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What does ‘inertia-type dispersive terms’ mean?
Think champagne or any ‘bubbly fluids’ !

ATTENTION : this is not advertising for soda companies!

∂ρ

∂t
+ div (ρv) = 0,

∂

∂t
(ρv) + div (ρv ⊗ v + pI) = 0,

p = ρ
δW (ρ, ρ̇)

δρ
−W (ρ, ρ̇) = f (ρ, ρ̇, ρ̈),

ρ̇ =

(
∂

∂t
+ v · ∇

)
ρ, ρ̈ =

(
∂

∂t
+ v · ∇

)2

ρ.
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Better to think surface gravity waves ... because mathematically it
is the same!
And it will save me from being accused of favouritism towards
soda companies.

ε =
H

L
� 1.
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BBM equation

Hopf equation + ‘inertia’ term

ut +

(
u2

2

)
x

−ε2utxx = 0.
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Serre-Green-Naghdi equations

∂h

∂t
+

∂

∂x
(hU) = 0,

∂

∂t
(hU) +

∂

∂x

(
hU2 +

gh2

2
+
ε2

3
h2ḧ

)
= 0,

ḣ =
∂h

∂t
+ U

∂h

∂x
, ḧ =

(
∂

∂t
+ U

∂

∂x

)
ḣ.

Sergey GAVRILYUK Hyperbolic approximation 5 / 30



Introduction
Augmented Lagrangian

BBMH
SGN equations

Topography effects
Conclusion

Both models share common features

1. The phase and group velocity of linear waves are bounded for all
wave numbers.

k

cp

2. They admit a variational formulation.
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Lagrangian (ε = 1)

BBM (P. Olver)

L = −ϕtϕx

2
+
ϕtϕxxx

2
− ϕ3

x

6
, u = ϕx .

SGN (Salmon 1988, SG & Teshukov 2001)

L =

∫ ∞
−∞

∫ ∞
−∞

(
h|U|2

2
+

hḣ2

6
− g(h − h∞)2

2

)
dx dy .

Constraint :
ht + div(hU) = 0.
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Dam-break problem, Saint-Venant equations

∂h

∂t
+

∂

∂x
(hU) = 0,

∂

∂t
(hU) +

∂

∂x

(
hU2 +

gh2

2

)
= 0.

Sergey GAVRILYUK Hyperbolic approximation 8 / 30



Introduction
Augmented Lagrangian

BBMH
SGN equations

Topography effects
Conclusion

Serre-Green-Naghdi equations

∂h

∂t
+

∂

∂x
(hU) = 0,

∂

∂t
(hU) +

∂

∂x

(
hU2 +

gh2

2
+

1

3
h2ḧ

)
= 0.
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What are the difficulties in solving these equations?

Serre-Green-Naghdi equations in mass Lagrangian coordinates :

q =

∫ X

0
h0(s)ds,

L =

∫ ∞
−∞

(
u2

2
− ẽ(τ, τt)

)
dq,

u = xt ,
1

h
= τ = xq, ẽ(τ, τt) =

g

2τ
− h2

t

6
.

SGN equations :

τt − uq = 0, ut + pq = 0,

with

p = −δẽ
δτ

= −
(
∂ẽ

∂τ
− ∂

∂t

(
∂ẽ

∂τt

))
.
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Inversion of an elliptic operator (O. Le Metayer, SG & S. Hank (2010))

System to solve :

τt − uq = 0, ut −
(
∂ẽ

∂τ
− ∂

∂t

(
∂ẽ

∂τt

))
q

= 0.

Or

τt − uq = 0, Kt −
(
∂ẽ

∂τ

)
q

= 0,

K = u +

(
∂ẽ

∂τt

)
q

= u − 1

3

(uq
τ4

)
q

= Au.

To find u we need to invert A.
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Shortcomings of the method

Prohibitively expensive computations

Difficulties in formulating “transparent” boundary conditions
(C. Besse, M. Ehrhardt, P. Noble, M. Kazakova, ... )
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Idea

Smooth initial data are needed for dispersive systems.
But, sometimes, one needs to solve the equations with
discontinuous data : dam break problems or water hammer
problem.

Hyperbolic equations are better then! Godunov type methods
could be used!
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Hyperbolic regularization, classical relaxation methods

The idea is not new : Cattaneo approach to solve the heat
equation (relaxation method)

Tt = Qx , Qt =
Tx − Q

τr
, 0 < τr << 1

Further development of relaxation methods : V. Yu. Liapidevskii
(1998), M. Antuono, V. Yu. Liapidevskii and M. Broccini (2008),
A. A. Chesnokov and V. Yu. Liapidevskii (2020) for dispersive
shallow water equations; I. Peshkov, E. Romenskii and M.
Dumbser for Navier-Stokes equations, ...

New idea for dispersive Euler-Lagrange equations : to modify the
‘master’ Lagrangian.
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Penalty method (trivial example)

‘Master’ Lagrangian and E-L equations :

L =

(
dx

dt

)2

− x2

2
,

d2x

dt2
+ x = 0.

Augmented Lagrangian :

L̂ =

(
dy

dt

)2

− x2

2
− λ(y − x)2

2
.

Euler-Lagrange equations :

d2y

dt2
+ λ(y − x) = 0, −x + λ(y − x) = 0.
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One has :

d2y

dt2
+ ω2y = 0, x(t, λ) = ω2y(t, λ), ω2 =

λ

1 + λ
.

Solution of the Cauchy problem : y(0) = A, ẏ(0) = B :

y(t, λ) = Acos (ωt) +
B

ω
sin (ωt) .
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Augmented Lagrangian

At least a one-parameter family of ‘augmented’ Lagrangians
should be choosen. When the parameter goes to infnity, we
find out our ‘master’ lagrangian.

The Euler-Lagrange equations for the ‘augmented’ Lagrangian
should be unconditionally hyperbolic.

In the linear approximation, the Whitham type condition
should be satisfed : the phase velocities of waves
corresponding to the ‘master’ lagrangian should be interplaced
between the phase velocities corresponding to the
‘augmented’ Lagrangian for any wave numbers.
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Augmented Lagrangian for the BBM equation :
SG and K. M. Shyue, 2021

L̂ = −ϕtϕx

2
− ϕ3

x

6
− ψtψx

2c
− ϕxψx + ψxχ−

χtχx

2
− χ2

x

2c
.

Here c > 0 is a large positive constant.
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Hyperbolic BBM (BBMH) system

The Euler-Lagrange equations for u = ϕx , v = ψx and w = χx :

ut + uux + vx = 0,
vt
c

+ ux = w , wt +
wx

c
= −v .

1. Can be written in terms of Riemann invariants.
2. Two eigenfields are genuinely non-linear and the third one is
linearly degenerate.
3. Admits 3 conservation laws ( exactly as in the case of the BBM
equations (P. Olver, 1979)).
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BBMH : Interaction of a solitary wave with a step

One compares a numerical solution of the BBMH system with an
asymptotic solution of the BBM equation (the solitary limit of the
Whitham modulation equations for the exact BBM equation (SG
and K. M. Shyue, 2021)).
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Application to the SGN equations : ‘master’ lagrangian

L =

∫ ∞
−∞

(
u2

2
+

h2
t

6
− g

2τ

)
dq,

u = xt ,
1

h
= τ = xq.
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Augmented Lagrangian (N. Favrie, SG, Nonlinearity, 2017)

L̂ =

∫ ∞
−∞

(
u2

2
+
η2
t

6
− g

2τ
− λ(ητ − 1)2

6

)
dq

Governing equations (two types of virtual displacements) :
τt − uq = 0,

ut −
(

g

τ3
+
λ

3
η2

)
τq −

λ

3
(2τη − 1)ηq = 0,

ηtt = −λ (ητ − 1) τ.

Characteristics :

ξ1,2 = 0 (lin. degenerate), ξ3,4 = ±
√

g

τ3
+
λ

3
η2 (gen. nonlinear)
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Dispersive properties

Whitham condition :

c−p (k) < cp(k) < c+
p (k), cp(k) =

√
g

τ3
0 + k2

3τ0

.

(c−p )2 (c+
p )2

τ0 = 1 m−1, λ = 1 m2 s−2, λ = 160 m2 s−2
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Rigourous justification of the method of augmented
Lagrangian for the SGN equations

V. Duchene, Nonlinearity 32 (10), 2019.
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Numerical results 2D (Tkachenko S. )
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Figure 1: Numerical solution to 2D Riemann problem for the extended
SGN model, t = 20s.
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S. Busto, C. Escalante, M. Dumbser, N. Favrie and SG (JSC 2021)

L =

∫ +∞

−∞

∫ +∞

−∞
L dx1dx2,

L(v, h, ḣ, b, ḃ) = h

(
|v|2

2
+

1

6

(
ḣ +

3

2
ḃ

)2

+
1

8
ḃ2

)
−gh

2
(h+2b)−Ch.

The Euler-Lagrange equations are obtained under the
incompressibility (mass conservation) constraint.
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The ‘augmented’ Lagrangian is :

L̂ =

∫ +∞

−∞

∫ +∞

−∞
L̂dx1dx2,

with
L̂(v, h, η, η̇, b, ḃ)

= h

(
|v|2

2
+

1

6

(
η̇ +

3

2
ḃ

)2

+
1

8
ḃ2

)
−gh

2
(h+2b)−λh

6

(η
h
− 1
)2
−Ch.
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Mild bottom approximation

L̂(v, h, η, η̇, b, ḃ)

≈ h

(
|v|2

2
+

1

6

(
η̇ +

3

2
ḃ

)2

�
�
�@
@
@

+
1

8
ḃ2

)
−gh

2
(h+2b)−λh

6

(η
h
− 1
)2
−Ch.
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Solitary wave interaction with an island

Figure 2: Interaction of a solitary wave with an island (S. Busto, C.
Escalante, M. Dumbser, N. Favrie and SG (JSC 2021)).
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Conclusion :

An augmented Lagrangian method for dispersive shallow
water models is proposed.

The corresponding Euler-Lagrange equations are hyperbolic
and approximate with a good precision the ‘master’ system.

Allows to work with discontinuous initial data.
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