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Rigorous derivation

• Average model from a microscopic description

• Full model: PDE’s and source terms

• Mathematical theory (Navier–Stokes type equations, homogeneisation)

Physical setting

• Compressible bubbles in a surrounding compressible liquid

• Viscous flows (smooth enough solutions)

• Surface tension

To be compared with

• [Stewart, Wendroff, 84], [Zhang, Prosperetti, 94]. . .

• [Drew, Passman, 98], [Ishii, Hibiki, 06]. . .

• [Gavrilyuk, Saurel, 02], [Drui, 17], [Cordesse, 20]. . .

• [Serre, 91 & 01], [E, 92], [Hillairet, 07], [Bresch, Huang, 11], [Bresch,
Hillairet, 15 & 19], [Hillairet, 18], [Bresch, Burtea, Lagoutière, 20]. . .
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Averaging process for two-phase flows

Goal. Construction of an average model from a microscopic description

Liquid

Gas

Microscopic description [Drew, Passman, 98]. . .

• Instantaneous local conservation laws for each separated phase

• Jump conditions through the interfaces

Averaging process [Drew, Passman, 98]. . .

• Introduce small (time and/or volume) scales, or random disturbances

• Average the microscopic model wrt the small scales

Nicolas Seguin (Irmar, Rennes) Two-phase bubbly flows with surface tension June 2021, Strasbourg 3 / 11



Averaging process for two-phase flows

Goal. Construction of an average model from a microscopic description

Liquid

Gas

Homogenized Cauchy problem [Hillairet, Mathis, S., 21]. . .

• Start with some macroscopic initial data

• Deduce a family of microscopic initial data, indexed by N ∈ N
• Solve the microscopic model

• Pass to the limit N →∞ to deduce macroscopic variables

• Find the macroscopic model associated with these variables
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The microscopic model

Compressible Navier–Stokes equations
∂tρi + divx(ρiui) = 0

∂t(ρiui) + divx(ρiui ⊗ ui) = divxΣi

with Σi = 2µi
(
D(ui)− 1

3divxuiI3
)

+ λidivxui − pi(ρi)I3

where i = f (the fluid) or i = k (the k-th inclusion Bk), with k = 1, . . . , N
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Jump conditions
On each bubble boundary ∂Bk:

• Continuity of the velocity field uf = uk
• Surface tension (Σf − Σk)n = κkn
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where i = f (the fluid) or i = k (the k-th inclusion Bk), with k = 1, . . . , N

Jump conditions
On each bubble boundary ∂Bk:

• Continuity of the velocity field uf = uk
• Surface tension (Σf − Σk)n = κkn

Geometrical constraint
For all k = 1, . . . , N , D(uk)− 1

3divxukI3 = 0 (ie µk → +∞)

=⇒ the bubbles Bk remain spherical (translation, rotation, dilatation)
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The one-dimensional microscopic model

−1 1

Bk
Rk

ckx−k x+
k x−k+1

F0 Fk FN

On the fluid domain F(t):
∂tρf + ∂x(ρfuf ) = 0

∂t(ρfuf ) + ∂x(ρi(uf )2) = ∂xΣi

with Σi = µf∂xuf − pf (ρf )

In each bubble Bk(t) = B(ck(t), Rk(t)) = (x−k , x
+
k ) of (constant) mass mk:


ρk(t) =

mk

2Rk(t)

uk(t, x) = ċk +
Ṙk
Rk

(x− ck)


mk c̈k = Σf (t, x+

k )− Σf (t, x−k )
mk

3
R̈k = Σf (t, x−k ) + Σf (t, x+

k )− 2Σk +
γs
Rk

with Σk = µg∂xuk − pg

(
mk

2Rk

)
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Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Ω

Macroscopic initial data
• Density of the fluid ρ̄0

f ∈ H1(Ω)

• Density of the gas ρ̄0
g ∈ H1(Ω)

• Mean velocity ū0 ∈ H1(Ω)
• Probability distribution of the bubbles, in position x and radius r,
S̄0
g = S̄0

g(x, r) ∈ L1(Ω× R+)

Moments of the probability distribution S̄0
g :

• Volume?

f̄0
g (x) =

∫
R+

S̄0
g(x, r)dr

• Void fraction

ᾱ0
g(x) =

∫
R+

(2r)S̄0
g(x, r)dr
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Macroscopic to microscopic initial data

Family of microscopic initial data to be constructed from S̄0
g , ρ̄0

f,g and ū0

For any bubble number N > 1:

1. Define a bubble distribution from S̄0
g : (c

(N)
k , R

(N)
k )k=1,...,N

2. Define the densities
ρ

(N)
f (0, x) = ρ̄0

f (x) on F (N)(0)

ρ
(N)
k (0, x) = m

(N)
k /(2R

(N)
k (0)) on B

(N)
k (0)

with m
(N)
k =

∫
B

(N)
k (0)

ρ̄0
g(x) dx

3. Define the velocities (recall x±k = c
(N)
k ±R(N)

k )
u

(N)
f (0, x) = ū0(x) on F (N)(0)

u
(N)
k (0, x) =

ū0(x+
k )− ū0(x−k )

x+
k − x

−
k

(x− x−k ) + ū0(x−k ) on B
(N)
k (0)
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The macroscopic model

Well-posedness of the Cauchy problem for the microscopic initial data

Microscopic Cauchy problem [Hillairet, Mathis, S., 21]

There exists a time T > 0, only depending on the macroscopic initial data, such
that (

(c
(N)
k , R

(N)
k )k=1,...,N , ρ

(N)
f , u

(N)
f , (ρ

(N)
k , u

(N)
k )k=1,...,N

)
exists and is unique. . .

• Scaling (mk)k∈{1,...,N} ∼ N−1, (Rk)k∈{1,...,N} ∼ N−1, γs ∼ N−1

• Additional restrictions on the macroscopic initial data
−→ (small) time of existence independent of N

• Extension of microscopic phase variables to Ω

• Convergence of these extended variables when N → +∞
−→ macroscopic variables ρ̄f,g, ū and S̄g

• Convergence inside the microscopic system of PDE’s
−→ macroscopic model
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The macroscopic model

The macroscopic closed system:

ᾱf + ᾱg = 1, ρ̄ = ᾱf ρ̄f + ᾱgρ̄g

∂tᾱf + ū∂xᾱf =
ᾱgᾱf

ᾱfµg + ᾱgµf

[
(µg − µf )∂xū+ (pf (ρ̄f )− pg(ρ̄g))− γ̄s

f̄g
ᾱg

]
∂tf̄g + ∂x(f̄gū) = 0

∂t(ᾱf ρ̄f ) + ∂x(ᾱf ρ̄f ū) = 0

∂t(ᾱgρ̄g) + ∂x(ᾱgρ̄gū) = 0

∂t(ρ̄ū) + ∂t(ρ̄
2ū) = ∂xΣ̄

with Σ̄ =
µgµf

ᾱfµg+ᾱgµf

[
∂xū−

(
ᾱf

µf
pf (ρ̄f ) +

ᾱg

µg
pg(ρ̄g)

)
− γ̄s

µg
f̄g

]
Additional equation for the probability distribution

∂tS̄g + ∂x(S̄gū) +
1

µg
∂r((r(Σ̄g + pg(ρ̄g)) + γ̄s/2)S̄g) = 0
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To be continued. . .

• Two-pressure one-velocity two-phase flow model
• Both phases are compressible and viscous
• “Extension” of the Bresch–Hillairet models

• Bubbly flows
• Additional description via

the new variable f̄g (∼ interfacial area? 3D?)
the probability distribution S̄g wrt (x, r)

• New “pressure” term due to the surface tension
• Constant “number” of bubbles

• Comparison with other models of bubbly flows
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