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1. L 1. S  . 07.10.2014
1.1. Field theories.

1.1.1. Gauge theory. Let G be a Lie group and let X be a real smooth oriented space-
time manifold of dimension d. A G-gauge theory on X is a field theory in which the
space of fields is a space of principal smooth G-bundles P on X with connections. In a
given trivialization (choice of gauge) of a principal G-bundle, a connection ∇A = d+ A is
represented by g-valued one-form on X, the section A ∈ Γ(X,T ∗

X ⊗ g), where g = Lie(G).
A matter field ϕ in a G-gauge theory is defined by a choice of a vector bundle ES over X

and a vector bundle ER over X associated to the principal G-bundle by a representation
ρ : G → R. Then matter field ϕ is a section ϕ ∈ Γ(X, ES ⊗X ER). Most often in physical
constructions the bundle ES with a fixed connection comes from a (super)gravity back-
ground in which we consider the gauge theory. The matter field ϕ could be chosen to have
an even (bosonic, commuting) or odd (fermionic, anticommuting) statistics. For example,
the matter bundle ES could be a trivial bundle X ×W where W is a fixed vector space,
a bundle of p-forms on X, a Spin or Spinc bundle over X whenever X is a Spin or Spinc
manifold, etc.

1.1.2. Yang-Mills theory. The Yang-Mills theory is a gauge theory on X equipped with
Yang-Mills functional SYM on the space of gauge fields defined by a choice of the Hodge
star operator on degree 2 forms ⋆ : Ω2(X) → Ωd−2(X) (where Ωp(X) denotes the space of
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p-forms on X), a G-invariant symmetric bilinear form ⟨, ⟩ on g = Lie(G), and a parameter
called Yang-Mills coupling constant gYM

SYM =
1

g2YM

∫
X

⟨FA ∧ ⋆FA⟩ (1.1)

Remark 1. The above form of the action functional assumed that G is a compact simple
Lie group. If G is compact reductive then there is an independent coupling constant gYM
for irreducible factor in G.
Remark 2. A choice of a non-degenerate metric g ∈ Γ(X,Sym2(T ∗X)) on X is sufficient to
construct SYM functional since g defines the Hodge star operator ⋆g, but it is not necessary.
For example, in dimension 2 the Hodge star ⋆ on 2-forms is defined by a choice of volume
form on X (therefore 2d Yang-Mills is invariant under area-preserving diffeomorphisms of
X), while in dimension 4 the Hodge star on 2-forms depends only on the conformal class
of metric and is invariant under local Weyl transformation g → e2Ωg, hence 4d Yang-Mills
is classically a conformal theory. The quantization breaks the conformal invariance of the
pure YM theory (without matter fields) in 4d, but not the area-preserving diffeomorphism
invariance in 2d.
Remark 3. When X is a space-time with of Minkowski signature (d−1, 1), the assumptions
of unitarity and energy positivity of quantum theory require G to be a compact Lie group,
the invariant form ⟨, ⟩ on g to be a positive definite metric on g and gYM to be a real number,
so that after Wick rotation (time t 7→

√
−1t) the SYM is a positive definite functional for

a theory on a Euclidean manifold X.
Remark 4. Yang-Mills functional is often complemented by topological characteristic classes
of the G-bundle. Let G be a simple compact Lie group. The most familiar is the second
Chern class for a 4d gauge theories

SYM =
1

g2YM

∫
X

⟨FA ∧ ⋆FA⟩+
iθ

8π2

∫
X

⟨FA ∧ FA⟩ (1.2) {eq:S_{YM}}

If ⟨⟩ on g is normalized such that the long coroot length squared is 2, then

k = − 1

8π2

∫
⟨FA ∧ FA⟩ (1.3)

is integral and is called instanton charge. The instanton charge is positive for self-dual
fields FA = − ⋆ FA, e.g. F+

A = 0.
1.2. Global symmetries.
1.3. Poincare symmetry. Suppose that X is a d-dimensional affine space X ≃ V = Rd

with a constant flat metric g, the SOg(V) be the Lie group of special orthogonal transfor-
mations of V relative to the metric g, and the Poincare group ISOg(V) = SOg(V) ⋉ V be
the extension of SOg(V) by the Lie translation (abelian) group V of the affine space V (we
are using the same letter V for the affine space and its vector space, hopefully, without
confusion)

V → ISOg(V) → SOg(V) (1.4)
In particular, the translation group V ⊂ ISOg(V) is normal subgroup of Poincare group and
the orthogonal group SOg(V) = ISOg(V)/V is the quotient. Obviously, the YM functional
SYM on X = (V, g) is invariant under ISOg(V).
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1.4. SuperPoincare symmetry. The notion of supersymmetry refers to the Lie super-
groups that are symmetries of Z2-graded spaces also known as supermanifolds.

The Lie supegroups are easier to analyze in terms of their Lie superalgebras over the
ground field k = C and then specialize the global and the real structure.

1.4.1. The spinor modules of Spin(V). Let V ≃ Cd a complex vector space with a symmetric
bilinear form g. Let Spin(V) be the Z2 extension of SO(V)

Z2 → Spin(V) → SO(V) (1.5)

and let S be the complex Dirac spinor module of Spin(V) of dimC S = 2⌊
d
2
⌋. If d is odd

then S is irreducible Spin(V) module, if d is even then S decomposes S = S+ ⊕ S− to
the direct sum of irreducible Spin(V)-modules called Weyl spinors of positive and negative
chirality with dimC S

+ = dimC S
− = 1

2
dimC S = 2

d−2
2 .

In terms of Dynkin weights, if d = 2k+1 then so(V) = Bk and S is the irreducible highest
weight Bk-module with the highest weight ωk associated to the last node (the short root)
in the Bk Dynkin diagram
- - -o--o--o==>o
If d = 2k then so(V) = Dk and S± are the irreducible highest weight Dk modules with
highest weights ωk−1-th and the ωk corresponding the last 2 nodes of the Dk Dynkin graph
where it splits
- - -o--o--o--o

|
o

1.4.2. Lie superalgebras. A Lie superalgebra is a Z2-graded Lie algebra p = p0 ⊕ p1, the
p0 is called the bosonic subalgegra of the superalgebra p, and p1 is called the fermionic
extension. A superalgebra (Z2 graded algebra) means that there is an extra sign (−1)|x||y|

in all relations every time the position of the two elements x and y is exchanged where |x|
denotes the Z2 grade of an element x. In particular, the Lie algebra bracket [, ] : p⊗ p → p
decomposes as

[, ] : p0 ⊗ p0 → p0, [, ]; p0 ⊗ p1 → p1, [, ] : p1 ⊗ p1 → p0 (1.6)
The super antisymmetry of the Lie superbracket [, ] implies that the fermionic-fermionic
bracket [, ] : p1 ⊗ p1 → p0 is symmetric. The Jacobi identity on p implies that p0 is a
Lie algebra itself, the p1 is a p0-module, and that symmetric fermionic-fermionic bracket
[, ] : p1 ⊗ p1 → p0 is p0-equivariant.

1.4.3. Poincare superalgebras. A Poincare Lie superalgebra p is a fermionic(odd) extension
of Poincare Lie algebra p0 = iso(V) by a Spin(V) module p1 = S. If S is a Spin(V) module
then is automatically ISO(V) module on which translation subgroup V ⊂ ISO(V) acts
trivially. To complement definition of Lie superalgebra we need to specify a Spin(V)-
equivariant symmetric map

[, ] : S ⊗ S → V (1.7) {eq:bracket}

Such symmetric map induces super anti-symmeric Lie bracket, and the resulting Lie su-
peralgebra siso(V|S) := iso(V)⊕s S is called superPoincare algebra of the superspace (V|S).
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Remark 5. Caution on the notations. The Spin(V) module S in a superPoincare algebra
siso(V|S) is not always just a single copy of Dirac or Weyl spinor modules S or S±, but
may contain several copies of S, S± in varios combinations under condition that symmetric
map (1.7) exists.
Remark 6. Dualizing the map (1.7) and using the metric g on V to identify V → V∨ we
find can define the action by vectors from V on elements from S as · (γ-map)

γ, · : V ⊗ S → S∨ (1.8) {eq:cdot}

This is not a exactly Clifford action, because V sends S to its dual space S∨ rather than to
itself. However, since Spin(V ) acts on S we have map

ΛevenV ⊗ S → S (1.9)
1.4.4. Clifford algebra. For a vector space with bilinear form (V, g), the Clifford algebra
Cl(V) is a free tensor algebra over V modulo relation v · v = g(v, v) · 1. If γµ for µ = 1 . . . d,
where d = dimV, denotes a basis in V and gµν is the matrix of g, then γµ generate Cl(V)
modulo relation

γµγν + γνγµ = 2gµν (1.10)
If the vector space V is a complex vector space of dimC V = d, then Cl(V) is represented
by 2⌊

d
2
⌋ × 2⌊

d
2
⌋ matrices, and Dirac spinor module S is a module for Cl(V). The action by

V ⊂ Cl(V) on S is called Clifford action
(v ∈ V, ψ ∈ S) 7→ v · ψ (1.11)

and in terms of γ-matrices is written as
(vµ, ψ) 7→ vµγµψ (1.12)

This action of V on S naturally extends to the action of r-th external power Λr(V) on
S. Let γr be the basis in Λr(V) where r is a multi-index notation for an r-tuple of dis-
tinct indices from (1, 2, . . . , d), and γµ1...µr := γ{µ1γµ2 . . . γµr} where {, } denotes complete
antisymmetrization. Then vr ∈ ΛrV acts on S as

(vr, ψ) 7→ vrγrψ (1.13)
Notice that in even dimension γr : S± → S∓ if r is odd and γr : S± → S± if r is even.

1.4.5. Invariant bilinear form on S. Lemma. (An exercise is to prove it using an explicit
recursive constrction of γ-matrices). Let V ≃ Cd. The Clifford algebra module S (Dirac
spinor module) can be always equipped with an invariant bilinear form

(, )II : S ⊗ S → C. (1.14)
which is symmetric if d ∈ {0, 1, 6, 7} mod 8 and antisymmetric otherwise, e.g. for d ∈
{2, 3, 4, 5}, and if d is even, with another bilinear form

(, )I : S ⊗ S → C. (1.15)
which is symmetric if d ∈ {0, 2} mod 8 and antisymmetric for d ∈ 4, 6 mod 8.

If we compose the bilinear form (, ) with the Clifford action Λr(V) on S we obtain maps

(, )
(r)
I,II : S ⊗ S 7→ Λr(V∗) (1.16) {eq:rmap}
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d mod 8 0 1 2 3 4 5 6 7 8 9 10 11 12
S S S S+ S S S ⊗ C2 S+ ⊗ C2 S ⊗ C2 S S S+ S S
N 1 1 (0,1) 1 1 1 (0,1) 1 1 1 (0,1) 1 1

dim S 1 1 1 2 4 8 8 16 16 16 16 32 64
SV=Rd−1,1 2R 2C 2H 2O

which are bilinear in spinors and valued in exterior forms on V. In the basis γr in Λr(V)
the above map is written as

(ψ, χ) 7→ (ψγrχ) (1.17)
Verify that (, )

(r)
II is antisymmetric in its arguments for r ∈ {2, 3} + ⌊d

2
⌋ mod 4 and sym-

metric for r ∈ {0, 1} + ⌊d−2
2
⌋ mod 4, and that (, )

(r)
I is antisymmetric for r ∈ {1, 2} + d−2

2

mod 4 and symmetric for r ∈ {0, 3}+ d−2
2

mod 4.
In addition, verify that for even d the map (1.16) projects non-trivially on

S± ⊗ S± → Λr(V∗) (1.18) {eq:S-same}

for d
2
+ r even and on

S± ⊗ S∓ → Λr(V∗) (1.19) {eq:S-opposite}
for d

2
+ r odd.

Using the metric on V we can identify V → V∗ and hence at r = 1 the definition (1.16)
provides a map S ⊗ S → V that can be used in the construction of superPoincare Lie
algebra if this map is symmetric.
1.4.6. Minimal supersymmetry. Now we examine the various cases of d mod 8 and define
minimal superPoincare algebra.

1. For d ∈ {0, 1, 2, 3} mod 8 the map (, )
(1)
II is symmetric and therefore we can define

[, ] : S ⊗ S → V using (, )
(1)
II .

2. For d ∈ {2, 4} mod 8 the map (, )
(1)
II is symmetric and we can define [, ] : S ⊗ S → V

using (, )
(1)
I .

3. For d ∈ {5, 6, 7} mod 8 both maps (, )
(1)
I,II are antisymmetric and cannot be used to

define odd-odd bracket [, ] : S⊗S → V. This can be fixed by taking S = S⊗W where W is
even-dimensional fixed vector space equipped witn a non-degenerate symplectic form and
extending (, ) on S by tensoring (, ) on S with the symplectic form on W . The elements
of S = S ⊗W are called symplectic spinors, and the symmetry Sp(W ) is called symplectic
R-symmetry.

What is the minimal irreducible S in each of these cases? We need to examine addition-
ally only the cases of even dimension d ∈ {0, 2, 4, 6} mod 8 where we can possibly project
S to the chiral submodule S+. The (1.18) implies that such projection possible if d = {2, 6}
mod 8. Then S = S+ for d = 2 and S = S+⊗W for d = 6. In these cases the superPoincare
algebra is called chiral.

We conclude with the table of the minimal modules S to define superPoincare algebra
over complex field C.

The table is redundantly extends (the first two lines are mod 8) to the dimension up to
d = 12 to capture all important dimensions of the superstring theory, M -theory and F -
theory. The notation N reflects to the number of copies of the minimal extension module S
used to construct superPoincare Lie algebra. In the dimensions d = 2, 6, 10, . . . the minimal
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superPoincare Lie algebra is chiral, hence in these dimension the notation (N−,N+) is used
to denote the number of copies of the corresponding minimal extension modules S±. (The
notation also applies also to the minimal superPoincare algebra in dimension 6 where
S = S+ ⊗ C2 involves two copies of Weyl spinors S+ and is called N = (0, 1)). The
dim S, i.e. the fermionic dimension of siso(V|S), is called the number of supercharges of
superPoincare algebra.
1.5. Minimal super Yang-Mills: N = 1 SYM. For a given dim S = 2p notice the
maximal dimension d in which such S is possible. For p = 1, 2, 3, 4 the list of dimensions
goes as d = 3, 4, 6, 10 and up to p = 4 satisfies

d− 2 = 2p−1 (1.20)
The superPoincare algebra in dimensions d = 3, 4, 6, 10 has the following list of related
very special properties

1. [Brink, Schwarz, Scherk 1977]
In d = 3, 4, 6, 10 the Yang-Mills functional has minimal supersymmetric extension by the

fermionic fields ψ ∈ Γ(X, S). This supersymmetric gauge theory is called N = 1 SYM. The
equivalent condition on superPoincare algebra bracket (1.7)(1.8) is the following 3-cycle
rule. The map

S ⊗ S ⊗ S → S∨

(ψ1, ψ2, ψ3) 7→ [ψ1, ψ2] · ψ3,
(1.21)

where we used the map [, ] (1.7) to get a vector from two spinors and then map · (1.8) to
act by the vector [ψ1, ψ2] on ψ3, vanishes after 3-cyclic symmetrization∑

123→231→312

[ψ1, ψ2] · ψ3 = 0 (1.22) {eq:3cyclic}

Remark 7. The above 3-cyclic identity is not the Jacobi identity of the superPoincare Lie
algebra. The map (1.8) is the bracket of superPoincare Lie algebra. The bracket operation
of the superPoincare Lie algebra between translations in V and elements of S is zero.

2. [Baez-Huerta 2010] Let H•(p,k) be Chevalley-Eilenberg cohomology of minimal su-
perPoincare Lie algebra p = siso(V|S) with values in the trivial representation k (ground
field, e.g. k = C or k = R). In dimensions 3, 4, 6, 10 the H3(p,k) = k and H3(p,k) = 0
otherwise. In dimensions d = 3, 4, 6, 10 the non-trivial 3-cocycle in H3(p,k) can be used
to extend the minimal superPoincare Lie algebra p to a 2-Lie superalgebra in a sense of
L∞-algebras. Namely, using symmetric bracket [, ] : S ⊗ S → V and metric ⟨, ⟩ : V ⊗ V → k
on V, define the map α : S ⊗ S ⊗ V → k by

(ψ, χ, v) 7→ ⟨[ψ, χ], v⟩ (1.23)
Then α is a non-trivial 3-cocycle in d = 3, 4, 6, 10 generating H3(p,k) = k.

3. [Kugo, Townsend 1983] In d = 3, 4, 6, 10 in Minkowski signature V = Rd−1,1 the
minimal superPoincare algebra siso(V|S) over the ground field k = R relates to the list of
real normed division algebras R,C,H,O (isomorphic to R,R2,R4,R8 as vector spaces) and
equivalently to the list of parallizable spheres S0, S1, S3, S7 (isomorphic to the elements of
the real normed division algebras of norm 1).

Let K be one of {R,C,H,O} algebras. The module S is identified with the two copies
of K

Sψ = Kψ1 ⊕Kψ2 (1.24)
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and the vector space V ≃ Rd−1,1 is decomposed into Rd−1,1 ≃ R0,1
t ⊕ R1,0

x ⊕ Rd−2,0
y where

Rd−2,0
y ≃ Ky and identified with Hermitian 2× 2 matrices valued in K

V = MatH2×2(K) (1.25)
by the following rule

ˆ: V → MatH2×2(K),

ˆ: v 7→ v̂ (t, x, y) 7→
(
t+ x y
y∗ t− x

) (1.26) {eq:normed-division}

The Minkowski norm of v ∈ V corresponds to the minus determinant of v̂
− v2 = t2 − x2 − y2 = det(v̂) (1.27)

The operation (1.8) that takes V ⊗ S → S∨ is just matrix multiplication

· : V ⊗ S → S∨, v, ψ 7→ v̂

(
ψ1

ψ2

)
(1.28)

However, notice that the image lands in the dual space S∨. Define the action of V on the
dual space S∨ by the rule

· : V∨ ⊗ S → S, v, ψ 7→ v̌

(
ψ1

ψ2

)
(1.29)

where v̌ is
ˇ: V → MatH2×2(K),

ˇ: v 7→ v̌ (t, x, y) 7→
(
−t+ x y
y∗ −t− x

) (1.30)

It is easy to check that
v̌v̂ψ = −v2ψ (1.31)

and hence S ⊕ S∨ is the Clifford algebra module with the action of v represented by(
0 v̌
v̂ 0

)
(1.32)

1.6. N = 1 Super-Yang-Mills action functional.

1.6.1. Minkowski flat space-time. Let siso(V|S) be the minimal superPoincare Lie algebra
in one of the special dimensions d = 3, 4, 6, 10 over the real ground field R. Let X = V =
Rd−1,1 be the the flat Minkowski space-time. Let ES denote the product bundle X ×S. Let
ψ be fermionic field ψ ∈ Γ(X, ES ⊗X Eg), called gluino superpartner of gauge connection A,
and the other notations be as in 1.1.2. Then

SSYM =
1

g2YM

∫
X

⟨FA ∧ ⋆FA⟩+
⟨
ψ /Dψ

⟩
µX (1.33) {eq:SYM}

where the Dirac operator /D : Γ(X, ES) → Γ(X, ES∨) is a composition of the covari-
ant derivative DAψ and the γ-map (1.8), and µX is the volume form. In components⟨
ψ /Dψ

⟩
= (ψγµDµψ) where (ψγµψ) denotes the symmetric map S ⊗ S → V evaluated
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on ψ, ψ. Modulo equations of motion the SYM action functional is invariant under the
following supersymmetry variation of the fields, called vector multiplet representation

δϵA =
1

2
(ψγµϵ)

δϵλ = −1

4
Fµνγ

µνϵ

(1.34) {eq:N1mult}

Our conventions are that fermionic(odd) elements of the S ⊂ siso are presented as ϵαQα

where fermionic(odd) Qα elements form a basis in S and bosonic(even) spinors ϵα are
coordinates of an element ϵαQα ∈ S

1.6.2. Euclidean space-time and complexification. It is not possible to impose the real
structure on the minimal complex superPoincare superalgebra siso(V|S) in special dimen-
sions 3, 4, 6, 10 such that V ≃ Rd would have Euclidean metric. An easy way to see this
is to notice that the vector v in the image of the symmetric odd-odd bracket v = [ϵ, ϵ] is
always null-like

v = [ϵ, ϵ] ⇒ v2 = 0 (1.35)
This follows immediately from the algebraic property (1.22). In Euclidean space the only
null-like vector is v = 0, and therefore a non-trivial bracket [ϵ, ϵ] does not exists in real
Euclidean superspace.

Therefore, the N = 1 SYM gauge theory in Euclidean space-time algebraically has to
be defined over the ground field C, while the action functional and other structures (like
representation of the superPoincare algebra on the space of fields) are locally analytic
(i.e. holomorphic away from singularities). The path integral of the quantum theory over
bosonic(even) fields is understood as a choice of an integration half-dimensional contour
in the space of complex fields, over which a top holomorphic form is integrated. Since
the action functional and the supersymmetry algebra are holomorphic, the result does
not depend precisely on the integration contour, but only on its homotopy class. The
integration over the fermionic fields is an algebraic operation: the evaluation of the top
form. Therefore it is not necessary to impose a real structure on fermions in the quantum
theory.

The standard integration contour for the bosonic fields in Euclidean gauge theory is
chosen in such a way that the gauge group G of the gauge theory is a compact form of the
complexified gauge group GC, and the action functional on the space of bosonic fields is
positive definite.

1.6.3. Off-shell closure of the supersymmetry algebra. By the definition of the super-
Poincare algebra the operator δ2ϵ is the translation operator

δ2ϵ = Lv (1.36)
where Lv is the vector field

v = [ϵ, ϵ], vµ = (ϵγµϵ). (1.37)
The transformation rules (1.34) of the full space A of fields (A,ψ) is not a representation in
a regular sense of the superPoincare algebra, because the algebraic relations such as δ2v = Lv
hold in (1.34) only modulo equations of motion of the Super-Yang-Mills functional (in a
flat space time X ≃ V). In other words, the transformation rules (1.34) is a representation
of the superPoincare algebra in the critical (on-shell) locus Acrit ⊂ A defined by dS = 0.
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In quantum theory it is useful (for example for localization) to have a representation
of the supersymmetry algebra on the full space of fields A over which the path integral
is computed. Often this can be done by introducing the auxiliary fields which appear
in the action as free quadratic terms. This procedure is called off-shell closure of the
representation of the supersymmetry algebra.

The off-shell closure of the vector multiplet representation of N = 1 superPoincare
algebra is easy to describe in the cases of dimensions 3, 4 and 6 related to R,C and H but
is much more complicated in dimension 10 related to O because of the non-associativity of
O. What is easy to describe is the off-shell closure of the (1|1) supersymmetry subalgebra
of the N = 1 superPoincare algebra generated by a fixed element δϵ for ϵ ∈ S.

Let us fix an element ϵ ∈ S such that v = [ϵ, ϵ] ̸= 0. Then the off-shell closure is
convenient describe by the following exact sequence of the vector spaces

0 → K ⊗ g → S ⊗ g
[ϵ,−]→ V ⊗ g

([ϵ,ϵ],−)→ g → 0 (1.38) {eq:complexK}

The arrow from spinors to vectors S to V is an odd-odd bracket with ϵ. The last arrow
from vectors to scalars is a convolution with the non-zero vector v = [ϵ, ϵ]. The vector
space K ⊂ S is the kernel of the map [ϵ,−] and K → S is the inclusion. The space K is
called the space of auxiliary fields.

Not to mention the dimension of g, the dimensions of the vector spaces in the above
complex are as follows

d = 3 0 → 0 → 2 → 3 → 1 → 0

d = 4 0 → 1 → 4 → 4 → 1 → 0

d = 6 0 → 3 → 8 → 6 → 1 → 0

d = 10 0 → 7 → 16 → 10 → 1 → 0

(1.39)

This means that the off-shell closure of N = 1 vector multiplet requires respectively
0, 1, 3, 7 auxilary fields in d = 3, 4, 6, 10 (recall the list S0, S1, S3, S7 of parallizable spheres).

The space K = ker[ϵ,−] is easy to describe explicitly in dimension 3, 4, 6.
In dimension 3 we have K = 0.
In dimension 4 let γ∗ = −γ1γ2γ3γ4 be the chirality operator, and S = S ≃ C4 be the

space of the 4d Dirac spinors equipped with invariant bilinear form (, ) such that (−, γµ−)
is symmetric map S ⊗ S → V. It is easy to check that (−, γ∗γµ−) is antisymmetric map.
Hence [γ∗ϵ, ϵ] = 0, and therefore K = Cγ∗ϵ. The generator γ∗ is actually a generator of
the automorphism of the d = 4 minimal superPoincare algebra called U(1) R-symmetry.
(In complexified description an element t ∈ GL(1) of R-symmetry acts on S = S+ ⊕S− by
(S+, S−) → (tS+, t−1S−)).

In dimension 6 recall that S = S+ ⊗ W where W ≃ C2 ≃ C ⊕ C∨ is acted by the
symplectic group Sp(W ) ≃ Sp(2,C). Let σI , I = 1, 2, 3 be the generators of sp(2,C) (the
traceless 2 × 2 matrices). Then, again is easy to check that [σIϵ, ϵ] = 0, and therefore
K = ⊕3

I=1CσIϵ. The generators σI for I = 1 . . . 3 are actually generators of the Sp(W )
R-symmetry automorphism group of the minimal d = 6 superPoincare algebra.

In dimension 10 there is no R-symmetry. The shortest geometrical description of the
space K is just K = ker[ϵ,−].

In all of these cases d = 3, 4, 6, 10 the space K = ker[ϵ,−] can be also computed as the
quotient of the C-cone over the orbit of ϵ by the stabilizer of v subgroup of Spin(V)

K = (CStabSpin(V)(v) · ϵ)/(Cϵ) (1.40)
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In terms of the normed division algebra presentation (1.26), using a Spin((V )) transfor-
mation assume that an element ϵ is of the form (k, 0) ∈ (K ⊕ K). Then the vector space
of auxiliary fields K is spanned by (jk, 0) where j is one of (0, 1, 3, 7) standard imaginary
units in (R,C,H,O) respectively for d = 3, 4, 6, 10. (If k ∈ K is of unit norm, then k is a
point in a sphere S0, S1, S3, S7. The line spanned by k is the normal bundle to the sphere.
The vector space spanned by elements jk, where j runs over imaginary units of K, is the
tangent bundle to the sphere. Now we see how the N = 1 SYM in d = 3, 4, 6, 10 connects
with the list of parallizable spheres.)

1.7. Topologically twisted theories on Xd = Xd−2 × C2. Here we explain how to put
the vector multiplet of N = 1 SYM for d = 3, 4, 6, 10 to a product space Xd = Xd−2 × C2

where Xd−2 is a any d−2-dimensional smooth real manifold with an arbitrary Riemannian
metric from a certain topological class that we will describe below for d = (3, 4, 6, 10), and
C2 is a flat Euclidean two-dimensional space such as R2, S1 × R1, S1 × S1. If Xd−2 = Rd−2

and C2 = S1 × S1 in the limit of vanishing size of C2 the field theory from Xd reduces to
the field theory on Xd−2 (dimensional reduction).

From the supersymmetric theories N = 1,N = 1,N = (0, 1) or N = (0, 1) in dimensions
3, 4, 6 or 10 respectively we obtain theories with supersymmetry N = 2,N = (2, 2),N = 2
or N = 1 in dimensions 1, 2, 4 or 8 that have 2, 4, 8 or 16 supercharges. These theories in
dimension 1,2,4,8 can be deformed in a suitable way to preserve at least one supercharge
δϵ for any Riemannian metric on Xd−2 subject only to certain topological constraints on
Xd−2.

The splitting of tangent bundle TXd
= TXd−2 ⊕ TC2 defines the subgroup Spin(d− 2)×

Spin(2) ⊂ Spin(d). Then Spin(d) module S splits to the ±i eigen spaces of Spin(2) ≃ U(1)

S = S+ 1
2
⊕ S− 1

2
(1.41)

(This is the same splitting S ≃ K ⊕ K that we used in the division algebra presentation
(1.26) if take (t, x) to be local coordinates in C2.)

Consider a spinor ϵ ∈ S+ ⊂ S. It is clear that the vector [ϵ, ϵ] sits inside TC2 : since ϵ has
charge +1

2
under Spin(TC2) the vector [ϵ, ϵ] has charge +1 and therefore has to be a vector

inside TC2.
Pick any no-where vanishing section ϵ of the S+ 1

2
bundle over X and define the super-

symmetry of the vector multiplet using δϵ. (We will review topological constraints on Xd−2

due to the existence of no-where vanishing spinor in S+). Normalize the section ϵ in such
a way that we have vector field v = [ϵ, ϵ] with

vz̄ = 1 (1.42)
where (z, z̄) are standard flat complex coordinates on C2 with the standard Euclidean
metric.

Using (1.34) and the complex (1.38) we define the δϵ complex on Xd−2 × C2.

δAz̄ = 0,
δAµ = ψµ

δψµ = Fz̄µ
,

δAz = ψz

δψµ = Fz̄z
,

δχI = KI

δKI = ∇z̄KI
(1.43)

Here Aµ for µ = 1 . . . d−2 are components of the connection 1-form along Xd−2. The fields
(ψµ, ψz) come from the image of the map [ϵ,−] in the complex (1.38), all together these
fields is a section of rank d− 1 bundle. The bosonic fields KI and fermionic fields χI , for
I = 1 . . . d− 3 are the sections of the auxiliary fields bundle K of rank d− 3 over X that we
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have defined above in terms of the kernel of [ϵ,−], or using division algebra, or topologically
as the pullback of the tangent bundle to the Sd−3-sphere bundle of non-vanishing elements
of rank d − 2 bundle S+. The exact sequence of smooth complex vector bundles (1.38)
splits in the term S of rank 2(d− 2) into the rank (d− 1) bundle with sections (ψµ, ψz) and
rank (d− 3) bundle with sections (KI).

It is clear that
δ2ϵ = ∇z̄ (1.44)

The action functional is constructed using the auxiliary fields (KI) as Lagrange mul-
tipliers for a certain first order elliptic PDE on Xd−2 (usually called BPS equations):
F ∈ Stabϵ ⊂ Λ2T ∗

Xd−2
, explicitly

FI = 0, FI = νIFµνγ
µνϵ (1.45)

so that

LSYM [A,ψ,K] = δϵ

(
(χI ,

1

2
KI + iFI) + (ψµ, Fzµ) + (Fzz̄, ψz) + . . .

)
=

1

2
KIKI + iKIFI + (Fz̄µ, Fzµ) + (Fzz̄, Fz̄z) + . . . (1.46)

By the usual Atiyah-Bott-Witten argument the theory localizes to the space of maps
from C2 to the moduli space

MG
Xd−2,ϵ

= {∇A : (FA)I = 0}/Aut(G-bundle) (1.47)
After integrating out KI we find

LSYM [A,ψ] =
1

2
(FI , FI) + (Fz̄µ, Fzµ) + (Fzz̄, Fz̄z) + . . . (1.48)

Remark 8. For d = 10 if TX8 ≃ O ≃ S+(TX8) (which requires X to be the Spin(7)
manifold) the parallizability of S7 allows us to define the off-shell closure of 8-dimensional
supersymmetry subalgebra generated by S+. The Spin(10) symmetry of the original d = 10
Poincare superalgebra is broken after dimensional reduction to Spin(2) × Spin(8), and
furthermore, after taking Xd−2 be a curved Spin(7) manifold to Spin(2) × Spin(7). This
construction first was described by [? ]. If X is a compact Spin(7)-manifold, the resulting
chiral theory on C2 is (0, 8) sigma-model with octonionic target space (that localizes to the
moduli space of Spin(7)-8d-instantons on X8: νIFµνγµνϵ = 0 where {νI} spans K ⊂ S+)

{δϵi , δϵj} = 2δij∇z̄ i, j = 1, . . . , 8 (1.49)
The BPS equations FI = 0 can be rewritten as

F − ⋆(F ∧ Ω4) = 0, Ω4 = (ϵγ4ϵ) (1.50)
Then

(FI , FI) =
1

2
(F − ⋆(F ∧ Ω4)) ∧ (⋆F − F ∧ Ω4) = (F ∧ ⋆F − F ∧ F ∧ Ω4) (1.51)

If dΩ4 = 0 then the above action coincides with the standard Yang-Mills functional up to
a shift by the product of Ω4 and the second Chern class Ω4 ∧ ⟨F ∧ F ⟩.

For d = 6 if X4 is Spin(4)-manifold with a no-where vanishing section of S+ (A nowhere
vanishing section of S+ = S+ × (C ⊕ C) because of the symplectic pairing of (ϵ1, ϵ2) ∈
S+ × (C ⊕ C) implies that both ϵ1 ∈ S+ and ϵ2 ∈ S+ nowhere vanish) implies that
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Spin(4) breaks to SU(2), so that S+(X4) is a trivial bundle; equivalently the bundle of
self-dual two-forms Λ2+(T ∗

X4
) is a trivial bundle. The resulting chiral theory on C2 is (0, 4)

supersymmetric sigma-model with quaternionic target space (that localizes to moduli space
of selt-dual connections on X4) The equations FI = 0 are equivalent to F+ = 0 where F+

is the self-dual part of the curvature two-form, and

(FI , FI) =
1

2
(F + ⋆F ) ∧ (F + ⋆F ) = F ∧ ⋆F + F ∧ F (1.52)

For d = 4, the theory reduced to X2 × C2 is a chiral (0, 2) supersymmetric sigma-model
on C2 with complex target space (that localizes to the space of 2d flat connections on X2).
. Indeed, the equation FI = 0 is simply F = 0 and

(FI , FI) = F ∧ ⋆F (1.53)

The equations are empty.
For d = 3 the theory reduced to X1 × C2 is a chiral (0, 1) supersymmetric sigma-model

on C2 with real target space (the moduli space of connections of all connections on X1, for
X1 = S1 this is the gauge group G itself)

Remark 9. When the construction is generalized to a generic non-zero null vector field v
on a generic Xd (with certain topological assumptions), we can define the v-orthogonal
subspace V⊥v ⊂ V of rank d− 1. Let v = Cv be the line subspace of V spanned by v. Since
v2 = 0 we have the inclusion v ⊂ V⊥v. Notice that V⊥v ∪ v = V⊥v ⊂ V which is a proper
subset of V. The d− 2 space Vd−2 that played the role of TXd−2

in the above construction
can be defined as the quotient V⊥v/v

v → V⊥v → Vd−2 (1.54)

The splitting of V⊥v into v and Vd−2 is not defined without an additional data.

1.8. Topological constraints on existence of Spin and Spinc structures on 4,6 and
8 dimensional manifolds.

1.9. The ring of observables of N = 1 on Xd−2 × C2 if C2 is ·, S1, E2. The ring of
observables Hδϵ of the twisted N = 1 theory on Xd−2 × C2 is the cohomology of δϵ.

1. If C2 is a point then we find the ordinary de Rham cohomology as observable ring

Hδϵ(Xd−2 × pt) = HdeRham(M
G
Xd−2,ϵ

) (1.55)

2. If C2 is a circle S1 then we find the K-theory, that is trigonometric cohomology as
observable ring

Hδϵ(Xd−2 × S1) = HS1−deRham((M
G
Xd−2,ϵ

)S
1

) = K(MG
Xd−2,ϵ

) (1.56)

The partition function itself is the Atiyah-Singer index of the (twisted) Dirac operator on
MG

Xd−2,ϵ
.

3. If C2 = Eτ is an elliptic curve we find elliptic cohomology as the observable ring

Hδϵ(Xd−2 × S1) = Ellτ (MG
Xd−2,ϵ

) (1.57)

the partition function itself is Witten elliptic genus.
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1.9.1. Equivariant T -twist of N = 1 theory. Now suppose that we take the previous con-
struction with X = Xd−2 × C2 and assume that a lie group T acts on Xd−2. then δϵ
can be promoted to the equivariant differential in the cartan model of the T equivariant
cohomologies. the

1. If C2 is a point then we find the T -equivariant de Rham cohomology as observable
ring

Hδϵ(Xd−2 × pt;T ) = HT−deRham(M
G
Xd−2,ϵ

) (1.58)

2. If C2 is a circle S1 then we find the T -equivariant K-theory, that is T -equivariant
trigonometric cohomology as observable ring

Hδϵ(Xd−2 × S1;T ) = HS1−deRham((M
G
Xd−2,ϵ

)S
1

) = KT (M
G
Xd−2,ϵ

) (1.59)

3. If C2 = Eτ is an elliptic curve we find T -equivariant elliptic cohomology as the
observable ring

Hδϵ(Xd−2 × S1) = EllτT (MG
Xd−2,ϵ

) (1.60)

The partition function itself is an element of the (rational, trigonometric, or elliptic)
T -equivariant cohomology of a point under the pushforward π∗ map of 1 for

π : MG
Xd−2,ϵ

→ pt (1.61)

Z = π∗1 Z =

∫
MG

Xd−2,ϵ

1 (1.62) {eq:Z}

An element of the T -equivariant (rational|trigonometric|elliptic) cohomologyHrat|tri|ell
T (pt)

of a point is an invariant function on the Lie algebra t of T in rational case, on the group
T in the trigonometric case, on the moduli space of T -bundles on elliptic curve Eτ in the
elliptic case (strictly speaking in the elliptic case an element of Hell

T (pt)is a section of a
certain line bundle on the moduli space of T -bundles on Eτ , such section can be identified
with a character of highest weight integrable module for Kac-Moody affine Lie algebra t̂
and the degree of line bundle with the level).

Let X4 = R4 be a flat Euclidean space with a fixed origin 0 ∈ R4 and let MG,k
X4

be the
moduli space of self-dual connections on R4 with a fixed framing at infinity and second
Chern class c2 = k. The group SO(4) acts on R4 by isometrical rotation around the point 0,
and the group G acts on MG,k

X4
by the chage of framing at infinity. Let T = SO(4)×G. The

moduli spaceMG,k
X4

is hyperKahler space of real dimension 4kh∨G, and letMG
X4

= ⨿k∈Z+M
G,k
X4

.
The q graded element Z of T -equivariant cohomology of a point (rational|trigonometric|elliptic)

obtained by the pushforward of 1 under MG
X4

→ pt

Z =

∫
MG

X4

qc2 = qk
∫
MG,k

X4

1 (1.63)

is called Nekrasov partition function of pure N = 2 SYM. By definition, Z is a function of q
and an element of (Lie algebra of T | group T | moduli space of T -bundles on Eτ ) respectively
in the (rational| trigonometric| elliptic) case of T -equivariant cohomologies.
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2. L 2. T 4 N = 2  . 14.20.2014
2.1. Geometrical structures. The Kahler geometry on the target space is the common
feature of the supersymmetric theory with 4 supercharges such as 4d N = 1 or related by
dimensional reduction 2d (2, 2) supersymmetric models.

In the theories with 8 supercharges such as 6d N = ∞ or its dimensional reduction to
4d N = 2 the geometry of the target space is more constrained. The geometry of 4d vector
multiplet is integral special Kahler and the geometry of 4d hypermultiplet is hyperKahler.

2.1.1. Complex. A complex structure on V = R2n is I ∈ End(V ) such that I2 = −1. An
eigen subspace V (1,0) ⊂ V ⊗ C with eigenvalue +i of I is called holomorphic, and with
eigenvalue −i is called antiholomorphic. An almost complex structure I on a smooth
2n-dimensional manifold M is a complex structure I ∈ End(TM). An almost complex
structure I is integrable if Lie bracket for any two (1, 0) vector fields is (1, 0) vector field.

2.1.2. Kahler. A metric g (symmetric positive definite bilinear form on TM) is compatible
with complex structure I if the bilinear form

ωI(u, v) = g(Iu, v) (2.1)
is symplectic structure, i.e. ωI is antisymmetric, non-degenerate and closed. This implies
that ωI is (1, 1) two-form for complex structure I called real Kahler symplectic form. For
any Kahler metric there always locally exists function, called Kahler potential K(a, ā) such
that in local holomorphic coordinates {ai}

gij̄ = ∂i∂j̄K(a, ā), g = gij̄(da
i ⊗ daj̄ + daj̄ ⊗ dai) (2.2)

and
ω = ı∂∂̄K(a, ā), ωij̄ = ı∂i∂j̄K(a, ā), ω = ωij̄da

i ∧ daj̄ (2.3)
For example K = 1

2
|a|2 gives the standard metric on C. The holonomy group of Kahler

manifold is U(n).
If compact group G acts on Kahler space M in Hamiltonian way with respect to sym-

plectic structure ωI and the g∗ valued function µI called moment map (that means for
any ξ ∈ g it holds that (ξ, dµI) = iξω where iξ is contraction with the vector field ξ on
M generated by G action), and ζ ∈ g∗ is coadjoint-invariant element, the Kahler quotient
M//G is

M//G = {µ−1(ζ)}/G (2.4)
The spaceM//G is again Kahler space of real dimension dimRM−2 dimRG. As a complex
manifold M//G is in fact the complex quotient M s/GC of an open set M s ⊂ M of stable
points on M by complexified group GC. A point is stable if its GC orbit intersects µ−1(ζ).

For example CP1 is the Kahler quotient of C2 with moment map µ = 1
2
(|z1|2+ |z2|2) and

ζ = 1 for U(1) action zi → tzi where t is defining character of U(1), and equivalently CP1

is the complex quotien of C2 \ {0, 0} by C× action zi → λzi for non-zero complex numbers
λ ∈ C×. The point {0, 0} ∈ C2 is not stable because its orbit under C× action does not
intersect the locus µ−1(1) = {(z1, z2) : 1

2
(|z1|2 + |z2|2) = 1}, so this point is discarded in

the complex quotient definition. For Kahler quotient by an abelian group U(1)r the set of
parameters ζ ∈ Rr ∈ Lie(U(1)r) is called FI parameters in physics literature.

For example, the moduli space of G-flat connections MG
X2

on a smooth orientable 2d
manifold X2 (this moduli space is associated to the theory coming from the reduction of
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d = 4 N = 1 to 2d as described in the first section) is symplectic quotient of the (infinite-
dimensional) affine space A of connection 1-forms A on a G-principal bundle P on X2 by
the (infinite-dimensional) group G of automorphisms of the bundle (gauge group action).
The symplectic structure ω on the space of connection A is defined by the formula

ω(δA, δA′) =

∫
Σ

⟨δA ∧ δA′⟩ (2.5) {eq:symplectic}

(where ⟨, ⟩ is invariant bilinear form on g). Notice that definition of ω requires only
orientation of X2, not a complex structure or a metric.

The space Lie(G)∗, dual to the Lie algebra of G, is the space of linear forms on sections
of ϕ ∈ Γ(X2, adP ). We can identify it with the space F ∈ Γ(X2,Λ

2(T ∗
X2
)⊗ adP ) of adjoint

valued two-forms. The value of F on ϕ is given by∫
X2

⟨F, ϕ⟩ (2.6)

The moment map function
µ : A → Lie(G)∗ (2.7)

for the symplectic structure (2.5) is simply the curvature two-form of the connection
µ = FA (2.8) {eq:moment}

Indeed, it satisfies the definition of the moment map∫
Σ

⟨δFA, ϕ⟩ =
∫
Σ

⟨DAδA, ϕ⟩ = −
∫
Σ

⟨DAϕ ∧ δA⟩ (2.9)

since vector field on the space of connections A generated by the element ϕ of Lie algebra
G is δA = −DAϕ.

2.1.3. HyperKahler. A hyperKahler structure on a Riemannian manifold M of real dimen-
sion 4n is a triplet (I, J,K) of complex structures such that IJ = K and the Riemannian
metric g that is Kahler with respect to each of complex structures I, J,K. HyperKahler
structure implies existence of S2-worth of complex structures: Iζ = ζII + ζJJ + ζKK
for ζ ∈ S2 ⊂ R3|ζ2I + ζ2J + ζ2K = 1. The holonomy group of hyperKahler manifold is
USp(2n) = U(2n) ∩ Sp(2n,C).

In addition, to each complex structures I, J,K there is an associated (2, 0) holomorphic
two-form

ΩI = ωJ + ıωK ΩJ = ωK + ıωI ΩK = ωI + ıωJ (2.10)
If compact group G acts on hyperKahler space M in Hamiltonian way with respect to

symplectic structures (ωI , ωJ , ωK) and the g∗ valued function (µI , µJ , µK) called moment
map, and ζ ∈ g∗ ⊗ R3 is coadjoint-invariant element, the hyperKahler quotient M//G is

M////G = {µ−1(ζ)}/G (2.11)
The space M////G is again hyperKahler space of real dimension dimRM − 4dimRG.
For example, the moduli space of self-dual connection on hyperKahler manifold X4 is
the hyperKahler quotient of the space of all connections by the action of the (infiinite-
dimensional) gauge group. The hyperKahler moment map functional is F+

A . (The moment
map functional is valued in Γ(X4,R3 ⊗ ad(g)) where R3 ≃ Λ2(T ∗

X2
).)
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Now break the hyperKahler symmetry by taking R3 ≃ R⊕C and define complex moment
map µC :M → g∗ × C real moment map µC :M → g∗ × R by

µC = µJ + ıµK , µR = µI (2.12)
The complex moment map satisfies

dµC
I (ξ) = iξΩI (2.13)

for ξ ∈ g and where ΩI is a holomorphic (2, 0)-form. Consequently, iξΩI is (1, 0) form,
therefore the complex moment map µC

I is I-holomorphic function on M . Let ζR = ζI , ζC =
ζJ + ıζK . Then the hyperKahler quotient is

M////G = {µ−1
R (ζR) ∩ µ−1

C (ζC)}/G (2.14)
which is symplectic quotient of the space µ−1

C (ζC), and consequently, as a complex manifold
its isomorphic to

M////G = (µ−1
C (ζC))

s/GC (2.15)
which is precisely the complexified definition of the symplectic quotient: instead of real
symplectic structure we are using (2, 0) holomorphic symplectic structure and the action
by compact group is replaced by holomorphic action of the complex group GC.

2.1.4. Special Kahler. A coordinate free equivalent definition [Freed, 1997] is that special
Kahler manifold M is a Kahler manifold equipped with a real flat torsionfree symplectic
connection ∇ on TM such that

d∇I = 0 (2.16)
In the above equation d∇ : Γ(M,T ∗

M ⊗ TM) → Γ(M,Λ2T ∗
M ⊗ TM) is the exterior differential

defined by the connection ∇. It acts on complex structure I viewed as a 1-form on M
valued in vectors.

Equivalently, a special Kahler manifold (of real dimension 2n) can be defined as a Kahler
manifold in which locally exist a set of holomorphic coordinates {ai}i=1...n and a locally
holomorphic function F (a), called prepotential such that Kahler potential is

K =
1

2
Im(aī∂iF ) (2.17)

Consequently, the Kahler metric is

gij̄ =
1

2
Im(∂i∂jF ) (2.18)

and the real symplectic form is

ω =
ı

2
∂∂̄ Im(aī∂iF ), ωij̄ =

1

2
ı Im(∂i∂jF ) (2.19) {eq:omega}

The second derivative ∂i∂jF is called period matrix τij
τij = ∂i∂jF (2.20)

for the reasons explained shortly below. The τij is a symmetric n × n matrix whose
imaginary part needs to be positive definite (that is a condition permissible F (a)) so that
the Kahler metric gij̄ = Im τij is a Riemannian metric. The simplest example is M = C
with

F =
1

2
τa2 (2.21)



18 VASILY PESTUN

which gives
ω =

ı

2
Im τda ∧ dā = Im τ(dx ∧ dy) (2.22)

Given a function F (a) of special holomorphic coordinates {ai} define another set of
special holomorphic coordinates {bi} called dual coordinates

bi = ∂iF ≡ ∂F

∂ai
(2.23) {eq:bi}

The symplectic form ω is actually flat in terms of the real coordinates Re ai,−Re bi.
Indeed, first notice that because of (2.23) it holds that

dai ∧ dbi = 0, daī ∧ dbī = 0 (2.24)
and from (2.19) we find

ω = −1

4
(daī ∧ dbi+ dai ∧ dbī) = −1

4
((dai+ daī)∧ (dbi+ dbī)) = d(Re ai)∧ d(−Re bi) (2.25)

Therefore, besides the holomorphic coordinates {ai} special Kahler manifold is equipped
with Darboux flat coordinates {Re ai,−Re bi} for the symplectic structure ω.

How ambiguous is the choice of special coordinates that we are using to describe the
special Kahler geometry? Instead of the coordinate system {ai} consider the double set
{ai} ∪ {bi} and notice that there is a pointwise linear relation between the differentials

dbi = d(∂iF ) = ∂ijFda
j = τijda

j (2.26)
The flat symplectic structure ω = −Re dai∧Re dbi is invariant under symplectic transfor-

mation in Sp(2n,R). Let the constant matrix from Sp(2n,R) that acts on (da1, . . . dan, db1, . . . , dbn)
be denoted as (

A B
C D

)
∈ Sp(2n,R) (2.27)

where A,B,C,D are n× n real matrices. The tilded holomorphic double set {ãi} ∪ {b̃i} is(
db̃i

dãi

)
=

(
A B
C D

)(
dbi

dai

)
(2.28) {eq:tilde}

It is clear that
db̃i = τ̃ijdã

j, τ̃ = (Aτ +B)(Cτ +D)−1 (2.29)
In tilded coordinate system {ãi} ∪ {b̃i} the tilded prepotential F̃ is defined by integrating
the matrix of its second derivatives τij (which is of course symmetric from (2.28)). The
constant Sp(2n,R) transformation to {ãi} ∪ {b̃i} keeps the symplectic structure ω and the
complex structure, and hence the metric invariant.

2.1.5. Integral special Kahler. An integral special Kahler manifold is a special Kahler man-
ifold, say of real dimension 2n with an additional data: a bundle of rank 2n integral lattice
Λ ⊂ TM with respect to which the symplectic form ω is integral. All constructions in the
previous subsection hold literally except that now the ambiguity in the special coordinate
system is restricted to a subgroup of Γ ⊂ Sp(2n,Z) ⊂ Sp(2n,R) that preserves the lattice
Λ. If integral symplectic form is principal (e.g. there is a basis αi, βj on lattice such that
ω(αi, αj) = 0, ω(αi, βj) = δij, ω(βi, βj) = 0) then Γ = Sp(2n,Z).

A full lattice Λ ⊂ TM induces full dual lattice Λ∗ ⊂ T ∗
M .
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Now since τij is symmetric matrix with positive definite imaginary part, we can think
about it as period matrix of rank n abelian variety attached to each point of special Kahler
manifold M . The defining data of integral special Kahler manifold M is equivalent to the
fibration A → P → M where at each point u ∈ M the fiber Au = (T ∗

M)u/Λ is a polarized
abelian variety with period matrix τij. The lattice Λ is the lattice of 1-cycles H1(A,Z),
and the ambiguity Γ ⊂ Sp(2n,Z) precisely corresponds to the ambiguity in the choice of
basis of Λ.
2.2. The N = 1 supersymmetry algebra in d = 4 in supespace. The N = 1 su-
persymmetry has a particular simple realization by fields on the super space (V|S). Let
index α labels basis in S, the index µ labels basis in V, and let γµαβ be the symmetric map
S⊗S → V that defines the odd-odd bracket of the superPoincare Lie algebra. The we have
anti-commutator relations1

{Qα, Qβ} = 2γµαβ∂µ (2.30)
We can represent the superPoincare generators Qα by the differential operators on the
superspace (V, S)⟨x,θ⟩

Qα =
∂

∂θα
+ γµαβθ

β∂µ (2.31)
A function F (x, θ) on a superspace (V, S) is called superfield. The operator (1+ ϵαQα) acts
on a function F (x, θ) as differential operator

(1 + ϵαQα)F (x, θ) = F (x+ ϵγθ, θ + ϵ) (2.32)
2.2.1. Chiral fields. To define interesting representation of N = 1 superPoincare algebra
it is conventient to introduce conjugated operators

Dα =
∂

∂θα
− γµαβθ

β∂µ (2.33)

whose defining property is that Dα and Qβ anti-commute
{Dα, Qβ} = 0 (2.34)

Recall that in d = 4 the spin-module S = S = S+ + S− where S are Dirac spinors and S±

are the ±-chiral spinors, as well we have splitting Q = Q++Q− and D = D++D−. Given
operators Dα anti-commuting with Qβ we can define a subspace in the space of superfields
by the condition

D+
αΦ

−(x, θ) = 0 :chiral constraint: (2.35) {eq:chirality}
Notice that

D+(x+ θ+γθ−) = 0, D+θ− = 0 (2.36)
Define

y− ≡ x+ θ+γθ− (2.37)
and notice that

D+y− = 0. (2.38)
Then a general solution of the chirality constraint (2.35) can be represented as Φ(y, θ−):

D+Φ−(y−, θ−) = 0 (2.39)
The field Φ−(y−, θ−) is called chiral field.

1In this presentation we consider superPoincare algebra over C and not consequently we are not keeping
track of conventional ı-factors related to the choice of real structure.
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2.2.2. D-term: Kahler kinetic term. From a generic superfield F (x, θ) a supersymmetric
action can be constructed by taking∫

[dx]

∫
[dθ]F (x, θ) : D − term : (2.40) {eq:D-term}

where
∫
[dθ] is the Berezian integral: by definition

∫
[dθ]F (x, θ) picks up the top form of

F (x, θ). Indeed, supersymmetric variation vanishes∫
[dx]

∫
[dθ]QαF (x, θ) = 0 (2.41)

because the term with ∂
∂θ
F (x, θ) has zero top form (by θ-degree counting), and the term

with γµαβθ
β∂µ is the total derivative in the x-space that vanishes after integration over x.

The non-chiral actions as above are called D-term and are mostly used in sigma-models
for construction of the kinetic term for the scalar fields using the Kahler potential K(z, z̄)
for the Kahler metric on the target space∫

[dx]

∫
[dθ]K(Φ−,Φ+) :Kahler D-term: (2.42)

where Φ+ is anti-chiral field defined in the opposite way (swtiching + with −) to Φ−.

2.2.3. F-term: holomorphic superpotential. As well, we can notice that the chiral action
defined using chiral field (2.35)∫

[dx]

∫
[dθ−]Φ(y, θ−), : F − term : (2.43) {eq:F-term}

is also supersymmetric invariant. Indeed,
Q+y−µ = 2θ−γµ, Q−y−µ = 0 (2.44)

hence
Q+Φ(y−, θ−) = 2θ−γµ∂µΦ(y

−, θ−), Q−Φ(y−, θ−) = ∂θ−Φ(y
−, θ−) (2.45)

so the Q-variation of (2.43) is total derivative in (x, θ) space and thus vanishes after
integration over [dx] and [dθ]. The chiral action of the form (2.43) is called F-term and is
usually generated by arbitrary holomorphic function, called superpotential, W (z)∫

[dx]

∫
[dθ−]W (Φ(y−, θ−)) : :superpotential F-term: (2.46)

2.2.4. Gauge fields. We consider the U(1) gauge field to simplify presentation. The super-
symmetrization of the gauge connection is a superfield V (x, θ+, θ−). The gauge transfor-
mation is

V → V + Φ− + Φ+ (2.47) {eq:supergauge}
where Φ−,Φ+ is chiral and antichiral fields. The supersymmetrization of the field strength
is

W−
α = (D+)2D−

αV

W+
α = (D−)2D+

αV
(2.48)

The superfield W−
α is chiral because (D−)3 = 0 (indeed dimS− = 2) and the superfield

W+
α is antichiral because (D+)3 = 0 (indeed dimS+ = 2). And the superfields W± are
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obviously invariant under supergauge transformation (2.47). The superfield W± is called
gauge superfield strength with the expansion

W− = ψ− + θ−K + /F
−
θ− + (θθ) /Dψ+ (2.49)

where in all coefficient field (ψ−, K−, F−, ψ+) we have omitted arguments (y−), the opeartor
/D = γµDµ is Dirac differential operator, the /F = Fµνγ

µν is the Clifford action by the 2-
form Fµν , the F− denotes the anti-selfdual part of the curvature, the gluino field ψ is
the fermionic superpartner of the gauge connection whose curvature is F , and K is the
auxiliary scalar field2. In the same way

W+ = ψ+ + θ+K + /F
+
θ+ + (θθ) /Dψ− (2.50)

The gauge field action functionals S±
SYM are defined by complexified coupling constants

τ− and τ+ as follows

S−
SYM =

ı

4π
τ−

∫
[dx]

∫
[dθ−](W−)2 =

ı

4π
τ−

∫
[dx](F− ∧ F− − 1

2
K2 − 1

2
ψ /Dψ)

S+
SYM =

ı

4π
τ+

∫
[dx]

∫
[dθ+](W+)2 =

ı

4π
τ+

∫
[dx](F+ ∧ F+ +

1

2
K2 +

1

2
ψ /Dψ)

(2.51)

If a real structure for fields is chosen in Euclidean signature, then the standard convention
is to denote τ− = τ and τ+ = τ̄ where τ is complexified coupling constant

τ =
4πı

g2YM
+

θ

2π
(2.52)

then
SSYM = S−

SYM + S+
SYM (2.53)

is the standard SYM action (1.33).

2.3. The N = 2 supersymmetry algebra in d = 4 as reduction of N = 1 su-
perPoincare in d = 6. Recall from the supersymmetry table 1.4.6 that N = 1 super-
Poincare in d = 6 uses spinor module S(6) = S+

(6) ⊗ C2. Consider a decomposition of
the 6d space-time into 4d and 2d spaces: V6 = V4 ⊕ V2, and respectively the subgroup
Spin(4) × Spin(2) ⊂ Spin(6). The chiral Weyl spinors S+

6 (irreducible Spin(6)-module
of dimension 4) transform as Dirac spinors S4 = S+

4 + S−
4 (reducible Spin(4)-module of

dimension 4) under Spin(4) ⊂ Spin(6), so
S+
6 ≃ S4 as Spin(4) ⊂ Spin(6) modules (2.54)

The N = 1 d = 6 uses spinors in S6 = S+
(6) ⊗ C2, that is the two copies of Spin(6) Weyl

spinors S+
6 . Under the reduction to Spin(4) ⊂ Spin(6) we obtain two copies of Spin(4)

Dirac spinors: S4⊗C2. The minimal supersymmetry N = 1 in d = 4 uses one copy of Dirac
spinors S4 (see the table 1.4.6). Therefore, with respect to the decomposition V6 = V4⊕V2

the minimal 6d superPoincare algebra iso(V6|S6) reduces to the 4d extended superPoincare
algebra iso(V4|S4 ⊗ C2). Recall that the C2 factor in S6 is C2 = C ⊕ C∨ with canonical
symplectic form and that we had to introduce this factor to have a symmetric odd-odd
bracket in the superPoincare Lie algebra. The automorphism group Sp(C2) ≃ SL(2,C)
is symplectic group, called R-symmetry. Its compact subgroup SU(2) remains after the

2Sometimes this auxiliary field K is denoted in supersymmetric literature as D-field, but we are already
overusing symbol D
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appropriate choice of the real structure for the superPoincare Lie algebra is made. This
SU(2) ⊂ SL(2,C) acting on the internal space C2 = C⊕C∨ is called the SU(2)R-symmetry
group of the 4d N = 2 supersymmetry: it acts naturally on the S4 ⊗ C2 spinors of the 4d
N = 2 superPoincare iso(V4|S4 ⊗ C2).

Another symmetry that commutes with superPoincare iso(V4|S4 ⊗ C2) comes from the
rotation group Spin(V2) ≃ SO(2) of the 2-plane V2 on which we reduce the 6d N = 1
superPoincare to get 4d N = 2 superPoincare. This SO(2) ≃ U(1)R is called U(1)R
R-symmetry group.

Finally, the translations in V2 also commute with iso(V4|S4 ⊗ C2), these translation
generators in V2 are scalars from the 4d perspective and are called central charges.

If real structure is chosen such that V2 ≃ R2 as Euclidean 2-plane, it is customarily to
denote V2 ≃ R2 ≃ C and then the central charge Z ∈ V2 is complex-valued scalar operator
commuting with the rest of 4d N = 2 superPoincare (hence the name “central charge”).

Expicitly, all generators of N = 2 super Lie algebra can be listed as follows
V4 Λ2V4 S+ ⊗ C2 S− ⊗ C2 V2

Pµ Mµν Q+
αi Q−

αi Z
(1
2
, 1
2
, 0, 0) (1, 0, 0, 0)⊕ (0, 1, 0, 0) (1

2
, 0, 1

2
,−1

2
) (0, 1

2
, 1
2
, 1
2
) (0, 0, 0, 1)

(2.55)

where the last line describes the representation with respect to SU(2)− × SU(2)+ × SU(2)R × U(1)R
where SU(2)− × SU(2)+ ≃ Spin(4)

2.4. N = 2 abelian vector mutliplet action. The U(1)r abelian N = 2 supersymmetric
vectormultiplet is composed of N = 1 supergauge field Wα and the N = 1 chiral field Φ.
The N = 2 abelian Lagrangian contains only kinetic terms

SSYM,N=2 =
ı

4π

(∫
[dx]

∫
[dθ−]Fij(Φ)(W

i−W j−) +

∫
[dx]

∫
[dθ](Φi+eVFi(Φ

−)) + :anti-chiral terms:
)

(2.56) {eq:N2action}
Here i, j = 1 . . . r and Φi− and W i−

α denote respectively chiral scalar field and chiral gauge
field strength. The first term is the chiral type F-term gauge field strength action, the
second terim is non-chiral D-term Kahler potential type action for scalars. The Kahler
potential is

K(aī, ai) =
1

2
Im(aī∂iF(a)) (2.57) {eq:KahlerF}

where F is the prepotential of the special Kahler geometry on r-complex dimensional target
space U with local special coordinates ai. The coordinates ai are the scalar components of
the chiral superfield Φi. The r × r matrix

τij(a) =
∂2F
∂ai∂aj

(2.58)

is the dynamical (a-dependent) complexified coupling constant.
The N = 2 supersymmetry mixes up fields from the N = 1 vector W and N = 1

chiral Phi. For example, the spinors in W and the spinors in Φ form together the SU(2)R
doublet. The action (2.56) ensures N = 2 supersymmetry: a single holomorphic function
F(a) determines both the coupling constant τij(a) for the gauge field strength and the
Kahler metric with the Kahler potential (2.57) on the target space for the scalars, and the
same kinetic term proportional to τij(a) for the spinors in W and Φ.
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The special Kahler manifold U of complex dimension r is the target space of tne non-
linear U(1)r d = 4 N = 2 abelian sigma model Maps(R4,U).

2.4.1. 4d N = 2 hypermultiplet. The 4d N = 2 is made of a pair of 4d N = 1 chiral
multiplets. The target space for the scalars of the hypermultiplet must be hyperKahler
manifold to ensure N = 2 supersymmetyr. If hypermultiplet transforms in representation
R of gauge group G, the representation R has to be quaternionic representation of G of
real dimension 4n. Starting from any complex G-representation ρ of real dimension 2n
we can construct quaternionic representation R = ρ ⊕ ρ∗. The associated supermultiplet
(with scalars in ρ⊕ ρ∗) is called full-hypermultiplet of ρ or equivalently half-hypermultiplet
of R = ρ ⊕ ρ∗. Then the minimal supermultiplet associated to an abstract quaternionic
representation R (wtih 4n real scalars for dimRR = 4n) is called half-hypermultiplet of R:

half-hyper(ρ⊕ ρ∗) ≃ full-hyper(ρ) (2.59)
and then for any complex representation ρ of G we have conventions

dimR(hyper(ρ)) = 2 dimR ρ = 4 dimC ρ (2.60)
where dimR(full-hyper(ρ)) denotes the real dimension of the hyperKahler target space
for real scalars in the hypermultiplet. In most literature hyper ≡ full-hyper. If ρ is an
irreducible complex representation of G, the hypermultiplet associated to NF copies of ρ,
that is to representation ρ⊗ CNF is called to have NF flavors. The U(NF ) action on CNF

commutes with R-action and is called flavor symmetry group U(NF ).
More generally, for any compact Lie group G (gauge group) and any compact Lie group

F (flavor group), an a quaternionic representation R of G × F gives rise to half-hyper
hypermultipet associated of R with flavor symmetry group F . The hypermultiplet masses
are the background complex scalars of vector multiplet associated to the flavor symmetry
group F .

Hence, a mass parameter m of half-hypermultiplet in quaternionic G × F -module R is
an element of the complexified Lie algebra fC of F

m ∈ Lie(FC) (2.61)
The theory is invariant under symmetry F , hence by F -adjoint transformation the mass
parameter can be taken to be in the complexified Cartan algebra of F

m ∈ Lie(TFC) (2.62) {eq:mass}

For example, for a theory with NF flavors we have F = U(NF ) and Lie(TFC) ≃ CNf so
that the mass parameter of such hypermultiplet is Nf -tuple of complex numbers.

2.4.2. 6d N = 1 reduced to 5d. For the 5d reduction V6 = V5⊕V1 of 6d N = 1 the structure
does not change much. There is no 5d U(1)R (since for the 4d reduction the U(1)R came
from the orthogonal group of the 2-plane V2, but for the 5d reduction the orthogonal group
of V1 is trivial). The SU(2)R is still there in the same way acting on spinors in S5 ⊗ C2

where S5 denotes irreducible spinor representation of Spin(5). The central charge Z ∈ V1

is a real scalar Z if the real structure is chosen such that V1 ≃ R.
The target space for the real scalars of the vector multiplet is special real manifold

parametrized by real cubic prepotential, see e.g. [? ].
The target space for a half-hyper in a quaternionic G × F -representation R is again

hyperKahler manifold.



24 VASILY PESTUN

The mass parameter of half-hyper in a quaternionic representation R of G × F is an
element of the real Lie algebra of compact Lie group F

m ∈ Lie(F ) (2.63)

2.5. 6d N = 1 reduced to 4d on T 2. For a reduction of 6d N = 1 gauge theory on
a 2-torus Eτ∨ (elliptic curve) of finite size the background F -gauge connection along Eτ
determines the mass-type couplings from the perspective of 4d theory obtained by KK
reduction along Eτ∨. Consequently, in such theory the mass parameter m is a point in a
moduli space of F -flat bundles on Eτ , or, equivalently, coarse moduli space of semi-stable
holomorphic FC principal bundles on Eτ

m ∈ BunFC(Eτ ) (2.64)
The limit of T 2 = S1 × S1 when one S1 shrinks to zero corresponds to the 5d theory

reduced on S1 (of finite size), and equivalently to the nodal singularity of the elliptic curve
Eτ at τ → ı∞. In this case (we neglect discrete quotient by the Weyl group)

m ∈ TFC (2.65)
Finally, if the other circle is shrinked to zero, this correspond to the degeneration of

elliptic curve Eτ to the rational curve with cusp and this case as shown in (2.62) m ∈
Lie(TFC).

This picture agrees with the degeneration hierarchy
BunFC(Eτ )⇝ TFC ⇝ Lie(TFC) (2.66)

as
smooth elliptic curve⇝ nodal curve⇝ cusp curve (2.67)

and
6d on T 2 ⇝ 5d on S1 ⇝ 4d (2.68)

and as in 1.9)
F -equiv de Rham cohomology⇝ F -equiv K-theory⇝ F -equiv elliptic cohomology

(2.69)

2.6. Lagrangian N = 2 gauge theories. Here we summarize the data that describes the
Lagrangian of 4d N = 2 gauge theory. The representation theoretical data is the choice of

1. Compact Lie group G: the gauge group.
2. Compact Lie group F : the flavor group.
3. Quaternionic G× F representation R.
with the condition that
4. The (G,F,R)-theory is UV complete.
The triplet (G,F,R) needs to satisfy the UV-complete condition of the non-positive β-

function: absence of Landau pole at the large energies, so that the QFT is asymptotically
free or conformal in the limit of UV = small distances = large momenta. In other words,
under renormalization group flow the theory must be weakly coupled as small distances.
Such renormalizable theory is called UV-complete.

Let g = Lie(G) be the reducible Lie algebra of compact Lie group G, and let
g = ⊕i∈Igi (2.70)
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be the decomposition of g into irreducible Lie algebras gi and let ⟨⟩i be adjoint invariant
Killing form on gi.

For any representation ρi of irreducible Lie algebra gi let C2(ρi) be the eigenvalue of the
second Casimir operator3 of gi, and let c2(ρi) be the coefficient that relates bilinear form
trρi xy with ⟨xy⟩

trρi xy = −c2(ρi) ⟨xy⟩ , x, y ∈ gi (2.71)
The numbers Cρi and c2(ρi) are related

c2(ρi) =
dim ρi
dim g

C2(ρi) (2.72)

For example, if gi is simple and the Killing form is chosen such that the length of the
long root squared is 2, then c2(g) = 2h∨ where h∨ is the dual Coxeter number of g. For
gi = SU(N) and ρi fundamental representation the c2(ρi) = 1.

Now let ρi : gi → End(Hn) be the quaternionic half-hypermultiplet representation ρi ≃ R
induced from the inclusion gi ⊂ g⊕f and represented over quaternions Hn (forN = 2 theory
with 4n real scalars in hypermultiplets). For each i define

βi = c2(gi)− c2(ρi|H) (2.73)
Our conventions are such that for ρi = ρ̃i⊕ ρ̃∗i where ρ̃i is complex representation of G×F
the half-hyper of ρi = ρ̃i⊕ ρ̃∗i is hyper of ρ̃i, and c2(ρi|H) = c2(ρ̃i|C). For example, the case
ρ̃ = CN for g = SU(N) is 1 fundamental hyper, that is the SU(N) theory with NF = 1, so
for complex hypers defined by complex rep ρ̃i we have equivalently

βi = c2(gi)− c2(ρ̃i|C) (2.74)
In the standard physical conventions the β-function has opposite sign to the quantity

we have called β, we want βi ≥ 0 for a good UV-complete theory.
Finally, the condition of UV-completeness is
4.’ For each irreducible factor gi for g = ⊕i∈Igi it should hold that

c2(gi)− c2(ρi|H) ≥ 0 (2.75) {eq:c2}

where c2(gi) denotes c2 in the adjoint representation. Since abelian factors gi have c2 = 0 it
follows that R should be trivial representation for all abelian factors gi, and consequently
they decouple (except for possibly global topological effects).

For example, if G = SU(N) and F = U(NF ) we consider NF fundamental flavors for
SU(N) gauge group, we compute βi = 2N − NF and obtain the UV-completeness bound
NF ≤ 2N .

The continious parameters of (G,F,R) theory are
1. Complex coupling constant τ = (τi) for each irreducible gi term in g = ⊕igi with

Im(τi) > 0.
2. Mass parameter m ∈ Lie(TFC).
Summary
The Lagrangian N = 2 theory is defined by a compact Lie gauge group G, a compact

Lie flavor group F and a quaternionic representation R of G×F that satisfies inequalities
(2.75). The complex parameters are the complex coupling constant τ = (τi), where i labels
irreducible terms in g = ⊕igi, and complex mass m ∈ Lie(TFC).

3 For a Lie algebra g, a basis (tα) in g and Killing form ⟨⟩ on g, the second Casimir operator is C2 =
−(⟨tαtβ⟩)−1tαtβ
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2.7. Lagrangian N = 2 quiver gauge theories. Let Γ be a directed graph called quiver
with the set of nodes I. To each node i ∈ I we associate a vector space Ni = CNi (We use
notation Ni for CNi as well as for dimCN

i, but it should be clear from the context) and
consider the N = 2 gauge theory with gauge group G = ×SU(Ni) and full hypermultiplet
in representation

R = ⊕i→jHom(Ni, Nj) (2.76)
where the sum is over all arrows in quiver Γ. This is called minimal quiver gauge theory.
We can extend the minimal quiver by matter in fundamental representation: connect each
node of the quiver with two extra nodes nodes (Mi, M̃i) called respectivelyMi fundamental
and M̃i anti-fundamental matter multiplets for i-th node. Then we take full hyper defined
by complex rep of G as follows

R = ⊕i→jHom(Ni, Nj)⊕i Hom(Ni,Mi)⊕i Hom(M̃i, Ni) (2.77)
The flavor symmetry F is

F = ⊗i→jU(1)⊗i U(Mi)⊗i U(M̃i) (2.78)
Let Cij be the Cartan matrix of the graph Γ that has 2 on the diagonals and minus

number of arrows, regardless of their orientation, between i-th and j-th node. The UV-
completeness β-function inequlities leads to the bound

CijNj ≥Mi + M̃i ∀i (2.79)
The solution of these bounds is equivalent to the classification of simply-laced finite and

affine generalized Cartan matrices. The result is that the quiver Γ is the Dynkin diagram
of ADE or affine ADE. Moreover, if Γ is affine ADE, then Mi = M̃i = 0 and Ni = a∨i N

where a∨i are dual Dynkin labels on Γ and N is positive integer (N > 1 for Γ = Âr when
all a∨i = 1 in order for the theory with the gauge group ×SU(Ni) to be non-empty).

3. L 3. E- , S-W  .
21.10.2014

3.1. Electro-magnetic duality. Electro-magnetic duality that exchanges the electric and
magnetic fields as well as electric and magnetic charges is the basic symmetry of abelian
Maxwell equations. We consider the electro-magnetic duality for U(1)r theory in the
presence of θ-term couplings trF ∧F . Let F i for i = 1, . . . , r label the 2-forms of U(1)r field
strengh that take value in the Lie algebra Rr of U(1)r and let ⋆ be the Hodge dual operator
on the Euclidean space-time X. The abelian Yang-Mills action is now (we inducing the
metric on the Lie algebra by − tr in the fundamental representation)

SYM =
ı

4π

∫
X

F i ∧ (τ ′ijF
j − ıτ ′′ij ⋆ F

j) (3.1) {eq:YMr}

where τ ′ij and positive definite τ ′′ij are real symmetric matrices that combine into the complex
symmetric matrix

τij = τ ′ij + ıτ ′′ij (3.2)
For r = 1 and

τ =
4πı

g2YM
+

θ

2π
(3.3)
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the above action reduces to (1.2). The field configuration in the presence of electric charge
n ∈ Zr that moves on contour γ ⊂ X is defined by extremizing the action (3.1) in the
presence of the source term generated by electric charge

Se = −ı
∫
γ

niA
i (3.4)

For abelian theory F i = dAi and extremization of S = SYM + Se is elementary∫
X

ı

2π
δAi ∧ d(τ ′ijF j − ıτ ′′ij ⋆ F

j) = ıni

∫
δAi (3.5)

implies
1

2π
d(τ ′ijF

j − ıτ ′′ij ⋆ F
j) = niγ̃ (3.6)

where γ̃ is the delta-function like three-form that is Hodge dual to γ, that is
∫
γ
A =

∫
X
γ∨.

Let S2 be a two-sphere canonically linked γ. Then we find Gauss flux associated to electric
charge n = {ni}.

1

2π

∫
S2

(τ ′ijF
j − ıτ ′′ij ⋆ F

j) = ni (3.7) {eq:el}

A magnetic charge on a contour γ creates the flux of F i, by definition
1

2π

∫
S2

F i = mi (3.8) {eq:m}

Electric-magnetic duality (EM duality), by definition, is a linear integral transforma-
tion for the lattice (n,m) ∈ Z2r of electro-magnetic charges that preserves the canonical
symplectic structure ω on the space of charges

ω((n,m); (ñ, m̃)) = nim̃
i − ñim

i (3.9)

All electro-magnetic duality transformations form infinite discrete group Γ = Sp(2n,Z).
Let an element g ∈ Γ be denoted as

g =

(
A B
C D

)
(3.10)

where A,B,C,D are r × r matrices. Let Tij = τ ′ij − ıτ ′′ij⋆ be a matrix of linear operator
that acts on Γ(X,Λ2T ∗

X ⊗ Rr). Then electric and magnetic flux (3.7) equations are
1

2π

∫
X

TijF
j = ni

1

2π

∫
X

2πF i = mi

(3.11)

After we apply electro-magnetic duality g ∈ Γ to the charge lattice we find new charges
(ñ, m̃) to be given by (

ñ
m̃

)
=

(
A B
C D

)(
n
m

)
(3.12)
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And we want to satisfy the equations
1

2π

∫
X

T̃ijF̃
j = ñi

1

2π

∫
X

F̃ i = m̃i

(3.13)

on the linearly transformed field strength (F̃ i). Then we find
T̃ = (AT +B)(CT +D)−1 (3.14) {eq:tildeT}

and
F̃ = (CT +D)F (3.15)

Since algebraically the operator −ı⋆ in the definition of T = τ ′ij− ıτ ′′ij⋆ satisfies (−ı⋆)2 = −1

it is equivalent to
√
−1 in the formula (3.14). That is, define T̃ = τ̃ ′ij − ıτ̃ ′′ij⋆ and r × r

complex matrix τ̃ = τ̃ ′ + ıτ̃ ′′, then
τ̃ = (Aτ +B)(Cτ +D)−1 (3.16)

exactly like integral symplectic transformation for change of special coordinates in special
Kahler manifold (2.28).

The main message learned as a consequence of electric-magnetic duality but in fact it is
a principally polarized abelian variety!
3.1.1. Seiberg-Witten integrable system. The deformations of a given vacua ofN = 2 theory
correspond either to massless vectormultiplet or massless hypermultiplet excitations. The
deformations associated with massless vector multiplets give rise to the space U called
Coulomb branch of the moduli space of vacua, for the reason that the low-energy theory of
excitations around such vacua if U(1)r abelian theory in which charged particles interact
by the Coulomb law (equivalent to (3.7)(3.8)). Algebraically, U is the spectrum of the
1/2-BPS chiral ring operators of the vector-multiplet type, like ⟨P (ϕ)⟩ where ϕ is the
complex G-adjoint valued scalar of G-gauge vector-multiplet and P is an adjoint invariant
polynomial on gC.

For example, in the simplest case of G = SU(2) theory, the only independent 1/2-BPS
chiral ring operator is u = trϕ2. The variable u is a coordinate on the 1-dimensionl affine
space U : the moduli space of vacua of the 4d N = 2 theory.

From the analysis of N = 2 supersymmetry for the abelian U(1)r theory we have found
that such theory is a non-linear N = 2 sigma-model of maps from the 4d space-time to
the target space U . The target space U must be equipped with special Kahler structure to
satisfy N = 2 supersymmetry, and moreover, this special Kahler structure must be integral
for so that electric-magnetic duality holds.

The special Kahler structure on U implies that there are local special coordinates ai and
holomorphic function F (a), called prepotential, that determines symmetric r × r matrix
τij(a) = ∂ijF (a) of coupling constants for U(1)r theory, moreover, the Im(τij) is positive
definite: it determines the positive-definite action functional for the gauge fields and the
positive definite Kahler metric on U .

Therefore, at a given point u ∈ U the τij can be interpreted as a period matrix of rank r
principally polarized abelian variety. (A rank r polarized abelian variety A can be viewed
as r-dimensional complex torus Cr/Λ, where Λ is a full rank 2r lattice, that has symmetric
period matrix τij with positive definite Im(τij). The condition on τij implies that one can
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well-define θ-functions on A which are quasi-periodic, that is holomorphic sections of a
holomorphic line bundle on A, and then use these θ-functions to map A into a projective
space. Hence A is a projective algebraic variety and an abelian group (complex torus),
hence A is abelian variety. A principal polarization means a symplectic form on H1(A,Z)
for which exists basis of 1-cycles αi, βi in canonical intersection αi ∩ αj = 0, βi ∩ βj =
0, αi ∩ βj = δij)

The electric-magnetic duality implies that τij(a) is defined only up to Sp(Z2r) where Z2r

is the lattice of electric-magnetic charges (ni,mi).
Hence, the defining data of N = 2 low-energy theory for U(1)r vector multiplet can be

recast in the form of the fibration P of rank r abelian varieties A over the moduli space of
vacua U :

A→ P → U (3.17)
where P of complex dimension 2r denotes the total space of the fibration.

The lattice of electric-magnetic charges is identified with H1(A,Z) ≃ Z2r.
The central charge Z evaluated on a state with electric-magnetic charge (n,m) is

Z = nia
i +mibi (3.18)

The central charge is a locally holomorphic funtion on U . Since lattice of charges (n,m)
is identified with H1(A,Z) we can represent the central charge function Z of a given (n,m)
state by

Z(n,m) =

∫
niαi+miβi

λ (3.19)

where λ is a meromorphic 1-form. Hence

ai =

∫
αi

λ, bi =

∫
βi

λ (3.20)

Moreover, since on the base U it holds that
dbi = τij(a)da

j (3.21)
we find that the αi and βi periods of dλ from the equations

dai =

∫
αi

dλ, dbi =

∫
βi

dλ (3.22)

should be related by the period matrix τij of the abelian variety A at a given base point
in U .

Therefore, the 2-form
Ω = dλ (3.23)

is a closed holomorphic non-degenerate (2, 0) form on the total space P that turns P into
a holomorphic symplectic manifold. Moreover, the fibration P → U is Lagrangian, which
means that Ω evaluates to zero when restricted to the fiber directions.

We see that the defining data of N = 2 abelian U(1)r sigma-model with target U are
exactly equivalent to the structure of algebraic completely integrable system

P → U (3.24)
The ring of Poisson commuting functions on P is the ring O(U) of holomorphic functions

on the base U : these functions are holomorphic Hamiltonians of completely integrable
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system. In the N = 2 gauge theory language the ring O(U) is the chiral ring of 1/2-BPS
operators of the vectormultiplet type.4

For example, for SU(2) theory the base U ≃ C is one-dimensional complex space, and
the only independe hamiltonian function on the complex phase space P → U is u. Without
proof, let us quote the result for algebraic integrable system associated to G = SU(2), F =
1, R = 0 theory, that is the minimal SU(2) 4d N = 2 theory with no hypers. Let q =
exp(2πıτYM) be the exponentiated coupling constant.5

The base U ≃ C with complex coordinate u. The fibers are rank 1-abelian varieties,
that is simply elliptic curves. At a point u ∈ U the elliptic curve Σu is defined by algebraic
equation in C× C× complex surface with coordinates (x, y) by the equation

Σu : y +
q

y
= T (x;u) (3.25) {eq:Sigma_u}

where
T (x;u) = x2 − u (3.26)

The symplectic structure on C×C× surface is dx∧dy/y and the meromorphic Liouville-
Seiberg-Witten form λ on a curve Σu is

λ = x
dy

y
(3.27)

In this example the total space P can be identified with C×C× space which we used to
describe the spectral curve Σu by algebraic equation (3.25). Denote y = −eϕ and x = p.
Then the symplectic form on P is Ω = dp ∧ dϕ, while the equation of the spectral curve
Σu gives Hamiltonian function u

u = p2 + eϕ + qe−ϕ (3.28)
This is an example of famous Toda integrable system, here is the simplest non-relativistic

closed 2-particle Toda Hamiltonian reduced by the center of mass motion.
Remark 10. In domain of real Hamiltonian mechanics, in dimension 1 any real Hamiltonian
function is trivially integrable, because there is no integrable conditions to check. However,
in complex dimension 1 on the phase space dp ∧ dϕ not every holomorphic Hamiltonian
function u produces an algebraic integrable system. It is a non-empty condition that the
complex curve for a fixed value of Hamiltonian function is an abelian variety, i.e. an elliptic
curve.
3.2. N = 2 gauge theory on R3 × R. The special coordinates ai on the base U of the
fibration A → P → U are holomorphic action variables. Is there gauge theory interpre-
tation of the angle variables parametrizing the holomorphic Arnold-Liouville toric fibers
A? The answer is yes, and to see the angle variables in gauge theory we need to put the
N = 2 theory on R3 × S1 periodic space-time. Each U(1)-abelian vector multiplet after
compactification on S1 produces two additional periodic scalars: one scalar comes from
the holonomy of the gauge field around the compactification circle S1, the other periodic
sclar is the 3d dual photon.

4The 1/2-BPS operators of hypermultiplet type parametrize Higg branch of the moduil space of vacua
that we do not consider in these notes.

5Of course the theory is asymptotically free, therefore the coupling constant q is dimension-full parameter
defined at a certain scale.
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Therefore, the holomorphic symplectic phase space P is the moduli space of vacua of the
N = 2 QFT on R3×S1 background. In fact, after KK reduction such theory can be viewed
as 3d theory (with infinite tower of particles coming from KK modes), and such 3d theory
has 8 supercharges. The relevant massless multiplet of 3d theory with 8 supercharges is
a hypermultiplet. The original complex scalar of the 4d N = 2 vector multiplet combines
with two other real periodic scalars that came from the reduction on S1 into quaternionic
scalar parametrizing the hyperKahler moduli space of vacua. Hence, the symplectic space
P carries not only holomorphic symplectic structure, but full hyperKahler metric. For
a finite radius of the compactification circle S1 the metric is highly non-trivial receiving
non-perturbative contributions from the massive states wrapping S1. Only in the limit of
S1 of infinite radius we can neglect the non-perturbative contributions and approximate
the metric on P by the naive metric, flat in the fiber directions, defined by the canonical
flat along fibers metric on the total space T ∗U/Λ. The space P = T ∗U/Λ defined on a
special Kahler manifold carries a canonical hyperKahler metric, but this metric is not the
exact metric of the moduli space of vacua PR of the N = 2 theory reduced on S1 of finite
radius R.

Even the exact metric depends non-trivially on the radius R of the S1 compactification,
one of the hyperKahler complex structures, customarily denoted by I, is independed of
the radius R. As an I-complex holomorphic symplectic manifold the space PR does not
depend on R. This can be shown by the analysis of the supersymmetry: I-holomorphic
quantities are protected from R-corrections.

3.3. Spectral curves. In practice, often Seiberg-Witten integrable system is described
not by a family of abelian varieties fibered over the base U , but by a familty of curves
Σ fibered over the same base U with the idea that the abelian variety is the Jacobian
of spectral curve (or more generally Prym subspace of Jacobian for some correspondence
symmetry on the curve)

Au = Jac(Σu) (3.29)
Let S be a holomorphic symplectic surface and (Σ, L) be a pair: a holomorphic curve

Σu ⊂ S of a fixed homology class and a line bundle on L. The moduli space of such pairs
(Σ, L) is equivalent to the moduli space of rank 1 sheaves on S of a fixed cohomology
class determined by the homology class of Σ. It is clear that the holomorhic symplectic
structure on S induces the holomorphic symplectic structure on the moduli space of sheaves
on S. Thus the moduli space P = {(Σ, L)} for Σ ⊂ S for a holomorphic surface S carries
holomorphic symplectic structure as well as the projection P → U to the moduli space U
of holomorphic curves Σ ⊂ S of a fixed homology class. The fiber of the projection map
P → U is the moduli space of line bundles on Σ, that is Au = Jac(Σu).

3.4. Some classes of algebraic integrable systems.

3.4.1. Hitchin system. One well-known class of algebraic integrable system is associated
to the symplectic surface S = KC which is the total space of the canonical bundle K
(holomorphic cotangent bundle) to a holomorphic curve C, possibly with marked points.
On C we consider a moduli space of Higgs bundles. Let GC be a complex (algebraic)
reductive group. A Higgs bundle is a pair
Higgs bundle = (stable principal GC-bundle on C, holomorphic section ϕ ∈ Γ(K ⊗ adGC))

(3.30)
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The moduli space
MHit

GC (C) = {GC-Higgs bundles on C} (3.31)
is called Hitchin moduli space. Let BunGC(C) denote the moduli space of principal GC-
holomorphic bundles on C. It is clear that in a generic point

MHit
GC (C) ≃ T ∗BunGC(C) (3.32)

and hence P = MHit
GC (C) is a holomorphic symplectic variety. Let the collection of {Pdk}

be the polynomial generators (of degree dk) of the ring of adjoint invariant polynomials
on gC. Then the Higgs field ϕ induces a holomorphic section Pdk(ϕ) ∈ Γ(C,K⊗dk). This
defines projection P → U :

MHit
GC (C) → ⊕kH

0(C,K⊗dk) (3.33) {eq:Hint}
for U = ⊕kH

0(C,K⊗dk). Hitchin has shown that dimC U = 1
2
dimC P and that the fibers

of the projection are holomorphic symplectic Lagrangian varieties. Hence (3.33) is an
algebraic integrable system. Let R be representation of GC. The curve Σ ⊂ T ∗C defined
by the spectral equation

Σ : det R(ϕ− t) = 0 (3.34)
where t is a coordinate in the cotangent fiber of T ∗C is called spectral curve for a Hitchin
system. For GC = GL(n) and fundamental representation R the fibration P → U is
precisely of the type reviewed in section 3.3. The base U is the family of n-fold spectral
covers Σ → C in the total space S = T ∗C, and the fiber Au at a given point u ∈ U is the
moduli space of line bundles on Σu, that is Jac(Σu). For a general G and R one needs
to deal with correspondence on Σ and define Prym subvariety of Jac(Σu), see [Donagi,
Spectral Covers].
3.4.2. Group like version of Hitchin system. [Hurtubise, Markman 2002]

What happens if we try to compactify C-fibers of T ∗C to cylinders C×? Namely, let
C be a genus 0 or genus 1 curve with flat structure dz, which means that C is either of
C,C×, E (where E is elliptic curve) with a fixed holomorphic differential dx.

We consider the surface S = C×C×. The vertical curve C× is equipped with C× invariant
holomorphic differential dy

y
. The surface S is holomorphic symplectic with symplectic

structure
Ω = dx ∧ dy

y
(3.35)

The compactification of S in the limiting points 0 and ∞ of C× has singularities for Ω
along the curves C0 and C∞ covering C. Define the holomorphic symplectic phase space
P

P = {GC − principal bundles on S with fixed trivialization at C0 and C1} (3.36)
and define the base

U = Maps(C0,BunGC(C
×)) (3.37)

It is clear we have projection
P → U (3.38)

Moreover, it turns out that the fibers of this projection are holomorphic Lagrangian
varieties. The space P can be described as a group-valued Higgs bundle

P = {GC − holomorphic bundle on C, holomorphic section ϕ ∈ Γ(C,AdGC)} (3.39)
with certain asymptotic conditions at the infinite points of the base curve C.
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The base U can characterized similar to Hitchin system. Let χi be the generators of the
ring of adjoint invariant functions on the group GC. For example, for a simple GC we take
χi to be the characters of the highest weight fundamental GC modules with fundamental
highest weight ωi. Then χi(ϕ) is a holomorphic function on C with a certain asymptotic
growth conditions at infinity points of C, let the space of such holomorphic functions be
denotes by Odi(C). Later we will characterize the degrees di

U = ⊕iOdi(C) (3.40)

The vertical curve C× can be contrated to S1. Therefore, the group Hitchin system is
equivalent to the integrable system on the moduli space of monopoles on C × S1.

The group valued Higgs field ϕ is the monodromy of the complexified connection A+ iΦ
where (A,Φ) are solving the BPS monopole equations FA = ⋆dAΦ on C × S1.

The definition of group Hitchin system can be extended for the ramified case when group
valued Higgs field ϕ develops poles. In the language of monopoles one chooses a point in
C×S1 and a coweight λ∨ : U(1) → G and request that the monopole configuration develops
the standard Dirac type U(1) monopole singularity with 1

2π

∫
S2 F = 1 (where S2 surronds

the point supporting singular monopole) that embedds into G-monopole configuration by
the coweight λ∨.

For such monopole system with singularities the group Higgs field ϕ(x) has poles at the
points on C obtained by the projection of the points of monopole singularities on C × S1,
and for a given λ∨-Dirac type singularity the pole of ϕ(x) is characterized by λ∨.

A local characterization of λ∨ singularity contribution to P is λ∨ orbit in affine GC
Grassmanian which has complex dimension 2(ρ, λ∨) where ρ is the Weyl vector in the
weight space of gC.

For rigid boundary conditions at infinity of C we find

dimP =
∑
i

2(ρ, λ∨i ) (3.41)

where the sum is over singular points i and λ∨i denotes the type of U(1) Dirac singularity
at given point. The above formula is a well-known dimension [Pauly] of the moduli space
of monopoles with singularities.

3.4.3. ADE quivers and monopoles. The integrable system of GΓ = ADE quiver gauge
theories in 4d, 5d on S1 or 6d on E∨ is the GC

Γ-group Hitchin system on C = C,C×, E
respectively. Each fundamental multiplet attached to i-th node of the quiver Γ with mass
m inserts Dirac singularity at point m ∈ C and of type λ∨i .

3.4.4. The elliptic group Hitchin system. The elliptic group Hitchin system is defined in
a similar way, but now the vertical curve C× is replace by a non-degenerate elliptic curve
Ev. The phase space P is the moduli space of GC-bundles on C ×Ev, and the base U is the
space of holomorphic maps from C to BunGC(C). For elliptic group Hitchin system we do
not allow singularities.

The N = 2 gauge theory is affine ADE quiver theory which also does not have room for
fundamental matter that has been associated with Dirac monopoles in the case of finite
ADE quivers.
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3.4.5. Affine ADE quivers and instantons on elliptic fibration. The integrable system of
GΓ = ÂD̂Ê quiver gauge theories in 4d, 5d on S1 or 6d on E∨ is the GC

Γ elliptic group
Hitchin system on C = C,C×, E respectively. The vertical elliptic curve E has elliptic
modulus defined by ×i∈IΓq

a∨i
i where qi is exponentiated coupling constant for SU(Ni) gauge

group of N = 2 QFT.
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