Gravitational Theories — Introduction to Modified Gravity —

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary

Shinji Mukohyama (YITP, Kyoto U)

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary

INTRODUCTION

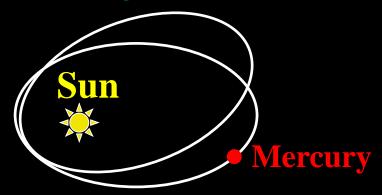
Why modified gravity?

A motivation for IR modification

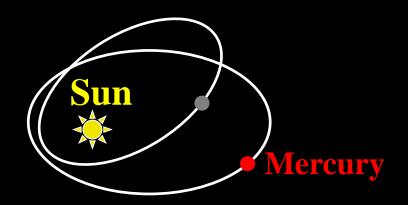
- Gravity at long distances
 Flattening galaxy rotation curves extra gravity
 Dimming supernovae accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...



which people tried to explain with a "dark planet", Vulcan,



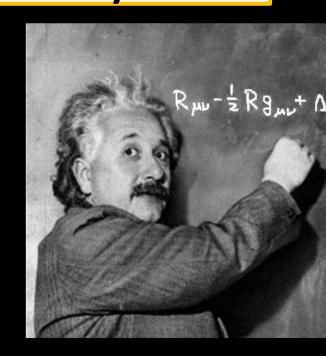
But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR.

Why modified gravity?

Can we address mysteries in the universe?

Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.

How to unify Quantum Theory with General Relativity?



How to unify Quantum Theory with General Relativity?

Probably we need to modify GR at short distances

Why modified gravity?

- Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.
- Help constructing a theory of quantum gravity?
 Superstring, Horava-Lifshitz, etc.
- Do we really understand GR?
 One of the best ways to understand something may be to break (modify) it and then to reconstruct it.

•

Three conditions for good alternative theories of gravity (my personal viewpoint)

- 1. Theoretically consistent e.g. no ghost instability
- 2. Experimentally viable solar system / table top experiments
- 3. Predictable e.g. protected by symmetry

Three condition 3. alternative theories (my personal v

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary
- 1. Theoretically consistent e.g. no ghost instability
- 2. Experimentally viable solar system / table top experiments
- 3. Predictable e.g. protected by symmetry

Some examples

- I. Effective field theory (EFT) approachIR modification of gravitymotivation: dark energy/matter
- II. Massive gravity
 IR modification of gravity
 motivation: "Can graviton have mass?"
- III. Horava-Lifshitz gravity
 UV modification of gravity
 motivation: quantum gravity
- IV. Superstring theory
 UV modification of gravity
 motivation: quantum gravity, unified theory

Some examples

- Effective field theory (EFT) approach IR modification of gravity motivation: dark energy/m 2tteGR and Lovelock gravity
- II. Massive gravity IR modification of gravity motivation: "Can graviton
- III. Horava-Lifshitz gravity UV modification of gravity motivation: quantum gravity
- IV. Superstring theory UV modification of gravity motivation: quantum gravity, unified theory

- 1. Introduction
- PPN formalism
- EFT of scalar tensor theory
- Massive gravity
- Horava-Lifshitz gravity
- Summary 7.

Implication of GW170817 on gravity theories @ late time

- $|(c_{gw}-c_{\gamma})/c_{\gamma}| < 10^{-15}$ $X = -\partial^{\mu}\phi \partial_{\mu}\phi$
- Horndeski theoy (scalar-tensor theory with 2^{nd} -order eom): Among 4 free functions, $G_4(\phi,X)$ & $G_5(\phi,X)$ are strongly constrained. Still $G_2(\phi,X)$ & $G_3(\phi,X)$ are free.
 - $G_3(\phi,X)$ may be constrained due to GW-DE interactions [Creminelli, Tambalo, Vernizzi, Yingcharoenrat 2019]
- Generalized Proca theory (vector-tensor theory): Among 6 (or more) free functions, $G_4(X) \& G_5(X)$ are strongly constrained. Still $G_2(X,F,Y,U)$, $G_3(X)$, $G_6(X)$, $g_5(X)$ are free. $X = -A^{\mu}A_{\mu}$
- Horava-Lifshitz theory (renormalizable quantum gravity):
 The coefficient of R⁽³⁾ is strongly constrained
 → IR fixed point with c_{gw} = c_γ? How to speed up the RG flow?
- Ghost condensation (EFT of scalar-tensor theory in Minkowski/de Sitter):
 No additional constraint
- Massive gravity (simplest modification of GR):
 Upper bound on graviton mass ≈ 10⁻²²eV
 Much weaker than the requirement from acceleration
- c.f. "All" gravity theories (including general relativity): The cosmological constant is strongly constrained $\approx 10^{-120}$.

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary

GENERAL RELATIVITY AND LOVELOCK GRAVITY

Equivalence principle and metric theories of gravity

Weak equivalence principle (WEP)

uncharged test bodyinitial event in spacetimeindependent of internal structure

subsequent trajectory is independent of internal structure & composition

- Einstein's equivalence principle (EEP)
 - i) WEP is valid
 - ii) outcome of any local nongravitational test experiment is independent of the velocity of freely falling apparatus and of the time and position in the universe Basically saying that **gravity** ~ **acceleration**
- EEP → metric theory
 - **EEP** → validity of special relativity in local free-falling frame
 - \rightarrow ** tensor $g_{\mu\nu}$ that reduces to $\eta_{\mu\nu}$ in local free-falling frame This argument does not exclude existence of other metrics.

Einstein's theory

- Assumptions
 - EEP (\rightarrow metric $g_{\mu\nu}$) gravity is described by the metric guo only
- Invariant action $I = \int d^4x \sqrt{-g} L$ L : scalar made of g_{uv} & its derivatives up to 1st derivatives → constant only up to 2nd derivatives \rightarrow scalar made of $g_{\mu\nu}$ & $R_{\mu\nu\rho\sigma}$
- Ingredients in L

1,
$$R$$
, R^2 , $R^{\mu\nu}R_{\mu\nu}$, $R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma}$, $\nabla^{\mu}R\nabla_{\mu}R$, R^3 , ...

scale M

$$L = c_0 M^4 + c_1 M^2 R + c_2 R^2 + c_3 R^{\mu\nu} R_{\mu\nu} + c_4 R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} + \cdots$$

truncate @ terms with two derivatives

$$L = c_0 M^4 + c_1 M^2 R = \frac{M_{Pl}^2}{2} (R - 2\Lambda) \qquad (M_{Pl}^2 = 2c_1 M^2, \Lambda = -\frac{c_0}{2c_1} M^2)$$

This is Einstein-Hilbert action!

c.f. cosmological constant problem = "Why
$$\left|\frac{c_0}{4c_1^2}\right| \ll 1$$
?"

Einstein's theory

Field equation

$$I_{EH} = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} (R - 2\Lambda)$$

$$\delta(\sqrt{-g}) = \frac{1}{2} \sqrt{-g} g^{\mu\nu} \delta g_{\mu\nu} \quad (\leftarrow \delta (\ln \det A) = \delta (Tr \ln A) = Tr(A^{-1} \delta A))$$

$$\delta(\sqrt{-g}R) = \sqrt{-g} \{ -G^{\mu\nu} \delta g_{\mu\nu} + \nabla^{\mu} [\nabla^{\nu} \delta g_{\mu\nu} - \nabla_{\mu} (g^{\rho\sigma} \delta g_{\rho\sigma})] \}$$

$$\therefore \delta I_{EH} = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} [-(G^{\mu\nu} + \Lambda g^{\mu\nu}) \delta g_{\mu\nu}]$$

$$I_{tot} = I_{EH} + I_{matter}$$

$$\delta I_{matter} = \int d^4x \left[\frac{\sqrt{-g}}{2} T^{\mu\nu} \delta g_{\mu\nu} + (matter\ eom) \delta (matter) \right]$$

$$\left(T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta I_{matter}}{\delta g_{\mu\nu}} \right)$$

$$\delta I_{tot} = 0$$
 \Longrightarrow $M_{Pl}^2(G^{\mu\nu} + \Lambda g^{\mu\nu}) = T^{\mu\nu}$ Einstein eq with $G_N = \frac{1}{8\pi M_{Pl}^2}$

of d.o.f. in general relativity

10 metric components → 20-dim phase space @ each point

ADM decomposition

Lapse N, shift Nⁱ, 3d metric h_{ij}

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

Einstein-Hilbert action

$$I = \frac{M_{\text{Pl}}^{2}}{2} \int d^{4}x \sqrt{-g}^{(4)} R$$

$$= \frac{M_{\text{Pl}}^{2}}{2} \int dt d^{3}\vec{x} N \sqrt{h} \left[K^{ij} K_{ij} - K^{2} + {}^{(3)} R \right]$$

• Extrinsic curvature

$$K_{ij} = rac{1}{2N} (\partial_t h_{ij} - D_i N_j - D_j N_i)$$

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0$ & $\pi_i = 0$

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0$ & $\pi_i = 0$ All constraints are independent of N & Nⁱ $\rightarrow \pi_N$ & π_i "commute with" all constraints \rightarrow 1st-class

1st-class vs 2nd-class

2nd-class constraint S

```
\{S, C_i\} \approx 0 \text{ for } \exists i
Reduces 1 phase space dimension
```

• 1st-class constraint F

```
{ F , C<sub>i</sub> } ≈ 0 for \forall i
Reduces 2 phase space dimensions
Generates a symmetry
Equivalent to a pair of 2^{nd}-class constraints
```

 $\{C_i \mid i = 1,2,...\}$: complete set of independent constraints $A \approx B \iff A = B$ when all constraints are imposed (weak equality)

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0$ & $\pi_i = 0$ All constraints are independent of N & Nⁱ $\rightarrow \pi_N$ & π_i "commute with" all constraints \rightarrow 1st-class
- 4 generators of 4d-diffeo: 1st-class constraints
- 20 (4+4) x 2 = 4 \rightarrow 4-dim physical phase space @ each point \rightarrow 2 local physical d.o.f.

of d.o.f. in GR = 2, corresponding to TT gravitational waves

Lovelock's theorem

```
(i) A^{\mu\nu} is a symmetric tensor (\mu,\nu=0,1,2,3)

(ii) A^{\mu\nu}=A^{\mu\nu} (g_{\rho\sigma}, g_{\rho\sigma,\alpha}, g_{\rho\sigma,\alpha\beta}) (++++) (valid for (-+++) as well) (iii) A^{\mu\nu}_{;\nu}=0 (;\nu represents covariant derivative) (iv) 4-dimensions
```

$$A^{\mu\nu} = a G^{\mu\nu} + b g^{\mu\nu}$$
 (a, b: constants, $G^{\mu\nu}$: Einstein tensor)

Motivation for assumptions (i)-(iii)

- (i) $A^{\mu\nu}$ is to be EOM for $g_{\mu\nu}$ and thus should be symmetric.
- (ii) If EOM depends on 3^{rd} or higher derivatives of $g_{\mu\nu}$ then # of d.o.f. (in Lorentzian case) may increase.

(iii) If
$$\exists I$$
 s.t. $A^{\mu\nu} = \frac{1}{\sqrt{|g|}} \frac{\delta I}{\delta g_{\mu\nu}}$ and if I is diffeo invariant then $A^{\mu\nu}_{;\nu} = 0$.

$$\left(\begin{array}{ccc}
\vdots & g_{\mu\nu} \to g_{\mu\nu} + \delta g_{\mu\nu}, & \delta g_{\mu\nu} = \xi_{\mu;\nu} + \xi_{\nu;\mu} \\
0 = \delta I = \int d^4 x \frac{\delta I}{\delta g_{\mu\nu}} \delta g_{\mu\nu} = -2 \int d^4 x \sqrt{g} \, \xi_{\nu} A^{\mu\nu}_{;\nu} & \text{for}^{\forall} \xi_{\nu} \end{array}\right)$$

c.f. "symmetric" in (i) can be dropped (J.Math.Phys. 13, 874 (1972)).

What Lovelock actually proved

In n-dim. Lovelock proved theorems 1 & 2 below

Theorem 1

(i)-(iii)
$$\Rightarrow A^{\mu\nu} = \sum_{k=1}^{m-1} c_k \theta^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}} \prod_{h=1}^k R_{\alpha_{4h-1}\alpha_{4h-3}\alpha_{4h-2}\alpha_{4h}} + bg^{\mu\nu}$$

$$m = \begin{cases} \frac{n}{2} & (n:even) \\ \frac{1}{2}(n+1) & (n:odd) \end{cases}, \quad c_k, b: const.$$

 $\theta^{\mu\nu\alpha_1}\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}$ (k = 1, ..., m - 1): a tensor satisfying (a)-(d) below

- (a) $\theta^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}} = \theta^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}}(g_{\rho\sigma})$
- (b) symmetric in (ij) and in $(i_{2h-1}i_{2h})$ for $h=1,\cdots,2k$
- (c) symmetric under interchange of the pair $(\mu\nu)$ with the pair $(\alpha_{2h-1}\alpha_{2h})$ for all $h=1,\cdots,2k$
- (d) the cyclic sum involving any three of the four indices $(\mu\nu)$ $(\alpha_{2h-1}\alpha_{2h})$ for $h=1,\cdots,2k$ vanishes

(c) follows from (b)&(d)
$$0 = \theta^{\mu(\nu\alpha_1\alpha_2)} + \theta^{\nu(\alpha_1\alpha_2\mu)} - \theta^{\alpha_1(\alpha_2\mu\nu)} - \theta^{\alpha_2(\mu\nu\alpha_1)} = \frac{1}{3}(\theta^{\mu\nu\alpha_1\alpha_2} - \theta^{\alpha_1\alpha_2\mu\nu})$$

• Theorem 2

```
p: positive integer \psi^{\mu\nu\alpha_1\cdots\alpha_{2p}} is a tensor with the following properties (a)'-(d)' [(a)':(a) \text{ with } \theta \to \psi, 4k \to 2p \ (b)'-(d)':(b)-(d) \text{ with } 2k \to p \ (n-p)\psi^{\mu\nu\alpha_1\cdots\alpha_{2p}} = g^{\mu\nu}g_{\rho\sigma}\psi^{\rho\sigma\alpha_1\cdots\alpha_{2p}} - \frac{1}{2}\sum_{h=1}^{2p}g^{\alpha_h\nu}g_{\rho\sigma}\psi^{\rho\sigma\alpha_1\cdots\alpha_{h-1}\mu\alpha_{h+1}\cdots\alpha_{2p}} Theorem 2 shows a way to calculate \theta^{\mu\nu\alpha_1}\alpha_2\cdots\alpha_{4k-1}\alpha_{4k} defined in Theorem 1 and its uniqueness (up to an overall constant factor).
```

Corollary 1

n=2
$$\rightarrow$$
 $A^{\mu\nu} = bg^{\mu\nu}$ (b: const.)
(proof of corollary 1)
m=1 for n=2 \cdot corollary 1 follows from theorem 1 Q.E.D.

Corollary 2

n=3 or 4
$$\rightarrow$$
 $A^{\mu\nu} = aG^{\mu\nu} + bg^{\mu\nu}$ (a, b: const.)

Corollary 2 for n=4 is what is usually known as Lovelock's theorem.

 $\tilde{\theta}^{\alpha_1 \alpha_2 \alpha_3 \alpha_4} \equiv g_{\rho \sigma} \theta^{\rho \sigma \alpha_1 \alpha_2 \alpha_3 \alpha_4}$

(proof of corollary 2)

Theorem 2
$$(n-2)\theta^{\mu\nu\alpha_1\alpha_2\alpha_3\alpha_4} = g^{\mu\nu}\tilde{\theta}^{\alpha_1\alpha_2\alpha_3\alpha_4} - \frac{1}{2}\left(g^{\alpha_1\nu}\tilde{\theta}^{\mu\alpha_2\alpha_3\alpha_4} + g^{\alpha_1\nu}\tilde{\theta}^{\mu\alpha_2\alpha_3\alpha_4} + g^{\alpha_2\nu}\tilde{\theta}^{\alpha_1\mu\alpha_3\alpha_4} + g^{\alpha_3\nu}\tilde{\theta}^{\alpha_1\alpha_2\mu\alpha_4} + g^{\alpha_4\nu}\tilde{\theta}^{\alpha_1\alpha_2\alpha_3\mu}\right)$$
 with p=1
$$(n-1)\tilde{\theta}^{\alpha_1\alpha_2\alpha_3\alpha_4} = g^{\alpha_1\alpha_2}\tilde{\tilde{\theta}}^{\alpha_3\alpha_4} - \frac{1}{2}\left(g^{\alpha_3\alpha_2}\tilde{\tilde{\theta}}^{\alpha_1\alpha_4} + g^{\alpha_4\alpha_2}\tilde{\tilde{\theta}}^{\alpha_3\alpha_1}\right)$$

$$\tilde{ ilde{ heta}}^{lpha_1lpha_2}(g_{\mu
u})$$
 is a symmetric tensor $ightharpoonup \tilde{ ilde{ heta}}^{lpha_1lpha_2}=\tilde{a}g^{lpha_1lpha_2}$ ($\tilde{a}:const.$) [lemma A2 of D.Lovelock, Arch.Ratl.Mech.Anal. 33 (1969) 54 restricted to symmetric part]

$$2(n-2)\theta^{\mu\nu\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}\alpha_{2}\alpha_{4}} = 2g^{\mu\nu}\tilde{\theta}^{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}\alpha_{2}\alpha_{4}} - \tilde{\theta}^{\mu\alpha_{2}\alpha_{3}\alpha_{4}}R_{\alpha_{3}}{}^{\nu}{}_{\alpha_{2}\alpha_{4}} - \tilde{\theta}^{\alpha_{1}\mu\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}}{}^{\nu}{}_{\alpha_{4}} - \tilde{\theta}^{\alpha_{1}\alpha_{2}\alpha_{3}\mu}R_{\alpha_{3}\alpha_{1}\alpha_{2}}$$

$$-\tilde{\theta}^{\alpha_{1}\alpha_{2}\mu\alpha_{4}}R^{\nu}{}_{\alpha_{1}\alpha_{2}\alpha_{4}} - \tilde{\theta}^{\alpha_{1}\alpha_{2}\alpha_{3}\mu}R_{\alpha_{3}\alpha_{1}\alpha_{2}}{}^{\nu}$$

$$\tilde{\theta}^{\mu\alpha_{2}\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}\alpha_{2}\alpha_{4}} = -\frac{3\tilde{a}}{2(n-1)}R$$

$$\tilde{\theta}^{\mu\alpha_{2}\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}\alpha_{2}\alpha_{4}} = \tilde{\theta}^{\alpha_{1}\mu\alpha_{3}\alpha_{4}}R_{\alpha_{3}\alpha_{1}\alpha_{4}} = \tilde{\theta}^{\alpha_{1}\alpha_{2}\mu\alpha_{4}}R^{\nu}{}_{\alpha_{1}\alpha_{2}\alpha_{4}} = \tilde{\theta}^{\alpha_{1}\alpha_{2}\alpha_{3}\mu}R_{\alpha_{3}\alpha_{1}\alpha_{2}}{}^{\nu} = -\frac{3\tilde{a}}{2(n-1)}R^{\mu\nu}$$

$$\theta^{\mu\nu\alpha_1\alpha_2\alpha_3\alpha_4} R_{\alpha_3\alpha_1\alpha_2\alpha_4} = \frac{3\tilde{a}}{(n-1)(n-2)} G^{\mu\nu}$$

Theorem 1

$$A^{\mu\nu} = aG^{\mu\nu} + bg^{\mu\nu} \qquad \qquad a = \frac{3c_1\tilde{a}}{(n-1)(n-2)}$$
 Q.E.D

How to go beyond GR?

- Lovelock's theorem (to be more precise, corollary 2) assumes
 - 4-dim. (pseudo-)Riemannian geometry
 - the metric is the only physical field

(The theorem is at the level of eoms.)

- Modification of GR (at the level of eoms) then requires at least one of the following
 - extra dimension
 - extra dof.
 - Lorentz violation
 - non (pseudo-)Riemannian geometry

Love ock gravity (simplest generalization of GR in higher-dim.)

(ref. D.Lovelock, J.Math.Phys. 12 (1971) 498)

• A solution to the recursion relation in theorem 2 with p=2k, $1 \le k \le m-1$

$$\psi^{\mu\nu\alpha_{1}\cdots\alpha_{4k}} = \begin{pmatrix} \delta^{\mu\rho_{1}\cdots\rho_{2k}}_{\beta\sigma_{1}\cdots\sigma_{2k}}g^{\beta\nu} + \delta^{\nu\rho_{1}\cdots\rho_{2k}}_{\beta\sigma_{1}\cdots\sigma_{2k}}g^{\beta\mu} \end{pmatrix} g^{\sigma_{1}\lambda_{1}} \cdots g^{\sigma_{2k}\lambda_{2k}} D^{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}}_{\rho_{1}\rho_{2}\lambda_{1}\lambda_{2}} \cdots D^{\alpha_{4k-3}\alpha_{4k-2}\alpha_{4k-1}\alpha_{4k}}_{\rho_{2k-1}\rho_{2k}\lambda_{2k-1}\lambda_{2k}}$$

$$m = \begin{cases} \frac{n}{2} & (n : \text{even}) \\ \frac{n+1}{2} & (n : \text{odd}) \end{cases} \delta^{\alpha_{1}\cdots\alpha_{N}}_{\beta_{1}\cdots\beta_{N}} = \det \begin{vmatrix} \delta^{\alpha_{1}}_{\beta_{1}} & \cdots & \delta^{\alpha_{1}}_{\beta_{N}} \\ \vdots & & \vdots \\ \delta^{\alpha_{N}}_{\beta_{1}} & \cdots & \delta^{\alpha_{N}}_{\beta_{N}} \end{vmatrix}$$

$$D^{\mu\nu\rho\sigma}_{\alpha\beta\gamma\lambda} = \frac{1}{2} (\delta^{\mu}_{\alpha}\delta^{\nu}_{\lambda} + \delta^{\mu}_{\lambda}\delta^{\nu}_{\alpha})(\delta^{\rho}_{\beta}\delta^{\sigma}_{\gamma} + \delta^{\rho}_{\gamma}\delta^{\sigma}_{\beta})$$

• Since Theorem 2 implies the uniqueness of $\theta^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}}$ in Theorem 1, $\theta^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}}=b_k\psi^{\mu\nu\alpha_1\alpha_2\cdots\alpha_{4k-1}\alpha_{4k}}$ $(b_k:const.)$

• It is straightforward to calculate

$$\psi^{\mu\nu\alpha_{1}\alpha_{2}\cdots\alpha_{4k-1}\alpha_{4k}} \prod_{h=1}^{k} R_{\alpha_{4h-1}\alpha_{4h-3}\alpha_{4h-2}\alpha_{4h}} = 2\left(\frac{3}{2}\right)^{k} \delta^{\mu\alpha_{1}\cdots\alpha_{2k}}_{\rho\beta_{1}\cdots\beta_{2k}} g^{\rho\nu} \prod_{h=1}^{k} R_{\alpha_{2h-1}\alpha_{2h}}{}^{\beta_{2h-1}\beta^{2h}}$$

The r.h.s. is symmetric in $(\mu \nu)$.

In this way, Lovelock established the following theorem.

Lovelock gravity (simplest generalization of GR in higher-dim.)

(ref. D.Lovelock, J.Math.Phys. 12 (1971) 498)

Theorem 3

If $A^{\mu\nu}$ satisfies (i)-(iii) then

 $a_k, a : const.$

$$A^{\mu\nu} = \sum_{k=1}^{m-1} a_k g^{\nu\rho} \delta^{\mu\alpha_1 \cdots \alpha_{2k}}_{\rho\beta_1 \cdots \beta_{2k}} \prod_{h=1}^k R_{\alpha_{2h-1}\alpha_{2h}}^{\beta_{2h-1}\beta^{2h}} + b g^{\mu\nu}$$

$$m = \begin{cases} \frac{n}{2} & (n : \text{even}) \\ \frac{n+1}{2} & (n : \text{odd}) \end{cases} \qquad \delta^{\alpha_1 \cdots \alpha_N}_{\beta_1 \cdots \beta_N} = \det \begin{vmatrix} \delta^{\alpha_1}_{\beta_1} & \cdots & \delta^{\alpha_1}_{\beta_N} \\ \vdots & & \vdots \\ \delta^{\alpha_N}_{\beta_1} & \cdots & \delta^{\alpha_N}_{\beta_N} \end{vmatrix}$$

• Lovelock then found an action whose Euler-Lagrange eq is $A^{\mu\nu}=0$.

$$I = \int d^n x \sqrt{-g} \left[\sum_{k=1}^{m-1} 2a_k \delta_{\beta_1 \cdots \beta_{2k}}^{\alpha_1 \cdots \alpha_{2k}} \prod_{h=1}^k R_{\alpha_{2h-1} \alpha_{2h}}^{\beta_{2h-1} \beta^{2h}} + 2b \right]$$

This theory is called Lovelock gravity.

The first two are Einstein-Hilbert (k=1) & Gauss-Bonnet (k=2) terms. The last (2b) is cosmological constant term.

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary

PARAMETRIZED POST-NEWTONIAN (PPN) FORMALISM

Formalism

[ref. C. M. Will, "Theory and experiment in gravitational physics" (Cambridge)]

Stress-energy tensor (perfect fluid)

$$T_{\mu\nu} = \rho (1 + \Pi) u_{\mu} u_{\nu} + P(u_{\mu} u_{\nu} + g_{\mu\nu})$$
 $u_{\mu} = g_{\mu\nu} u^{\nu}$, $u^{\mu} = (u^{0}, u^{0} v^{i})$: 4-velocity
 p : rest mass density
 P : isotropic pressure
 Π : specific energy density
 $u^{\mu}u_{\mu} = -1$, $\nabla_{\mu}(\rho u^{\mu}) = 0$, $\nabla_{\mu}T^{\mu\nu} = 0$

Post-Newtonian bookkeeping

$$v = \mathcal{O}(\epsilon) \quad |\partial_t| \sim \mathcal{O}(\epsilon) |\vec{
abla}| \quad rac{G_{
m N} l^3}{L}
ho = \mathcal{O}(\epsilon^2) \qquad rac{P}{
ho} = \mathcal{O}(\epsilon^2) \qquad \Pi = \mathcal{O}(\epsilon^2)$$

Newtonian metric

$$\begin{cases} g_{00} = -1 + 2U + \mathcal{O}(\epsilon^4) \\ g_{0i} = \mathcal{O}(\epsilon^3) \\ g_{ij} = \delta_{ij} + \mathcal{O}(\epsilon^2) \end{cases} \qquad \begin{cases} U(t, \vec{x}) = G_N \int \frac{\rho'}{|\vec{x} - \vec{x}'|} d^3 \vec{x}' \\ \rho' = \rho(t, \vec{x}') \end{cases}$$

Formalism

PPN metric

$$g_{00} = -1 + 2U + 2(\psi - \beta U^{2}) + \zeta_{\mathcal{B}}\mathcal{B} + \mathcal{O}(\epsilon^{6})$$

$$\begin{pmatrix} \psi = \frac{1}{2}(2\gamma + 1 + \alpha_{3} + \zeta_{1} - \zeta_{\mathcal{B}} - 2\xi)\Phi_{1} + (1 - 2\beta + \zeta_{2} + \xi)\Phi_{2} \\ + (1 + \zeta_{3})\Phi_{3} + (3\gamma + 3\zeta_{4} - 2\xi)\Phi_{4} - \frac{1}{2}(\zeta_{1} - \zeta_{\mathcal{B}} - 2\xi)\Phi_{6} - \xi\Phi_{W} \end{pmatrix}$$

$$g_{0i} = -\left[2(1 + \gamma) + \frac{1}{2}\alpha_{1}\right]V_{i} - \frac{1}{2}\left[1 + \alpha_{2} - \zeta_{1}\right] + \zeta_{\mathcal{B}} + 2\xi\right]X_{,0i} + \mathcal{O}(\epsilon^{5})$$

$$g_{ij} = (1 + 2\gamma U)\delta_{ij} + \mathcal{O}(\epsilon^{4})$$

Def. of potentials

$$\Delta U = -4\pi G_{\rm N} \rho^* ,$$

$$\Delta^2 V = -8\pi s \Leftrightarrow \Psi = \int s' |\vec{x} - \vec{x}'| d^3 \vec{x}$$

$$\Delta^2 X = -8\pi G_{\rm N} \rho^* ,$$

$$\Delta \Phi_3 = -4\pi G_{\rm N} \rho^* \Pi ,$$

$$\rho^* \equiv \rho \sqrt{-g} u^0$$

$$\Delta V_i = -4\pi G_{\rm N} \rho^* \delta_{ij} v^j ,$$

$$\Delta \Phi_4 = -4\pi G_{\rm N} P ,$$

$$\Delta \Phi_4 = -4\pi G_{\rm N} P ,$$

$$\Delta^2 \Phi_6 = 8\pi G_{\rm N} \left[\partial_i \partial_j (\rho^* v^i v^j) - \frac{1}{2} \Delta (\rho^* v^2) \right] ,$$

$$\Delta \Phi_2 = -4\pi G_{\rm N} \rho^* U ,$$

$$\Delta \Phi_W = -2\delta^{ik} \delta^{jl} \partial_i \partial_j X \partial_k \partial_l U - 4\delta^{ij} \partial_i U \partial_j U + 4\pi G_{\rm N} \rho^* U$$

 $\Delta \Phi = -4\pi s \quad \Leftrightarrow \quad \Phi = \int \frac{s'}{|\vec{x} - \vec{x'}|} d^3 \vec{x}$

c.f. ζ_B cannot be set to zero if time-diffeo is broken either explicitly or spontaneously, e.g. in Horava gravity [Lin, Mukohyama, Wang, Zhu 2013].

Formalism

Residual gauge freedom (in 4d-diffeo invariant theories)

$$\begin{cases} x^{\mu} \rightarrow x^{\mu} + \xi^{\mu} \ with \ \xi_{0} = \lambda \partial_{0} X, \xi_{i} = 0, \lambda = const. \\ g_{00} \rightarrow g_{00} + 2\lambda (\Phi_{6} + \mathcal{B} - \Phi_{1}) \\ g_{0i} \rightarrow g_{0i} - \lambda X_{,0i} \\ g_{ij} \rightarrow g_{ij} \end{cases}$$
 others unchanged

 $\zeta_{\mathcal{B}}$ can be set to zero by time diffeo

10 (+1) PPN parameters

$$\gamma, \beta, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$$
 10 observable parameters unobservable if the matter sector has 4d-diffeo invariance even if the gravity sector does not

(In 4d-diffeo invariant theories, $\zeta_{\mathcal{B}}$ is gauge freedom. In theories without time-diffeo, $\zeta_{\mathcal{B}}$ is physical but cannot be probed by matter if the matter sector is (approximately) diffeo-invariant.)

General relativity

$$\gamma=1,\beta=1,\xi=\alpha_1=\alpha_2=\alpha_3=\zeta_1=\zeta_2=\zeta_3=\zeta_4=0$$
 ($\zeta_{\mathcal{B}}$ is gauge freedom.)

Limits on PPN parameters

[ref. C. M. Will, "Theory and experiment in gravitational physics" (Cambridge); C. M. Will, Living Rev. Relativity 17 (2014) 4]

$\gamma - 1$	2.3×10^{-5} (time delay), 1.2×10^{-4} (light deflection)
$\beta - 1$	8×10^{-5} (periherion shift), 2.3×10^{-4} (Nordtvedt effect)
ξ	10^{-3} (Earth tides)
$lpha_1$	10^{-4} (orbital polarization)
$lpha_2$	4×10^{-7} (spin precession)
ζ_1	2×10^{-2} (combined PPN bound)
ζ_3	10^{-8} (Newton's 3rd law)
$\hat{\xi}$	4×10^{-9} (spin precession)
\hat{lpha}_1	7×10^{-5} (orbital polarization)
$\hat{\alpha}_2$	$2 \times 10^{-9} \text{ (spin precession)}$ Strong gravity
$\hat{\alpha}_3$	4×10^{-20} (pulsar acceleration)
$\hat{\zeta}_2$	4×10^{-5} (binary acceleration)

Scalar-tensor theory as an example

• Basic variables metric $g_{\mu\nu}$, scalar ϕ , matter $T_{\mu\nu}=rac{2}{\sqrt{-g}}rac{\delta I_{matter}}{\delta g_{\mu\nu}}$

• Action
$$I = I_g[g_{\mu\nu}, \phi] + I_{matter}[g_{\mu\nu}, matter]$$

$$I_g = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$$

• ϕ -eom $(3+2\omega)\nabla^2\phi + \frac{d\omega}{d\phi}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi = 8\pi T \qquad (T \equiv T^{\mu}_{\mu})$

 $\frac{1}{\phi R_{\mu\nu} - \left(\nabla_{\mu}\nabla_{\nu}\phi + \frac{1}{2}\nabla^{2}\phi g_{\mu\nu}\right) - \frac{\omega}{\phi}\partial_{\mu}\phi\partial_{\nu}\phi = 8\pi\left(T_{\mu\nu} - \frac{1}{2}Tg_{\mu\nu}\right)}$

Scalar-tensor theory as an example

PPN expansion

```
g_{\mu\nu} 
ightarrow 	ext{PPN metric with } \zeta_{\mathcal{B}} = 0 	ext{ (and thus } \zeta_1 = \tilde{\zeta}_1)
\phi = \phi_0 + \phi_2 + \phi_4 + \mathcal{O}(\epsilon^6)
\phi_0 = const. = \mathcal{O}(\epsilon^0)
\phi_2 = 2\gamma_\phi U
\phi_4 = c_{UU}U^2 + c_W\Phi_W + c_1\Phi_1 + c_2\Phi_2 + c_3\Phi_3 + c_4\Phi_4 + c_6\Phi_6 + c_{\mathcal{B}}\mathcal{B}
T_{\mu\nu} 
ightarrow 	ext{perfect fluid form}
```

• 10 PPN parameters + G_N (+ unobservable parameters)

$$\gamma, \beta, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4$$
10 observable defines the unit $\gamma_{\phi}, c_{UU}, c_W, c_1, c_2, c_3, c_4, c_6, c_B$
9 unobservable

Computation

i)
$$\phi$$
-eom of $\mathcal{O}(\epsilon^2)$ \rightarrow solve w.r.t. (G_N, γ_{ϕ}) $(g\text{-eom})_{00}$ of $\mathcal{O}(\epsilon^2)$ \rightarrow $G_N = \frac{2(2+\omega_0)}{\phi_0(3+2\omega_0)}, \gamma_{\phi} = \frac{\phi_0}{2(2+\omega_0)}$

Scalar-tensor theory as an example

• Computation continued

ii)
$$\delta^{ij}(g\text{-eom})_{ij}$$
 of $\mathcal{O}(\epsilon^2)$ \rightarrow solve w.r.t. γ

$$\gamma = 1 - \frac{1}{2 + \omega_0}$$

iii) $(g\text{-eom})_{0i}$ of $\mathcal{O}(\epsilon^3) \rightarrow$ solve w.r.t. α_1

$$\alpha_1 = 0$$

iv) ϕ -eom of $\mathcal{O}(\epsilon^4) \rightarrow$ solve w.r.t. $(c_{UU}, c_W, c_1, c_2, c_3, c_4, c_6, c_B)$

$$c_{UU} = \frac{\phi_0[2\omega_0 - \left(\frac{d\omega}{d\phi}\right)_0^0 \phi_0 + 3]}{\frac{2(3+2\omega_0)(2+\omega_0)^2}{2+\omega_0}}, c_W = 0, c_1 = \frac{\phi_0}{\frac{2(2+\omega_0)}{2+\omega_0}}, c_2 = \frac{\phi_0[4\omega_0^2 + 8\omega_0 - \left(\frac{d\omega}{d\phi}\right)_0^0 \phi_0 + 3]}{(3+2\omega_0)(2+\omega_0)^2}$$

$$c_3 = \frac{\phi_0}{2+\omega_0}, c_4 = -\frac{3\phi_0}{2+\omega_0}, c_6 = -\frac{\phi_0}{2(2+\omega_0)}, c_B = -\frac{\phi_0}{2(2+\omega_0)}$$

v) $(g-eom)_{00}$ of $\mathcal{O}(\epsilon^4) \rightarrow solve w.r.t.$ $(\beta, \xi, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4)$

$$\beta = 1 + \frac{\left(\frac{d\omega}{d\phi}\right)_0 \phi_0}{4(3+2\omega_0)(2+\omega_0)^2}$$

$$\xi = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$$

vi) Setting
$$G_N = \frac{2(2+\omega_0)}{\phi_0(3+2\omega_0)} = 1 \rightarrow \beta = 1 + \frac{\left(\frac{d\omega}{d\phi}\right)_0}{(3+2\omega_0)^2(4+2\omega_0)}$$

Summary of PPN formalism

- One can go beyond GR, but only to the extent that it is consistent with all experimental constraints.
- There are many theories and many experiments.
- Thanks to the PPN formalism, possible deviations from GR at the solar system scale are universally constrained by experiments.
- 10 PPN parameters + G_N : calculable from theories and constrained by solar system scale experiments.
- Table of constraints on PPN parameters.
- Calculation of PPN parameters in scalar-tensor theory as an example.
- Similar calculations can be done in your favorite theories!

- 1. Introduction
- 2. GR and Lovelock gravity
- 3. PPN formalism
- 4. EFT of scalar tensor theory
- 5. Massive gravity
- 6. Horava-Lifshitz gravity
- 7. Summary

EFFECTIVE FIELD THEORY OF SCALAR TENSOR THEORY

Many modified gravity theories

- 3 check points
 "What are the physical d.o.f.?"
 "How do they interact?"
 "What is the regime of validity?"
- If two (or more) theories give the same answers to the 3 questions above then they are the same even if they look different.
 - Universal description

Scalar-tensor theories

- Metric g_{μν} + scalar field φ
- Jordan (1955), Brans & Dicke (1961),
 Bergmann (1968), Wagoner (1970), ...
- Most general scalar-tensor theory with 2nd order covariant EOM: Horndeski (1974)
- DHOST theories beyond Horndeski: Langlois & Noui (2016)
- All of them (and more) are universally described by an effective field theory (EFT)

EFT of inflation/DE

- Time diffeo is broken by the background but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of inflation/DE

- Time diffeo is broken by the background but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

Simplest: ghost condensation

ref. Arkani-Hamed, Cheng, Luty, Mukohyama 2004

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow_{V(\Phi)}$	$\langle \partial_{\mu} \phi \rangle \uparrow^{P((\partial \phi)^2)}$
	$\longrightarrow \Phi$	$\dot{\phi}$
Instability	Tachyon $-\mu^2\Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P">0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

Systematic construction of Low-energy effective theory

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

Backgrounds characterized by

$$\Rightarrow \langle \partial_{\mu} \phi \rangle \neq 0$$
 and timelike

♦Background metric is maximally symmetric, either Minkowski or dS.

Gauge choice:
$$\phi(t, \vec{x}) = t$$
. $\pi \equiv \delta \phi = 0$ (Unitary gauge)

Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Write down most general action invariant under this residual symmetry.

(\longrightarrow Action for π : undo unitary gauge!)

Start with flat background $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $\delta h_{\mu\nu} = \partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}$

Under residual ξ^i

$$\delta h_{00} = 0, \delta h_{0i} = \partial_0 \xi_i, \delta h_{ij} = \partial_i \xi_j + \partial_j \xi_i$$

Action invariant under ξ^i Beginning at quadratic order,

Segming at quadratic of since we are assuming flat space is good background
$$K^2, K^{ij}K_{ij}$$
 OK
$$K_{ij} = \frac{1}{2} \left(\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j} \right)$$

since we are assuming flat space is good background.

$$K_{ij} = \frac{1}{2} \left(\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j} \right)$$

$$L_{eff} = L_{EH} + M^4 \left\{ (h_{00})^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$$

Action invariant under ξⁱ

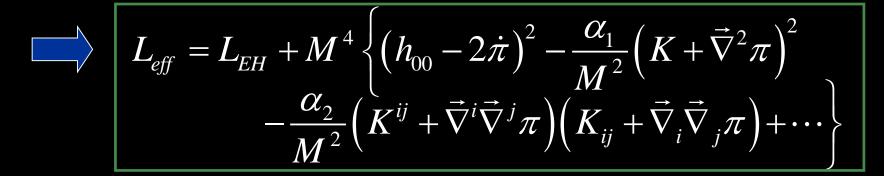
$$egin{pmatrix} \left(h_{00}
ight)^2 & \mathsf{OK} \ \left(h_{0i}
ight)^2 & \mathsf{K} \ K^2, K^{ij}K_{ij} & \mathsf{C} \end{pmatrix}$$

Beginning at quadratic order, since we are assuming flat space is good background.

$$\begin{cases} K^{0i} \\ K^{2}, K^{ij} K_{ij} \end{cases} \circ K \qquad K_{ij} = \frac{1}{2} \left(\partial_{0} h_{ij} - \partial_{j} h_{0i} - \partial_{i} h_{0j} \right)$$

$$L_{eff} = L_{EH} + M^4 \left\{ (h_{00})^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$$

Action for π



$$E \to rE$$

$$dt \to r^{-1}dt$$

$$dx \to r^{-1/2}dx$$

$$\pi \to r^{1/4}\pi$$

Make invariant
$$\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$$

Leading nonlinear operator in infrared $\int dt d^3x \frac{\dot{\pi}(\nabla \pi)^2}{\tilde{M}^2}$

has scaling dimension 1/4. (Barely) irrelevant

- Good low-E effective theory
 Robust prediction
 - e.g. Ghost inflation [Arkani-hamed, Creminelli, Mukohyama, Zaldarriaga 2004]

Extension to FLRW background = EFT of inflation/dark energy

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

- Action invariant under $x^i \rightarrow x^i(t,x)$
- Ingredients $g_{\mu\nu}, g^{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu},$ t & its derivatives
- 1st derivative of t

$$egin{align} \partial_{\mu}t &= \mathcal{S}_{\mu}^{0} & n_{\mu} &= rac{\partial_{\mu}t}{\sqrt{-g^{\mu
u}}\partial_{\mu}t\partial_{
u}t} &= rac{\delta_{\mu}^{0}}{\sqrt{-g^{00}}} \ g^{00} & h_{\mu
u} &= g_{\mu
u} + n_{\mu}n_{
u} &= rac{\delta_{\mu}^{0}}{\sqrt{-g^{00}}} \ \end{array}$$

2nd derivative of t

$$K_{\mu\nu} \equiv h^{\rho}_{\mu} \nabla_{\rho} n_{\nu}$$

Unitary gauge action

$$I = \int d^4x \sqrt{-g} L(t, \delta^0_\mu, K_{\mu\nu}, g_{\mu\nu}, g^{\mu\nu}, \nabla_\mu, R_{\mu\nu\rho\sigma})$$

derivative & perturbative expansions

$$I = M_{Pl}^{2} \int dx^{4} \sqrt{-g} \left[\frac{1}{2} R + c_{1}(t) + c_{2}(t) g^{00} + L^{(2)}(\tilde{\delta}g^{00}, \tilde{\delta}K_{\mu\nu}, \tilde{\delta}R_{\mu\nu\rho\sigma}; t, g_{\mu\nu}, g^{\mu\nu}, \nabla_{\mu}) \right]$$

$$L^{(2)} = \lambda_1(t)(\tilde{\delta}g^{00})^2 + \lambda_2(t)(\tilde{\delta}g^{00})^3 + \lambda_3(t)\tilde{\delta}g^{00}\tilde{\delta}K^{\mu}_{\mu} + \lambda_4(t)(\tilde{\delta}K^{\mu}_{\mu})^2 + \lambda_5(t)\tilde{\delta}K^{\mu}_{\nu}\tilde{\delta}K^{\nu}_{\mu} + \cdots$$

NG boson

• Undo unitary gauge $t o ilde{t} = t - \pi(ilde{t}, ec{x})$ $H(t) o H(t+\pi), \quad \dot{H}(t) o \dot{H}(t+\pi),$

$$\lambda_i(t) \rightarrow \lambda_i(t+\pi), \quad a(t) \rightarrow a(t+\pi),$$
 $\delta^0_\mu \rightarrow (1+\dot{\pi})\delta^0_\mu + \delta^i_\mu \partial_i \pi,$

NG boson in decoupling (subhorizon) limit

$$I_{\pi} = M_{Pl}^{2} \int dt d^{3}\vec{x} \, a^{3} \left\{ -\frac{\dot{H}}{c_{s}^{2}} \left(\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) \right.$$

$$\left. -\dot{H} \left(\frac{1}{c_{s}^{2}} - 1 \right) \left(\frac{c_{3}}{c_{s}^{2}} \dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}} \right) + O(\pi^{4}, \tilde{\epsilon}^{2}) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\}$$

$$\frac{1}{c_{s}^{2}} = 1 - \frac{4\lambda_{1}}{\dot{H}}, \quad c_{3} = c_{s}^{2} - \frac{8c_{s}^{2}\lambda_{2}}{-\dot{H}} \left(\frac{1}{c_{s}^{2}} - 1 \right)^{-1}$$

Sound speed

 c_s : speed of propagation for modes with $\omega >\!\!> H$

$$\omega^2 \simeq c_S^2 \frac{k^2}{a^2}$$
 for $\pi \sim A(t) \exp(-i \int \omega dt + i \vec{k} \cdot \vec{x})$

Application: non-Gaussinity of inflationary perturbation $\zeta = -H\pi$

$$I_{\pi} = M_{Pl}^2 \int dt d^3\vec{x} \, a^3 \left\{ -\frac{\dot{H}}{c_s^2} \left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) \right\} \quad \text{power spectrum}$$

$$-\dot{H} \left(\frac{1}{c_s^2} - 1 \right) \left(\frac{c_3}{c_s^2} \dot{\pi}^3 - \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} \right) + O(\pi^4, \tilde{\epsilon}^2) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\} \quad \text{non-Gaussianity}$$

$$\langle \zeta_{\vec{k}_1}(t) \zeta_{\vec{k}_2}(t) \zeta_{\vec{k}_3}(t) \rangle = (2\pi)^3 \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\zeta}$$

2 types of 3-point interactions

$$c_s^2 \rightarrow$$
 size of non-Gaussianity

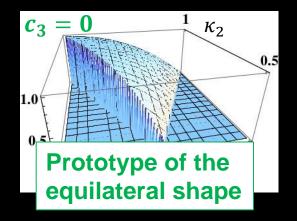
$$f_{NL}^{\dot{\pi}(\partial_i \pi)^2} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right)$$
 $f_{NL}^{\dot{\pi}^3} = \frac{5|c_3|}{81} \left(1 - \frac{1}{c_s^2} \right)$ $\propto \frac{1}{c_s^2}$ for small c_s^2

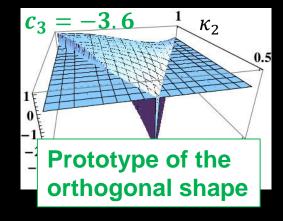
$$f_{NL}^{\dot{\pi}^3} = \frac{5c_3}{81} \left(1 - \frac{5c_3}{81} \right)$$

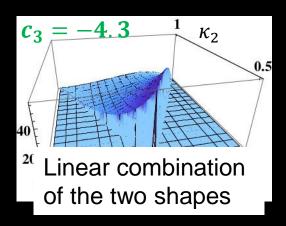
 $c_s^2 \rightarrow$ size of non-Gaussianity $k^6 B_\zeta |_{k_1 = k_2 = k_3 = k} = \frac{18}{5} \Delta^2 (f_{NL}^{\dot{\pi}(\partial_i \pi)^2} + f_{NL}^{\dot{\pi}^3})$

 $c_3 \rightarrow$ shape of non-Gaussianity

plots of $B_{\zeta}(k, \kappa_2 k, \kappa_3 k)/B_{\zeta}(k, k, k)$







Summary of EFT of scalar-tensor theory

- Ghost condensation is a universal description of scalar-tensor theories around Minkowski/de Sitter background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/dark energy.
- This EFT provides a universal description of all known scalar-tensor theories, including Horndeski theory, DHOST theory and more.