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@ Baer-and-Nunziato model

o Two-phase flows: phases k and k
o Mass conservation for each phase, out of equilibrium model

Orai + uy - Vyay Z/L(Pk — P,;)
O (akpk) + divy (akpkuk) =0
Ot (akpicur) + divy (o (prue @ ug + Pr) ) = PiVyoue + A(ug — uy)
O (akpkEk) + divy (Cl/,k (PkEk + Pk) Uk) = Pju; - Vo
— 1P (P — Pg)
+Auy - (u; — uk),

@ References

o M.R. Baer & J.W. Nunziato (1986).

o Richard Saurel & Rémi Abgrall (1999).
@ Interfacial terms, relaxation coefficients.
o Objectives

o How to compute u;, P, A\, u?
o Are some mathematical properties ensured?
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Drew & Passman (2006) method

@ Drew & Passman (2006), Theory of multicomponent fluids

o Derive an exact model for one known flow topology
o Average the variables with respect to the flow topology

@ Provide an explicit model for the flow topology

@ Use a stochastic model

@ Outline of the talk

@ Derivation of a two phase model when the topology is explicit
@ Stochastic modeling of two-phase flows

@ Baer-and-Nunziato models obtained and their properties

@ Possible extensions
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Derivation of two-phase model
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Derivation of a two-phase model (1/3)

Two phases: k and k.

Xk is the indicator function of the phase k.
e Xk = 1 in the phase k
o Xk + xz = 1 everywhere

o level set function f

Xk(x) = L{r(x)>0}-

@ Inside each of the fluid, the Euler system
holds

0:Uy + diVka(Uk) =0

@ The indicator function follows

Otxk +Vi-Vixk =0
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Derivation of a two-phase model (2/3)

o Advection on the interface
Oexk + Vi Vixk =0
@ The following equation holds everywhere
Xk (0:Uk + divgFx(Ug)) =0

@ and can be rephrased as

Or (Xkﬂk) + divy (XkIA:k(LAJk)) = (Iek(lAJk) - v;ﬂk) VX«

o with F = (0,F) and U = (1,U).
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Derivation of a two-phase model (3/3)

@ Suppose that f(x) =0 and V,f(x) #0

uz, (n)
 Vkf(x)
IVl
Xk(x) =0 Uz U x
@ Solve the Riemann problem [Ugz, U] in the direction n
PR - - V«f(x)
F.(U — ,'U x = Fl_ag - 7 Xf
< k( k) v k) \4 Xk kk <||fo(X)||> ||V (X)”
—u;, (n)
o with F%(n) = 0
kk P (n)n
Pz (n)uz, (n)
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o Final system

00 (0) + dive (i ul0) = £ (F ) 192700

o Take the average E []

B [0 (u0u)] + B [aive (ubi(00)] = B2 (550 ) 19

Conservative part

if Ux does not depend on the averaging operator

00 (ar04) + aivs (cni(0)) = & [#28 (200 oo

@ Much more difficult for the nonconservative part
o Define an explicit model for two-phase flows.
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Stochastic model of two-phase flows
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Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Averaging procedure

@ Sign of a 2-dimensional Gaussian process
@ Mean 0
@ Exponential-square autocorrelation function.

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021 10/39



Gaussian process

Pointwise Gaussian

At each point, gy follows a Gaussian law

1 _(u—m(2x>>2 q ( 1)
~ e 20 u g =
= oV 2T

| \

Two-points correlation

Any vector [gx, gy] is a Gaussian vector

Te—1 T
[gX7g] ~ e—% (v=—m)" T (v—m)" 4,
" 2n |det T2

R(x,y) is the covariance of the points x and y, and

m=( o)) == (rey 57)
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Derivability of the model

1 X
o System involves Vyxk, with xx(x) = + sgén(g)

o Derivability of gx?
o Derivability of Vix«(x)?

Derivability of g

We suppose that gy is Gaussian, and that its auto-correlation function R is
¢2(R9,RY). Then
o Vygx exists in the mean square sense, is Gaussian, and has Vym(x) as mean
and 03 R(x,x) as variance

@ The vector [gx, Vxgx] is Gaussian, and has

( o, R(x) aay;é?,x:)(; ) ’

as variance.
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Derivability of the model

Derivability of yx

Vxx is measurable if and only if dyR(x,x) = 0 and 92, R(x,x) is non-negative.

@ Sketch of the proof
e For a regular function f,

v <H+gn(f)) () = 8(rm=op Vi (x).

o If f is replaced by a Gaussian process, integrability of

1 X7 X q
X (@mydidetz)z TP\ 7T 2 Xd>

XTEX = —my(x)? + 20y R(x,X) - (x4 — Vmk(x))
+(xq — mek(x))T(’)fyR(x, x)(xa — Vem(x)).
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Consistency with the macro data

T(x) = 1+ sgén(gx)

o Parameters of g,: m(x), and R (more precisely, ¥ = Oy R(x, X))

Volume fraction

a(x) = E [xx(x)]
mi(x) = V2erf 7 (2a,(x) — 1).

v

Gradient of the volume fraction

Vixak(x) = ViE [xi(x)] = E [Vixx(x)]

@ Wrong for the Hessian!
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Consistency with the macro data

Interfacial area density

Ar=E[[[Vx(x)|]
exp(—mx(x)?/2)

g = Ym() TE Ly — Vi ()
2

= . dxg.
((2m)d+1 det 2)1/2 CRY l[xall e Xd
VxOék
Y =0, Vam#0 Y 40, Vem=0

@ Does not provide any global interpretation of Y, except when it is isotropic
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Consistency with the macro data

Efficient interfacial area density

@ ) is symmetric and determines d orthonormal eigendirections €&;.

o Eigenvalues can be recovered with the half efficient interfacial area density.

E [max(0, Vxk - )]
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Consistency with the macro data

@ We have been concerned only on interfacial area density
@ We want to investigate the inclusion size, with V,ay, = 0.

@ One dimensional simulations of a Gaussian process. Square exponential
autocorrelation. Numerical evaluation of the length of an inclusion

- x s y = mk(x)
A /! o :
I, | I, | \(_)\ \( )\
1 2 3 4
L L2 L L
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Consistency with the macro data
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o Looks like a y—law, but is not a y—law.
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Baer-and-Nunziato models obtained and their

properties
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Models obtained

Ot (akflk) + divy (akf:k(ok))

_ eXP(_mk(X)f/2) / o =TT E g~ T ﬁff( Xd ) xa]| dxg.
((2m)9+1 det ¥)1/2 Jy,cpe x4l

o Address particular cases
o Relative state of the two phases
— Simplify Flff
o Topology of the flow: relative value of Y and Vem.
—> Linearize the exponential.
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Local contact

— 2/2 (xg=Vm ()T £ Ly = Vmy (1)
exp( mk(X)v/ ) o g — vV my 3 g =V my F;;f( Xd ) ||Xd|| dXd.
((2r)d+1det 3)1/2 Jx,ere [[x4
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Local contact

Local contact

If for a given x

o uk(x) = ug(x) =ug

° Pi(x) = Pr(x) = Po
then P; = Py and u; = ug whatever the topology.
A and p are undetermined (as they are not active).
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One dimensional case

— 2/2 (xg=Vm ()T £ Ly = Vmy (1)
exp( mk(X)v/ ) o g — vV my 3 g =V my F;;f( Xd ) ||Xd|| dXd.
((2r)d+1det 3)1/2 Jx,ere [[x4
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One dimensional case

One dimensional case

In one dimension, setting

e (221)

the system is closed by the following interfacial quantities

= el [| S o ronp) e ugk<—axak<x)))

2 2
P =sen(Oran() (15 PO + “ 5 P (~0.0u(x)

)

(Pu)s = sgn(Bcece(x)) (5 P, (e ())u, (Brcus ()

+WT_1 P;k(—axak(x))u;k(—axak(x)))

and includes the following nonlinear relaxation term
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One dimensional case

One dimensional case

In one dimension, setting

e (2082).

the system is closed by the following interfacial quantities

and includes the following nonlinear relaxation term

_oumgR Ui ~0r0(20) = (010
2X
Me T Py, (0:a9) — P, (~0.a(0)

P (Oxa(x))ug, (0ca(x)) - Pz (= 0xa(x))uf, (= 9xe(x))
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Long memory case

— 2/2 (xg=Vm ()T £ Ly = Vmy (1)
exp( mk(X)v/ ) o g — vV my 3 g =V my F;;f( Xd ) ||Xd|| dXd.
((2r)d+1det 3)1/2 Jx,ere [[x4
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Long memory case

Long memory case

When nyR(x,x) — 0, the system obtained is the Baer-and-Nunziato model with

A = pu =0, and the following interfacial velocity and pressure

= ((Tae) Tt ™ = (et

@ First proposed in

o E. Franquet and V. Perrier , Runge-Kutta discontinuous Galerkin method for
the approximation of Baer and Nunziato type multiphase models, JCP, 2012.

@ Matches with interfacial flows
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Short memory case

— 2/2 (xg=Vm ()T £ Ly = Vmy (1)
exp( mk(X)v/ ) o g — vV my 3 g =V my F;;f( Xd ) ||Xd|| dXd.
((2r)d+1det 3)1/2 Jx,ere [[x4
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Short memory case

ry case
Y = QTA2Q

If we suppose that A=V my(x) < 1, the interfacial terms are

i—l
uy=———"-"-7—-— ul X_d HXdH dexd
v |1/2 ki \ |xq]]
[Vq] |detZ| xg€QTA(SI-1)

1 Xd “_
o ;|72 / Pi () medens | £
[Vq] ‘det)i’ xg€QTA(s4—1) @

painl X
(Pu);, (—d> [|xq ] Xadxq,

(Pu) = Tral

SN2
[V4| |det):| xg€QTA(59—1)

and the nonlinear relaxation terms are

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021



Short memory case

> =Q'A%Q
If we suppose that A=V my(x) < 1, the interfacial terms are

and the nonlinear relaxation terms are

2
(a) _ exp(—mx(x)°/2) ur
o (=45 (e ) el
27 |[Vy—1| |detZ| xg€QTAEI—1)
R _ exp(—my(x)?/2) p* (X_d) s
ko «|1/2 kk
2m [Vg—a] |detz| xg€QTAEI—1) Il
£ exp(—my(x)*/2)
R = — —— (Pu)i, ” || lIxall dxa-
27 |Vg_1q| |detZ| xg€QTA(SI—1)
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t memory case

Short memory case

Y = QTA2Q

If we suppose that A=V my(x) < 1, the interfacial terms are

and the nonlinear relaxation terms are

@ Matches with flows with very small inclusions

o Px and Py are supposed to be close
o uy and ug are supposed to be close

V.Perrier Homogenization of Euler system Strasbourg, Juin 2021



Short memory, linearized case

Acoustic approximation

Once the waves curves are linearized, the solution of the Riemann problem is

Ziuy + Z,-(u; P; — Py
uz, (ng) = T Zovz, Niy + A
px (n_ ): ZEPk + ZkPI( ZkZ;(U; = uk) N
e Zk + ZT( Zi + Z,-( bl

where Z, = picy is the acoustic impedance.
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Short memory, linearized case

Short memory, linearized case

uL _ Zkuk —+ ZEU,—( PL _ ZkPk 4 ZkPR
' Z+ g A
1 - 1 yay,
PN = —— IAxg| dxg A = QTA2 (— dys | Q
N = 15711 /oo ST st 1Ayl

Then the interfacial terms are

and the relaxation terms are
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Short memory, linearized case

Short memory, linearized case

UL o Zkuk+Z,;u,; L Z,‘(Pk'f‘ZkP;
! Zi + Z; ! Zi + Z; ’
1 ~ 1 YayJ
L) = g [Axg|l dxg A= QTA? <— dyd | Q
N = 1571] |, cgoms 5711y eson Iyal
Then the interfacial terms are
P/ = P,
u =uf
(Pu), = (Z&Pu & ZcPr) (Ziw + Zyug) + 2 Z(Pe = Pi)(ug — ui)

(Zk aF Z;)2

and the relaxation terms are
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Short memory, linearized case

Short memory, linearized case

uL: Zkuk+Z,;u,; L_ Z;}Pk‘f‘ZkP}
! Zi + Z; ! Zi + Z} ’
1 - 1 yayJ
PN = [Axg|| dxg A = QTA2 <— dyq | Q
N = 15711 /oo ST st 1Ayl

Then the interfacial terms are

and the relaxation terms are

R _ exp(—myi(x)2/2) S| L(N) P — P;
k 21 [Vg_1| Zi + Z;
_exp(—mi(x)2/2) S ZvZp

R(P“) — A(u- —
k 2r Va1 P AL
)
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Short memory, linearized, isotropic case

Short memory, linearized,isotropic case

Same interfacial terms as the non isotropic case;
i = l/Id
The initial model is exactly found with

B exp(—mg(x)?/2) |Sd_1| v 1

2w |Vd_1| Z + ZE
. exp(—mi(x)?/2) S v Z,Z;
2w |Vd_1| Zk + Z; ’
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Properties of the models

Hyperbolicity

Except when resonant, the system is hyperbolic.

Linear degeneracy of u,

@ In general, the filed is genuinely nonlinear

@ Maybe the relaxation (Pu); # Pju; can be exploited for ensuring linear
degeneracy of the field.
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Properties of the models

Entropy dissipation

@ Because of velocity and pressure disequilibrium, entropy conservation is not

expected.

o What is expected is phasic entropy dissipation.
o The initial averaged approximated model is globally entropy dissipative

@ Results

Models

Hyperbolic terms

Relaxation terms

Long memory model

One dimensional model

Short memory model

Short memory, linearized model

> | 3| 3| <

NN NS

o However

o One dimensional model is globally entropy dissipative
o For short memory models, relaxation terms are zeroth order, whereas
hyperbolic terms are first order.
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Possible extensions
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Two-phase flows with capillarity

@ For a known topology: the Riemann problem should be solved, but with a
tension at the interface depending on the curvature.

Pi — P =0k
@ The non averaged system is
¥ . & % clag
0c (0 ) + div (xkFi(0)) = FZE (n(F), 5(F)) IV ()

o Raises other derivatives of R (that should be physically interpreted).
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Multiphase flows

@ How to extend to more than two phases?
@ Three phase flow are intrisically more complicated
e Do all the phases have a similar role?

o Two-phase stochastic model relies on a process with value in S°
L 9 1

o Determines a stochastic process within S*?

o m fluids: determines a stochastic process within S™~!
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Two-phase diffusive flows

o Diffusive terms are physically strongly different
o Regularizing effect: continuity of temperature and velocity, and of diffusive
fluxes.
o Infinite velocity of propagation
@ Our aim is slightly different from classical homogenization of heat equation
o Classical (stochastic) homogenization of Laplace equation: find the equation
for an averaged temperature.
o Baer-and-Nunziato approach: find an equation for each of temperature of the
phases.
o Didier Bresch and Matthieu Hillairet, A compressible multifluid system with
new physical relaxation terms, Ann. Sci. ENS, 2019.
o Single velocity
o Pressure relaxation induced by viscosity change between the "phases".
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Numerical schemes

o Difficulties:
o Define jump relations for Riemann-solver based finite volume methods
o If the nonconservative terms match with genuinely nonlinear fields, this is not
enough for ensuring convergence.
o Positivity of the volume fraction [Relaxation terms].
o Positivity of the temperature [Harten phase-entropy inequalities].

@ Rémi Abgrall and Richard Saurel, Discrete equations for physical and
numerical compressible multiphase mixtures, JCP 2003.

@ Erwin Franquet, Vincent Perrier, Runge-Kutta discontinuous Galerkin method
for the approximation of Baer and Nunziato type multiphase models, JCP
2012.

o Clear stochastic modeling.
o Only interface flows (R = 0).
o If R # 0: not done yet; but not hard. The major problem is the evolution of
the second order derivatives of R.
o If OyyR — oo: consistency with Kapila's model?
@ High order schemes
o Avoid a splitting between hyperbolic and relaxation terms
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Conclusion

@ Systematic way of deriving compressible multiphase models
o "Exact" model derivation
o Repartition of the phases based on an explicit stochastic model
@ Models obtained
o Closures depend on the topology of the flow
o Closures are only asymptotic formulations of the exact model. Closures have a
range of validity.

o A lot of prospects: capillarity, diffusive flows, multiphase models.
o Mathematical parameters are not straightforward to interpret physically.

o Geometry of level sets of Gaussian process....
o Evolution of R (or OyyR) is still an open question.
@ Published in
o V. Perrier and E. Gutiérrez, Derivation and Closure of Baer and Nunziato Type
Multiphase Models by Averaging a Simple Stochastic Model, SIAM MMS,
2021.
@ Prospects for numerical approximation without asymptotic expansion

e Ensure positivity of volume fraction, temperature.
o "Avoid" the problem of nonconservative terms.
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