cos2 �

(b̂� b̂) : e� = � cos � sin 2�
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Antenna Pattern Functions

x

y

z

n̂û

v̂

n̂ = sin � cos � x̂ + sin � sin� ŷ + cos � ẑ
û = cos � cos � x̂ + cos � sin� ŷ � sin � ẑ

v̂ = sin� x̂� cos � ŷ

â
b̂

e� = û� v̂ + v̂ � û
e+ = û� û� v̂ � v̂

p̂

q̂

(�

k̂

h = F+h+ + F�h�

F+ =
1
2
(â� â� b̂� b̂) : �+

=
1
2
(1 + cos2 �) cos(2�) cos 2� � cos � sin 2� sin 2�

F� =
1
2
(â� â� b̂� b̂) : ��

=
1
2
(1 + cos2 �) cos(2�) sin 2� + cos � sin 2� cos 2�
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Antenna Pattern Functions

F+ F⇥ F =
q

F 2
+ + F 2

⇥

Polarization averaged
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Time of Arrival Triangulation

LIGO Hanford + LIGO Livingston LIGO Hanford + LIGO Livingston + Virgo
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Triangulating the Source

Hanford
28



Triangulating the Source

Hanford + Livingston
29



Triangulating the Source

Hanford + Livingston + Virgo
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LIGO GW170817
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Virgo GW170817
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Beyond the low frequency approximation

��12 =
(â⇤ â) : H[u1, u2]

2(1� k̂ · â)
(u = k�x�)H[u1, u2] =

Z u2

u1

h(u) du

Example: h(u) = A cos(!(t� k̂ · x)) ✏+

�⌧12 =
L

2
((â⌦ â) : ✏+) sinc


!L

2
(1� k̂ · â)

�
cos

"
!(t+

L

2
� k̂ · (x1 + x2)

2

#

Long wavelength one-
arm antenna pattern

Phase of the wave 
at midpoint of arm

Finite arm-length 
correction to 

antenna pattern
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Pulsar Timing
�GW(t) = �L

2

� 0

�1
(â� â) : h(t + L�,�â�L) d�

{

Lâ

Dn̂

k̂

µ

k̂ = �n̂� �
L

D
(â� n̂ cos µ)

(Ignoring L/D amplitude corrections)

(â� â) : H = (1 + cos µ)(H+ cos 2� + H� sin 2�)

fL = 10,  = 0

GW

(note that here the photons 
propagate in the         direction)�â
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Laser Interferometer Space Antenna

Low frequency responseSource localization via amplitude and 
frequency modulation

35



N. J. Cornish, Class.Quant.Grav.18:4277, (2001)   

LISA Antenna Patterns (Detector Frame)
f = 1 mHz

f = 10 mHz
f = 20 mHz

f = 4 mHz
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LISA  20 mHz
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Data Analysis 101 - Laplace & Gauss

Memoir on the Probability of Causes of Events (1774) 
Analytical Theory of Probability (1812)

︎Z. Astronom. Verwandte Wiss. 1 185, (1816)  

Laplace developed Bayesian Inference. Gauss developed maximum likelihood estimation.  
Gauss introduced the normal distribution, Laplace explained its ubiquity (CLT).

Pierre Simon de Laplace Carl Friedrich Gauss
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Data Analysis 101
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Data Analysis 101

-4
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0
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0 0.2 0.4 0.6 0.8 1

d

x

residual = data - model

d = h+ n d� h = n⇒

The residuals should follow the noise distribution

In this example the noise was uncorrelated between samples and 
draw from a Gaussian distribution with a fixed standard deviation 
(“stationary white noise”)

p(ni) = 1
2πσ

e
−

n2
i

2σ2

p(n) = ∏
i

p(ni) = 1
(2π)N/2σN e

−
N

∑
i=1

n2
i

2σ2
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Data Analysis 101
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The likelihood of observing the data d given the model h is simply
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p(d − h) = 1
(det(2πC))N/2 e− 1

2 (di−hi)C−1
ij (dj−hj)

Data Analysis 101

If the noise is correlated  between data samples (“colored noise”), and/or if the amplitude of the noise changes from sample to sample 
(“heteroskedastic” aka “non-stationary”), then we need to generalize the Gaussian likelihood:

In the previous example the noise correlation matrix was promotional to the identity matrix: CSWN
ij = δij σ2

The quantity in the exponent is the chi squared goodness of fit

χ2 = (di − hi)C−1
ij (dj − hj) ≡ (d − h |d − h)

Here I have introduced the noise weighted inner product

(a |b) = ai C−1
ij bj
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Data Analysis 101
Gravitational wave data comes in the form of a time series. Computing the noise-weighted inner product in the time domain is costly 
since the matrix is not diagonal. If the noise is stationary, i.e. has statistical properties that are unchain with time, then the noise 
correlation matrix is diagonal in the frequency domain. That is why most GW analysis is done in the frequency domain.

(a |b) = ai C−1
ij bj = 2∑

f

ã( f )b̃*( f ) + ã*( f )b̃( f )
Sn( f )

The factor of 2 is because we only sum over positive frequencies. The quantity  is the one-sided noise spectral density (PSD)Sn( f )

We often talk about “whitened” data or waveforms. This is simply . Can transform this back to the time domain:ãW( f ) = ã( f )/Sn( f )1/2

data            -            signal         =         noise
43



Challenges for Gravitational Wave Data Analysis

Complicated waveforms, as many as 17 parameters

Noise properties have to be estimated along with the signals

Non-Gaussian noise transients have to be modeled/mitigated
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The Bayesian Way

p(h|d) = p(d|h)p(h)
p(d)

Likelihood 
(noise model)

Prior 
(signal model)

Normalization - model evidence

Posterior 
probability for
waveform h
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Gravitational wave signal types
Well modeled - e.g. binary inspiral and merger

Poorly modeled - e.g. core collapse supernovae Stochastic- e.g.  phase transition in early universe

p(h)
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Gravitational wave signal models

Template based

Burst signals

Stochastic signals

p(h) = �(h� h(~�)), p(~�)

p(h) = �(h�
X

), p( )

p(h) =
1p

det(2⇡Sh)
e�

1
2 (h

†S�1
h h), p(Sh)
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Posterior Distribution for the Waveforms

p(h) = �(h�
X

)p( ) -10
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Template based models have the strongest 
priors and hence yield the most sensitive 
searches

Techniques such as MCMC and Nested Sampling can be used to map out the full posterior distribution, 
allowing us to compute mean, median and mode and credible intervals.

Marginal likelihood (hierarchical Bayes)

p(h) = �(h� h(~�)), p(~�)

The marginal likelihood and the (hyper) prior 
on the model parameters then defines the 
posterior on the model parameters

p(d|~�) =
Z

p(d|h)�(h� h(~�)) dh

Likelihood

Evidence

Prior

p(~�|d) = p(d|~�)p(~�)
p(d)

Posterior Distribution for the model parameters
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Template based analysis - Parameter Posteriors

p(~�|d)
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The Bayesian way - all we need to do is map out the posterior 
distribution in 17+ dimensions, how hard could that be?

• The likelihood can be multi-modal with narrow peaks 

• Waveform generation and/or the likelihood evaluation can be 
very computationally intensive 

• LIGO/Virgo analyses have to sift through vast amounts of data for 
rare signals 

• LISA analyses will have much smaller data sets to contend with, 
but the data will be contain millions of overlapping sources 

• PTA data is unevenly sampled with complicated noise properties

Many analyses start with a search phase followed by Bayesian parameter estimation
51



Searching for signals (a highly simplified treatment)

p(Λ|H0)

ΛΛ∗

p(Λ|H1)

Set threshold       such that              favors hypothesis    �� � > �� H1

Λ

Type II error Type I error

Type 1 error - False Alarm

Type 1I error - False Dismissal

� �Detection Statistic H0 �Noise Hypothesis H1 �Noise + Signal Hypothesis
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Likelihood for Stationary Gaussian Noise

(a|b) = 2

Z 1

0

ã(f)b̃⇤(f) + ã⇤(f)b̃(f)

Sn(f)
df

The likelihood ratio statistic

Suppose that we have two hypotheses:          H1 : A signal with parameters ~� is present

H0 : No signal is present

⇤(~�) =
p(d|h(~�), H1)

p(d, H0)
Likelihood ratio:         For Gaussian noise:        ⇤(~�) = e�(d|h)+ 1

2 (h|h)

p(d|~�) ⇠ e�(d�h(~�)|d�h(~�))/2

Noise weighted inner product
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The   - statisticρ

For a fixed false alarm rate, the false dismissal rate 
is minimized by the likelihood ratio statistic (Neyman-Pearson)

The likelihood ratio is maximized over the signal parameters  ⃗λ

⇤(~�) =
p(d|h(~�), H1)

p(d, H0)

Writing          h( ⃗λ ) = ρ( ⃗λ ) ĥ( ⃗λ ) ⇒ ⇤(~�) = e ⇢(d|ĥ)� 1
2⇢

2

The likelihood ratio can be maximized wrt to the overall amplitude to yield the  - statistic:ρ

@⇤(~�)
@⇢ = 0

) ⇢(~�) = (d|ĥ(~�))

Maximizing:       
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The -statistic and SNRρ

The signal-to-noise ratio 
(SNR) is defined:

SNR =
Expected value when signal present

RMS value when signal absent

=
E[�]�

E[�2
0]� E[�0]2

= (h|ĥ)

=
�

(h|h)

In practice, the detector noise is not 
perfectly Gaussian, and variants of the 
 - statistic are now used, notably the 

“new SNR” statistic, introduced by B. 
Allen Phys.Rev. D71 (2005) 062001

ρ

SNR2 = 4

Z 1

0

|h̃(f)|2

Sn(f)
df
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Frequentist Detection Threshold 

For stationary, Gaussian noise the  - statistic is Gaussian distributed.ρ

p0(�) =
1�
2�

e��2/2For the null hypothesis we have

p1(�) =
1�
2�

e�(�2�SNR2)/2For the detection hypothesis we have

Setting a threshold of       gives the false alarm and false dismissal probabilities��

PFA =
1
2
erfc(��/

�
2)

PFD =
1
2
erfc((�� � SNR)/

�
2)

FAR =
PFA

Tobs

LIGO/Virgo analyses do not use SNR thresholds, but rather use False Alarm Rate thresholds

e.g.   FAR = One in million years and an observation time of one year

PFA = 10�6 aka 4.9� ⇢⇤ = 4.8
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Grid Based Searches
Goal is to lay out a grid in parameter space that is fine enough to catch any signal with some good 
fraction of the maximum matched filter SNR

The match measures the fractional loss in SNR in recovering a signal with a 
template and defines a natural metric on parameter space:      

M(�x, �y) =
(h(�x)|h(�y))�

(h(�x)|h(�x))(h(�y)|h(�y))

(Owen Metric)gij =
(h,i|h,j)
(h|h)

� (h|h,i)(h|h,j)
(h|h)2where

Taylor expanding M(�x, �x + ��x) = 1� gij�xi�xj + . . .

Number of templates (for a hypercube lattice in D dimensions)

Cost grows geometrically with D for any lattice

N =
V

�V
=

�
dDx

�
g

(2
�

(1�Mmin)/D)D
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LIGO Style Grid Searches

Typically 2-3 dimensional, 10,000’s points
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Reducing the cost of a search
In most cases it is possible to analytically maximize over 3 or more parameters

Distance:

The unit normalized template     defines a reference distance D̄ĥ

Scaling this template to distance      givesD

h =
D̄

D
ĥ

The distance is then estimated from the data as

D =
D̄

(d|ĥ)
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Reducing the cost of a search

Phase Offset:

Generate two templates                and h(� = 0) h(� = �/2)

Then (d|h)max � =
�

(d|h(0))2 + (d|h(�/2))2

Easy to see this in the Fourier domain.

d̃ = h̃0 ei�Suppose , then

(d|h(0)) = (h0|h0) cos �

(d|h(�/2)) = (h0|h0) sin�
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Reducing the cost of a search

Time Offset:

-1e-20

-8e-21

-6e-21

-4e-21

-2e-21

 0

 2e-21

 4e-21

 6e-21

 8e-21

 1e-20

 0  0.2  0.4  0.6  0.8  1

h

t

Fourier transform treats time as periodic - use this to our advantage

(d|h)(�t) = 4
�

d̃�(f)h̃(f)
S(f)

e2�if�t df

Compute the inverse Fourier transform of the product of the Fourier transforms:

d(t) = h(t� t0)Then if the template and data differ by a time shift:

(d|h)max t = (d|h)(�t = t0)
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Reducing the cost of a search - putting it all together

z(t, ⃗η ) = 4∫ d( f )ĥ*( f, ⃗η )
S( f ) e2πift

φ( ⃗η ) = arg{z(t0, ⃗η )}

ρ(t0, ⃗η ) = maxt [ |z(t, ⃗η ) | ]

D( ⃗η ) = D̄ ρ(t0, ⃗η )

Time

Phase

Distance
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Workflow for pyCBC search

Matched filtering is done 
per-detector (not coherent)

Template bank constructed

Detection statistic computed (“new SNR”)

Coincidence in time/mass enforced 
Data quality vetoes applied

Monte Carlo background to compute 
FAR vs new SNR
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Contending with non-stationary, non-Gaussian noise

Non-stationary: 

Adiabatic drifts in the PSD - work with short data segments

Non-Gaussian: 

Glitches - vetoes and time-slides
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Non-Gaussian Noise Transients
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Search results

“new SNR”

First detection GWTC-1 (O1 & O2)
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Gravitational wave data analysis

Neil J. Cornish
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 Bayesian Inference

•Bayesian Probability Theory

•Bayesian Learning

•Model Selection 

•Markov Chain Monte Carlo

•Trans-dimensional Inference
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Bayesian Parameter Estimation

Degree of belief interpretation of probability - the natural expression of the scientific method

Initial Understanding New Observations Updated Understanding� �

p(�x) p(d|�x) p(�x|d)

            Prior        Likelihood            Posterior� �

p(�x|d) =
p(�x)p(d|�x)

p(d)Bayes’  Theorem

Normalization factor is the marginal likelihood or evidence p(d) =
�

p(�x)p(d|�x) d�x
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Bayesian Probability Theory

The posterior distribution fully characterizes the model.

E.g.  expectation values E[xi] =
�

xi p(�x|d) d�x

E.g.  single parameter 
probability distributions p(xi|d) =

�
p(�x|d) dx1dx2 . . . dxi�1dxi+1 . . . dxD

E.g.  quantile regions, such as 
90% 

0.05 =
� x1

p(x|d) dx

0.9 =
� x2

x1

p(x|d) dx
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Bayesian Learning

“Today’s posterior is tomorrow’s prior” -  Lindley

“The (Bayesian) theory of probabilities is basically just 
common sense reduced to calculus’’ - Laplace

The amount we learn from the data can be measured in bits, 
and can be computed in terms of the Kullback–Leibler 
divergence

DKL =
�

p(�x|d) log2

�
p(�x|d)
p(�x)

�
d�x [bits]
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Bayesian Learning

In this example the prior and posterior 
distribution for the spins are not so different, 
especially for the precession. Means that we 
didn’t learn much about the spin.

DKL =
�

p(�x|d) log2

�
p(�x|d)
p(�x)

�
d�x [bits]
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Bayesian Model Selection

Odds Ratio:

More on how we compute the Bayes Factor later...

Probability of Model M: p(M |d) � p(M)p(d|M)

Prior Probability of M Evidence for M

Oij =
p(Mi|d)
p(Mj |d)

=
p(Mi)
p(Mj)

p(d|Mi)
p(d|Mj)

= Prior Odds Ratio� Bayes Factor
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Bayesian Machinery:  Markov Chain Monte Carlo

p(�x|d) =
p(�x)p(d|�x)

p(d)Bayes’  Theorem

Marginal likelihood or evidence p(d) =
�

p(�x)p(d|�x) d�x

We know how to compute the prior and the likelihood. The difficulty lies in computing the evidence.

The MCMC technique, introduced by Metropolis and developed by Hastings, allows us to simulated samples 
from the posterior distribution directly, without having to compute the evidence.

It is possible to compute the evidence using augmented MCMC techniques.  Another powerful technique for 
computing the evidence and the posterior distributions is Nested Sampling
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Bayesian Inference

Prior Likelihood

Posterior

Evidence

MCMC

p(h|M)

p(h|d,M)

p(d|M)

p(d|h)
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Markov Chain Monte Carlo

⇥x

⇥y

H

Transition Probability
(Metropolis-Hastings)

Prior Proposal

Likelihood

Always go up,
Sometime come down

H = min
�

1,
p(�y)p(d|�y)q(�x|�y)
p(�x)p(d|�x)q(�y|�x)

�

Yields PDF p(�x|d) for parameters
�x given data d
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https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
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 MCMC Recipe

Ingredients:

Local posterior approximation

Differential evolution proposals 

Parallel tempering 

Global likelihood maps

Directions:
Mix all the proposals together. Check consistency by 
recovering the prior and producing diagonal PP plots.  
Results are ready when distributions are stationary. 
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Proposal Distributions

Propose jumps along eigendirections of K, scaled by eigenvalues

Quadratic approximation to the posterior using the augmented Fisher Information Matrix

Use a Non-Markovian Pilot search (hill climbers, simulated annealing, genetic algorithms etc) to crudely map the posterior/
likelihood and use this as a proposal distribution for a Markovian follow-up [Littenberg & Cornish, PRD 80, 063007, (2009)]

Local posterior approximation

Global likelihood maps

q(~y|~x) = 1p
det(2⇡K�1)

e�
1
2Kij(x

i�yi)(xj�yj)

Time-frequency maps, Maximized likelihood maps
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BayesWave Global Map Proposal 
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Proposal Distributions

[Braak (2005)]Differential evolution 
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Parallel Tempering

Primary Mode

Secondary Mode

[Swendsen & Wang, 1986]

Ordinary MCMC techniques side-step 
the need to compute the evidence. 
PT uses multiple, coupled chains to 
improve mixing, and also allows the 
evidence to be computed.

⇡(~�|d)T = p(d|~�)1/T p(~�)

Explore tempered posterior

log p(d) =

Z 1

0
E[log p(d|~�)]� d�

Compute model evidence

(Here             )� = 1
T
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MCMC
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Parallel Tempering
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h(f) = A�(f)ei��(f)

Dominant Harmonic

�2(f) = 2�ftc � �c �
�

4
+

3
128 u5

�

k=0

(�k(��) + �lk(��) ln u)uk

A2(f) =
M2

DL u7/2

�

k=0

(�k(��) + �lk(��) ln u)uk

u = (�Mf)1/3 � v

How information is encoded in GW signals 

-1

-0.5

0

0.5

1

-100 -50 0 50 100

h(
t)

t/M

SXS
BOB

A2(t) = A* sech(t/τ)

f2(t) = ( ( f 4
∞ + f 4

0) − ( f 4
∞ − f 4

0)tanh(t/τ)
2 )

1/4

[S. McWilliams PRL 122, 191102 (2019)]

f∞ =
g(af )
Mf

τ = j(af ) Mf

Merger-ringdown encodes final mass and spin
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0PN

1PN

1.5PN

2PN

�
3715
32256

+ �
55
384

�
��2/5u�3

3
128

u�5 Measure chirp mass

Measure individual masses

Measure spin combination

Measure individual spins

�
�

3�

8
� 1

32

�
113(1 ±

�
1� 4�)� 76�

�
L̂ · ��1,2

�
��3/5 u�2

�
15293365
21676032

+
27145
21504

� +
3085
3072

�2 + �(L̂ · ��1,2, ��1 · ��2, �2
1,2)

�
��4/5 u�1

Post-Newtonian Expansion u = (�Mf)1/3 � v
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GW170104

Parameter estimation

mostly measuring M

mostly measuring M
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follows line of constant M

BNS GW170817 - Parameter estimation
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�e↵

�p

Spin posteriors for GW170104 Spin posteriors GWTC-1

Measuring Black Hole Spins is Hard 
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�e↵ = m1 �1 cos ✓LS1 +m2 �2 cos ✓LS2

Out-of-plane spin combination

�p =
1

2
(�2? + ↵�1? + |�2? � ↵�1?|)

↵ =

✓
m1

m2

◆
(4M �m2)

(4M �m1)

In-plane spin combination

[component (anti)aligned with angular momentum]

Why measuring BH spin is hard 
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Selection Effects: Binary Systems

⇢2 ⇠ M5/3

D2
L

�
1 + 6 cos2 ◆+ cos4 ◆

�

- More sensitive to nearby sources

- More sensitive to high mass systems

- More sensitive to face on/off systems

We are more likely to detect Face-on/off systems than Edge-on systems
 Harder to measure precession⇒
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Advanced Techniques: Trans-dimensional Inference

• LISA data analysis - unknown number of signals 
with unknown parameters

• Unmodelled GW burst - collection of wavelets

• Noise transients, power spectra

Let the data decide the model dimension)
Make the model dimension a parameter)
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�2 =
N�

i=1

(datai �modeli)2

�2
i

N = 32

Advanced Techniques: Trans-dimensional Inference

Example, fitting an order D polynomial to N data points
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\

�2 = 0

D = 32
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�2 = 1.98

D = 24
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�2 = 10.2

D = 16
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�2 = 14.7

D = 8
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�2 = 290.4

D = 4
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Trans-dimensional Markov Chain Monte Carlo
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• Bayesian model selection 
• Three part model (signal, glitches, gaussian noise) 
• Trans-dimensional Markov Chain Monte Carlo 

• Wavelet decomposition  
• Glitch & GW modeled by wavelets  
• Number, amplitude, quality and TF location of wavelets varies

BayesWave

Continuous Morlet/Gabor Wavelets

Detection without templates
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Lines and a drifting noise floor
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Model it
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Time-Frequency Scalograms of LIGO data

Glitches

Model these too
X
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Gravitational Waves

p(h) = �(h�
X

)p( )

-10

-5
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h(
t)
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h(
t)

t (s)

injected

recovered

103



Reconstructing GW150914 with wavelets
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Aside: Power Spectral Estimation

First step is to Fourier transform the data - need to window the data

Tukey Window Function

w(t) =

1
2 (1 − cos(πt/τ)) if t ≤ τ
1 if , τ < t < T − τ
1
2 (1 − cos(π(T − t)/τ)) if t ≥ T − τ



Aside: Power Spectral Estimation

Welch averaging breaks the data up into chunks 
and averages the periodograms from each 
segment. Only valid if the data is stationary.

A Periodogram is the squared 
magnitude of the Fourier coefficients

Pi = | d̃i |
2

The green line here is a periodogram 
of the 4 seconds of data shown on 
the previous slide



Aside: Power Spectral Estimation

More advanced methods fit models using the Whittle likelihood function

ln p(d |S) = − 1
2 ∑

i (ln S( fi ) + | d̃i |
2

S( fi ) )
For example, we can fit some functional form to the power spectral density. E.g. S( f ) = f α



Aside: Power Spectral Estimation

ln p(d |S) = − 1
2 ∑

i (ln S( fi ) + | d̃i |
2

S( fi ) )

BayesWave models the spectrum using a 
smooth cubic spline plus Lorentzian lines
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Challenges in GW data analysis

•Searching for precessing/eccentric signals (high dimension)

•LISA - complicated instrument response, thousands of 
overlapping signals

•Non-stationary and non-Gaussian noise
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2. [“Wavelet processes and adaptive estimation of the evolutionary wavelet 
spectrum”, Nason, von Sachs, & Kroisandt, J. R. Statist. Soc. Series B62, 271 (2000)]

1. [“Fitting time series models to nonstationary processes”. Dahlhaus, Ann. Statist.,  25, 1 (1997)]

p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

Cost of computing the likelihood is far less in a representation where the noise correlation matrix C is diagonal

For a large class of discrete wavelet transformations and locally stationary noise   

C(i,j)(k,l) = �ij�kl Cik

[1]

Time

[2]

Frequency

This is the likelihood used by the LIGO coherent WaveBurst algorithm 

Non-stationary Noise
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p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

C(i,j)(k,l) = �ij�kl Cik

Model the wavelet spectrum          as a smooth function in 
frequency and time. E.g. Trans-dimensional Bicubic spline

Cik

Non-stationary Noise

[Cornish,  Phys Rev D 102, 124038 (2020)] 111



Non-stationary Noise

[Cornish,  Phys Rev D 102, 124038 (2020)] 

Non-stationary time series Bi-cubic spline fit to the dynamic spectrum
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p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

Fast wavelet transforms of the signals for 
computational efficiency 

[Cornish,  Phys Rev D 102, 124038 (2020)] 

Wavelet domain waveforms

Faster than frequency domain,  scalingN
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Noise transients (glitches) and parameter estimation

GW170817 (Livingston) GW190924_021846  (Livingston)

[Cornish,  2101.01188 (2021)] 114



Joint inference of signals and glitches

Livingston Data Livingston Data - Glitch Livingston Data - Glitch - Signal

BayesWave can now simultaneously model CBC signals using template, 
glitches using wavelets and the power spectrum using splines and lines

[Chatziioannou+,  Phys. Rev. D 103 044013 (2021)] 
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