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Plasma model

Physical context:
e Plasma = gaz made of charged particles
(ions and electrons)
e Fusion by magnetic confinement in a
tokamak

Different description

e Kinetic description for collisionless plasma
distribution function f(z,v,t), withz € [0,L], vER, t >0

e Fluid description for collisional plasma
density p(z,t), velocity u(x,t), temperature T'(x, t)
— Knudsen number e: mean free path between two collisions / L
— fluid description are cheaper
— extend the range of validity of fluid models to weakly collisional plasma



Kinetic model
One-dimensionnal Vlasov-Poisson model on [0, L]:

Of+ v0uf — EOuf = Q(f)

L
E=-0:¢0, —0Owd=p-— % / p(t, z) dx
0

+ spatial periodic boundary conditions

— f(z,v,t): distribution function
— E(x,t): electric field
— ¢(x,t): electric potential

BGK collision operator: Q(f) = é(]\[(}‘) )

P 2
o) mul)

e relaxation toward a Maxwellian: M (f)(z,v,t) = 22— ¢ 2TG.D
/27T (x,t)

e p, u, T moments of the distribution function f

[density] [pressure]
p(at,t):/Rf(z,v,t)dv p(z,t):/Rf(z,v,t)(v—u(m,t)fdv
[momentum] [temperature]
p(z,t)u(x,t):/Rf(z,v,t)udv oz, )T (2, ) = p(z, )
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Kinetic model
One-dimensionnal Vlasov-Poisson model on [0, L]:

Ouf+ voaf — EOf = Q(f)
1 L
E=-0:¢0, —0Owd=p-— Z/O p(t, z) dx

+ spatial periodic boundary conditions

— f(z,v,t): distribution function
— E(x,t): electric field
— ¢(x,t): electric potential

BGK collision operator: Q(f) = é(]\[(}‘) )

P 2
o) mul)

e relaxation toward a Maxwellian: M (f)(z,v,t) = 22— ¢ 2TG.D
/27T (x,t)

e p, u, T moments of the distribution function f

e conservation of mass, momentum, energy: f]R Qfy|v|dv=0
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From kinetic to fluid

Three first moments

pz,t) 1
ou(z,t)| = | f(z,u,t) | v |dv
[w(m,t)] /]R [v2/2]
w: energy
w=pu®/2+p/2

Integrate the Vlasov equation against (1,v,v%/2)7

1
/(8tf+ VO, f — EOuf)| v |dv=0
R U2/2

Fluid equation:
Op + 0x(pu) =0
0:(pu) + 0z (pu’ + p) = —Ep
Orw + Oz (wu + pu+ q) = —Epu
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From kinetic to fluid

Fluid equation:
Op + Oz (pu) =0

0:(pu) + 0z (pu’ + p) = —Ep
Orw + Oz (wu + pu+q) = —Epu

— heat flux: = [z 2 f (2,0, 0) (v —u(z,t))dv
— system not closed

— Closure: expression of g as a function of the other moments

— first possibilities: from Chapman-Enskog expansion in O(¢)
[Euler closure] f=M(f)+0O(e) = ¢=0
[Navier-Stokes closure] f = M(f) +eg+O(e®) = G=—2cp0.T
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Validity model [Torrilhon, 2016]

Closure

Euler NSF Transition Kinetic Free
equations equations regime regime flight
A —_—
1073 1072 107 100 10 102
Kn

<«—EQUILIBRIUM—> | «—NONEQUILIBRIUM—>

Extend range of validity of fluid models

e higher order terms in Chapman-Enskog

— Burnett and Super-Burnett systems
— ill-posed systems
e higher order moments

— Grad 13 model
— reduced hyperbolicity region

e higher order moments based on entropic closure

— Levermore 14 moment

— entropic minimization not always well-posed
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Specific closure for plasmas

Add specific kinetic
e Landau damping effect

— phase mixing
— damping of spatial modes = damping of electrostatic energy
e Hammett-Perkins closure [Hammett, Perkins 90, 92]

— fitting dispersion relation of the linearized equation
— g as Hilbert transform of the temperature

4r, = —inoy/ §7, sign(k)T;C
T

e Many extensions in the case of magnetized plasmas

— non-local closure
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Neural Network closures

Neural network closures:
e turbulent flows [Zhou et al. 2020]
e higher moments for neutral fluid [Han et al, 2019]
e learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for ¢ € [0.01, 1]
— Off-line phase: supervised learning from kinetic simulations

— On-line phase: compute the closure at each time step of the fluid solver
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Closure
Non-local Neural Network closure

X =(e,pu,T)eRY) —  ¢=C4(e,puT)e RY)

6 € O©: set of parameters

Training: solve the optimization problem (gradient method)

6 = argmin Loss(6)
)

with loss function:

Loss(0 Z Z |Co(X)s — il

<X,q>ev N =

D data set
Co(X): prediction of the neural network
q: true heat flux

— Define the architecture of the network
— Generate data
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Neural Network
Neural Network
e Layer: linear combination followed by a non-linear activation function

YO —x, y®th_, (W(”>Y<P>)

W®): weights matrices
o activation function
e Example: fully connected neural network

Input Layer 1 Layer 2 Layer 3 Output
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Architecture
Convolutional neural network
— sparse neural networks
— very efficient for structured data (image, signals)
— each layer: several 1D convolutions with small kernels followed by
activation functions

input: X of shape (N,d)
output: Y of shape (N, d’)
kernel: K of shape (p,d,d’) size p

activation: o
d p
Yie=0 D> > XitaiiKaiik

j=1di=1

Input Kernel Output




Architecture

One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]
e multi-scale analysis (like in wavelet analysis)

e based on up-samplings and dow-samplings
— down-sampling: decrease the size of the signals / increase the number of

channels
— up-samping: increase the size of the signals / decrease the number of

channels
e shortcut: add the input to output for accelarating the training process

L3>

output ¥

€ Convolution Y Down-sampling oF  Summation o) > Small shortcut
A Up-sampling #®  Weighted mean — Big shortcut

> Softplus
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Architecture

Choice of the hyperparameters:

Hyper-parameter Value
size of the input window (V) 512
number of levels (£) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

softplus: o(z) = In(1 + exp(z))

— 15 layers

Neural network parameters to learn
e O(2°d*pN)
e Here: 161937 parameters
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Full closure

For learning and flexibility:

® Resampling to a given resolution N, and preprocessing (standardization of
the data)

@® Slicing into overlapping "windows” of size N = 512
©® Neural network
O Reconstructing

@ Post-processing, smoothing and resampling

P -
el NN

_®ae) ||| s, ﬂﬂ]—-—’ [ -5 / Sm>+<Re)H
= PN @

Co: x BT XEN L (x(7), R (97, &y ) CIEEI g
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Training

To train the neural network:
— do the same Resampling and preprocessing

— do the same Slicing

Training

PRI Ny
mSA Hﬂ]mﬂﬂﬂﬂ‘mﬂ
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Data generation

Data generation by kinetic solver: for each simulation

e initialization: fo(z) = M(p,u,T), with p, u and T as Fourier series :

20

a X <(120 +05 Z(an cos(nz) + by sin(nw))) , x€10,2n].
n=1

Gn,by: random in [—-1/n,1/n] for n > 1

density; ap/2 =1, a=1

temperature: ao/2 =1, @ € [0.1,1] random

momentum: ao/2 € [—1, 1] random, « s.t. Mach number € [107%,5.107}]

e £ €[0.01,1]: non-uniform distribution

e 20 recording time t1,¢2,...,t20 € [0.1,2]

— discretization parameters: N, = 1024, N, = 141

— Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

— 20 x 500 = 10000 different spatial data for training
— 20 x 500 = 10000 different spatial data for validation
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Data generation

Data generation by kinetic solver: for each simulation

Output normalization
e avoid too small values of the heat flux prediction
e normalisation with the Navier-Stokes heat flux:

0 .
koXTO, |f0<q1k<;)8<97

ko _ q
qnorm - NS

g, otherwise,
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Learning results
Examples from the validation set:

0.2] &=0.098

al)

0 3 7} % 2r
— For large : neural network closure better than Navier-Stokes one
~ 107!
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Learning results

L? relavtive error on the validation set:

« Navier-Stokes
« Network T

L? rel. err.

Knudsen number ¢

— For large : neural network closure better than Navier-Stokes one
— relative error independent of the Knudsen number ~ 107!
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Fluid model with neural network

Fluid+Network: ¢ = Cy(g, p,u,T)
solved with explicit finite volume scheme (Lax-Friedrichs flux)
compared with :

e Kinetic
e Fluid+Kinetic (¢ = q)
e Fluid+Navier-Stokes (¢ = —3ep 9. T)

— difference between Kinetic and Fluid+Kinetic results from numerical errors

— cannot expect better than Fluid+Kinetic
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Fluid model with neural network

Time evolution of electric energy: £(t) = f[o I E?(z,t)dx

log £(t)

— Kinetic
= = = Fluid+Kinetic
0 - - - Navier-Stokes
= = = Fluid+Network
5l N IR |
: (4 \‘v, \‘ K
—10 ‘ B
6 8
-5
—10

— for large : good results for Fluid+Network



Fluid model with neural network

L? error on density, momentum, energy on 200 simulations

0.4 |- B
—— Fluid+Kinetic
—— Navier-Stokes

03 —— Fluid+Network

L? relative error
o
[3v)

o
—
T

0 0.2 0.4 0.6 0.8 1
Knudsen number &

— relative error below 0.2
— Fluid+Network errors vary like the Fluid+Kinetic one
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Stability

— no guarantee of stability

— instabilities triggered by irregular
reconstruction of the heat flux due to
slicing

Smoothing of the output

q(z) = /36 q(z + t)w(t) dt.

—30

w: Gaussian kernel with standard
deviation o

Stability

r=2

—— w/smoothing

—— w/o smoothing

0.04

0.02

0

—0.02
0 3

vl



Stability
Stability
— no guarantee of stability
— instabilities triggered by irregular
reconstruction of the heat flux due to -
slicing g

r=2

Smoothing of the output

q(z) = /36 q(z + t)w(t) dt.

—30

w: Gaussian kernel with standard
deviation o

Numerical results: proportion of simulations reaching final time

h.—/_‘_“,_x/”_’—_‘_‘_‘

L L L
0 0.01 0.02 003 0.04 005 0.06 0.07 008 0.09 0.1

T

2a/26 — o = 0.06 leads to stable numerical simulations



Convergence
Two options for considering refined grids
— option 1: use slicing
— option 2: use downsampling to the refinement used for learning

Density at t =1 Mean velocity at t =1
5 —e— Option 1 0.05 ! —e— Option 1
E 0.015 I- —e— Option 2 i 0o —e— Option 2 B
_E 0.04 - B
< 001 4 o0o3f 8
&
A ‘ 0.02 - ‘ ‘ B
512 1024 2048 512 1024 2048
Ny Ny
Temperature at t =1 Heat flux at ¢t = 1
g 0.03 - —e— Option 1 B —e— Option 1
E —e— Option 2 —e— Option 2
o < 0.3 - B
£ 0,02 .
=
& 021 B
9001 F ‘ R ‘ ‘
512 1024 2048 512 1024 2048
N, N

— keep close to the data used in training set (same resolution)
25/28



26/28

CPU cost
Typical simulation time for 7y = 8 with N, = 512 andN, = 101:

Kinetique 70 sec
Fluid+Kinetic 78 sec
Fluid+Network 74 sec

Navier-Stokes 3 sec

— Fluid+Network not competitive
— but non optimal implementation ( CPU/GPU communications)
— but would be better in higher dimension

V-Net 1D O(2°d*pN,)
V-Net 2D O(¢d*p*>NZ2)
V-Net 3D  O(d*p®*N3)
Kinetic mD  O(NJ'N]*)
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Conclusion

Fluid Neural Network closure

e based on a V-net architecture
e Good results in the range € € [0.01, 1]

e Stability and convergence properties are numerically observed

Perpectives:
e Extension to dimension 2 and optimization
e Add a magnetic field

e Closure for models with more moments

stability with reinforcement learning ?
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