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CONTEXT

Some nuclear accidental scenarii assume that very hot liquid metal might
interact with quiet liquid water. Steam explosion might then occur : liquid
water heated by metal suddendly changes into steam and a steam layer ap-
pears around metal particles; heat transfer is thus inhibited until this layer
becomes unstable, which may lead to steam explosion.

We propose here a dedicated
model composed of four fields
to describe this multiphase sys-
tem, with a similar approach to
3, 4, 5, 6]. Three phases are in-
teracting : a solid phase (s), a lig-
uid water phase (1) and a gaseous
phase as a miscible mixture of
steam water (v) and ambient air
or fission gases (g).

Steam explosion occuring when hot lava
enters In seawater.

THE FOUR-FIELD MODEL

We define : K := {s,[,v, g}. Steam (v) and air (g) are
miscible whereas liquid (1), solid (s) and the gases (v+g)
are immiscible :

oy =0 ; o+ o+ o, =1

The state variable is :
Y = (Ozs, ay, M, MU, OzkEk)t c R™ with k£ € K.

3-phase system.

System of Partial Differential Equations :

Oy +v1(Y) 0,01 = Op(Y), ke K,
Omy, + O (myuy) = (YY), k ek,
Or(mysug) + Op(mypuy + aupy) + Y ma(Y)0sn = S (Y), k€K,
Ik
8t(mkEk) -+ 8x(uk(mkEk -+ Ozkka — Z Wkl(Y)atOzg — SEk(Y), k e K.
I

where £} = ui/Z + e1(pr, pr) so that :

il = <@) . (@ - pk%> and L _ 95 (85k> o0
' Opr. Pk Opr Ty Opr \Ops |

Constraints :
b, = q)g, O, + O+ D, =0, S: S: Wkg(Y>awa = 0,
kK £k
Z F/‘J(Y) =0, ZSQk(Y> =0, ZSEk(Y) = 0.
kel kelK kel

Admissible source terms The case v;(Y) = u; is now considered.
V(k,l) € K% 1 # k,my(Y) fulfilling the minimal dissipation entropy con-
straint are uniquely defined. Moreover, for the following closures :

Cr=Y Tu(Y), So.=Y Du(Y)+> uulu(Y),

Ik Ik Ik
Sp. =Y V(YY) + Y vuDu(Y)+ > Hylu(Y),
Ik Ik Ik

with the following requirements :
v = (up +w)/2, Hy = w2,
Cwa(Tipere — Thpu) > 0,
q)s S v
Dkl(ul — uk) Z O, and =3 (p _I_p‘(J) ;
0 pr— (pu+ py)
YTy —Ty) > 0, D symmetric positive definite.

any regular solution of the system complies with the entropy inequality

om(Y)+ 0. f,(Y) >0, with n= Z mESk ;[ = Z M SEUL-

keK keK
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Properties of the model :

The system is hyperbolic with real eigenvalues ug, uir = ¢, £k € K.
Resonance occurs if :

2 2

(uj —us)” — ¢ =0, or (u,—us)* —c. =0, or (u, —us)* — ¢, = 0.

g

The coupling wave associated with v; = uy is linearly degenerated and
admits the following Riemann invariants :

Usg, Sk m/{(uk T uS))

€r + P/ Pk + (U — u5)2/2, where k € K\ {s};
Z LPE + Z mk(uk — u3>2.
kek kR \{s)

Unique jump conditions hold field by field.

CONCLUSIONS AND PERSPECTIVES

Symmetrization : The proof can be directly adapted to the four-field
case from [4].

Relaxation effects : Inner pressure-velocity relaxation effects of the
model have to be studied i.e. the time evolution of the relative velocities
Augs = up — ug and pressures Aprs = pr — ps, With & € K\ {s} without
convection. Complex behavior can already occur in simpler models :

when focusing on Baer-Nunziato type system, a threshold effect is ob-
served in the non-barotropic case; a few initial conditions do not enable
the pressure relaxation towards equilibrium.

with a three-field model with three immiscible phases, the two relative
pressures decrease but not uniformly, which leads in practice to pressure
oscillations [1].

Numerical simulation : Some difficulties are encountered for the numer-
ical simulation of the model :

Relaxation effects : pressure relaxation terms not only require physically
relevant time scales [2], but also suitable algorithms in order to obtain
numerical approximation in the physical domain .

Convection effects : this kind of system requires accurate numerical
schemes such as the one introduced in [7].
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