
A neural-network fluid closure for the Euler-Poisson
system

Laurent Navoret

IRMA, Université de Strasbourg and INRIA Nancy, Tonus

Joint work with Léo Bois, Emmanuel Franck, Vincent Vigon

Université de Strasbourg

Tuesday 22 June 2021

1/28



Plan

1 Introduction

2 Neural Networks

3 Numerical results

4 Conclusion

2/28



Plasma model

Physical context:
• Plasma = gaz made of charged particles
(ions and electrons)

• Fusion by magnetic confinement in a
tokamak

Different description
• Kinetic description for collisionless plasma
distribution function f(x, v, t), with x ∈ [0, L], v ∈ R, t > 0

• Fluid description for collisional plasma
density ρ(x, t), velocity u(x, t), temperature T (x, t)

Ý Knudsen number ε: mean free path between two collisions / L

Ý fluid description are cheaper

Ý extend the range of validity of fluid models to weakly collisional plasma
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Kinetic model
One-dimensionnal Vlasov-Poisson model on [0, L]:

∂tf + v∂xf − E∂vf = Q(f)

E = −∂xφ, −∂xxφ = ρ− 1

L

∫ L

0

ρ(t, x) dx

+ spatial periodic boundary conditions

Ý f(x, v, t): distribution function
Ý E(x, t): electric field
Ý φ(x, t): electric potential

BGK collision operator: Q(f) = 1
ε
(M(f)− f)

• relaxation toward a Maxwellian: M(f)(x, v, t) = ρ(x,t)√
2πT (x,t)

e
− (v−u(x,t))2

2T (x,t)

• ρ, u, T : moments of the distribution function f
[density] [pressure]

ρ(x, t) =

∫
R
f(x, v, t)dv p(x, t) =

∫
R
f(x, v, t)(v − u(x, t))

2
dv

[momentum] [temperature]

ρ(x, t)u(x, t) =

∫
R
f(x, v, t)vdv ρ(x, t)T (x, t) = p(x, t)
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Kinetic model
One-dimensionnal Vlasov-Poisson model on [0, L]:

∂tf + v∂xf − E∂vf = Q(f)

E = −∂xφ, −∂xxφ = ρ− 1

L

∫ L

0

ρ(t, x) dx

+ spatial periodic boundary conditions

Ý f(x, v, t): distribution function
Ý E(x, t): electric field
Ý φ(x, t): electric potential

BGK collision operator: Q(f) = 1
ε
(M(f)− f)

• relaxation toward a Maxwellian: M(f)(x, v, t) = ρ(x,t)√
2πT (x,t)

e
− (v−u(x,t))2

2T (x,t)

• ρ, u, T : moments of the distribution function f

• conservation of mass, momentum, energy:
∫
RQ(f)

 1
v
v2

 dv = 0
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From kinetic to fluid

Three first moments ρ(x, t)
ρu(x, t)
w(x, t)

 =

∫
R
f(x, v, t)

 1
v

v2/2

 dv
w: energy
w = ρu2/2 + p/2

Integrate the Vlasov equation against (1, v, v2/2)T

∫
R

(∂tf + v∂xf − E∂vf)

 1
v

v2/2

 dv = 0

Fluid equation: 
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p) = −Eρ
∂tw + ∂x(wu+ pu+ q) = −Eρu
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From kinetic to fluid

Fluid equation: 
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p) = −Eρ
∂tw + ∂x(wu+ pu+ q) = −Eρu

Ý heat flux: q(x, t) =
∫
R

1
2
f(x, v, t)(v − u(x, t))3dv

Ý system not closed

Ý Closure: expression of q as a function of the other moments

q̂ = C(ε, ρ, u, T )

Ý first possibilities: from Chapman-Enskog expansion in O(ε)

• [Euler closure] f = M(f) +O(ε) ⇒ q̂ = 0

• [Navier-Stokes closure] f = M(f) + εg +O(ε2) ⇒ q̂ = − 3
2
ε p ∂xT
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Closure

Validity model [Torrilhon, 2016]

Extend range of validity of fluid models
• higher order terms in Chapman-Enskog

Ý Burnett and Super-Burnett systems
Ý ill-posed systems

• higher order moments
Ý Grad 13 model
Ý reduced hyperbolicity region

• higher order moments based on entropic closure
Ý Levermore 14 moment
Ý entropic minimization not always well-posed
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Specific closure for plasmas

Add specific kinetic

• Landau damping effect
Ý phase mixing
Ý damping of spatial modes ⇒ damping of electrostatic energy

• Hammett-Perkins closure [Hammett, Perkins 90, 92]
Ý fitting dispersion relation of the linearized equation
Ý q as Hilbert transform of the temperature

q̂k = −in0

√
8

π
i sign(k)T̂k

Ý non-local closure

• Many extensions in the case of magnetized plasmas
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Neural Network closures

Neural network closures:
• turbulent flows [Zhou et al. 2020]
• higher moments for neutral fluid [Han et al, 2019]
• learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for ε ∈ [0.01, 1]

Ý Off-line phase: supervised learning from kinetic simulations

Ý On-line phase: compute the closure at each time step of the fluid solver
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Closure
Non-local Neural Network closure

X = (ε, ρ, u, T ) ∈ (RNx)4 −→ q̂ = Cθ̂(ε, ρ, u, T ) ∈ (RNx)4

θ̂ ∈ Θ: set of parameters

Training: solve the optimization problem (gradient method)

θ̂ = argmin
θ∈Θ

Loss(θ)

with loss function:

Loss(θ) =
1

|D|
∑

(X;q)∈D

1

Nx

Nx∑
i=1

|Cθ(X)i − qi|,

D data set
Cθ(X): prediction of the neural network
q: true heat flux

Ý Define the architecture of the network
Ý Generate data
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Neural Network
Neural Network
• Layer: linear combination followed by a non-linear activation function

Y (0) = X, Y (p+1) = σ
(
W (p)Y (p)

)
W (p): weights matrices
σ: activation function

• Example: fully connected neural network
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Architecture
Convolutional neural network

Ý sparse neural networks
Ý very efficient for structured data (image, signals)
Ý each layer: several 1D convolutions with small kernels followed by

activation functions

input: X of shape (N, d)
output: Y of shape (N, d′)
kernel: K of shape (p, d, d′) size p
activation: σ

Yi,k = σ

(
d∑
j=1

p∑
di=1

Xi+di,jKdi,j,k

)

13/28



Architecture
One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]

• multi-scale analysis (like in wavelet analysis)
• based on up-samplings and dow-samplings

Ý down-sampling: decrease the size of the signals / increase the number of
channels

Ý up-samping: increase the size of the signals / decrease the number of
channels

• shortcut: add the input to output for accelarating the training process

input X
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Architecture

Choice of the hyperparameters:

Hyper-parameter Value

size of the input window (N) 512
number of levels (`) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

softplus: σ(x) = ln(1 + exp(x))

Ý 15 layers

Neural network parameters to learn
• O(2`d2pN)

• Here: 161 937 parameters
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Full closure

For learning and flexibility:

1 Resampling to a given resolution N ′x and preprocessing (standardization of
the data)

2 Slicing into overlapping “windows” of size N = 512

3 Neural network

4 Reconstructing

5 Post-processing, smoothing and resampling

NNθ

NNθ

NNθ
ε, ρ, u, T q̂

(Re)+(P) (Sl) (R) (P’)+(Sm)+(Re’)

1

Cθ : X
(Re)+(P)7−→ X(P ) (Sl)7−→ (X

(P )
j )j

(NNθ)7−→ (Ŷ
(P )
j )j

(R)7−→ Ŷ (P ) (P’)+(Sm)+(Re)7−→ Ŷ .
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Training

To train the neural network:
Ý do the same Resampling and preprocessing
Ý do the same Slicing
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Data generation

Data generation by kinetic solver: for each simulation

• initialization: f0(x) = M(ρ, u, T ), with ρ, u and T as Fourier series :

α×

(
a0

2
+ 0.5

20∑
n=1

(an cos(nx) + bn sin(nx))

)
, x ∈ [0, 2π].

an, bn: random in [−1/n, 1/n] for n > 1

density; a0/2 = 1, α = 1
temperature: a0/2 = 1, α ∈ [0.1, 1] random
momentum: a0/2 ∈ [−1, 1] random, α s.t. Mach number ∈ [10−4, 5.10−1]

• ε ∈ [0.01, 1]: non-uniform distribution
• 20 recording time t1, t2, . . . , t20 ∈ [0.1, 2]

Ý discretization parameters: Nx = 1024, Nv = 141

Ý Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

Ý 20× 500 = 10 000 different spatial data for training
Ý 20× 500 = 10 000 different spatial data for validation

18/28



Data generation

Data generation by kinetic solver: for each simulation

Output normalization
• avoid too small values of the heat flux prediction
• normalisation with the Navier-Stokes heat flux:

qk0norm =


qk0 × θ

qk0NS
, if 0 < qk0NS 6 θ,

qk0 , otherwise,
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Learning results
Examples from the validation set:

Ý For large ε: neural network closure better than Navier-Stokes one
≈ 10−1
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Learning results
L2 relavtive error on the validation set:

Ý For large ε: neural network closure better than Navier-Stokes one
Ý relative error independent of the Knudsen number ≈ 10−1
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Fluid model with neural network

Fluid+Network: q̂ = Cθ(ε, ρ, u, T )
solved with explicit finite volume scheme (Lax-Friedrichs flux)
compared with :

• Kinetic
• Fluid+Kinetic (q̂ = q)
• Fluid+Navier-Stokes (q̂ = − 3

2
εp ∂xT )

Ý difference between Kinetic and Fluid+Kinetic results from numerical errors
Ý cannot expect better than Fluid+Kinetic
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Fluid model with neural network

Time evolution of electric energy: E(t) =
∫

[0,L]
E2(x, t)dx

Ý for large ε: good results for Fluid+Network
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Fluid model with neural network

L2 error on density, momentum, energy on 200 simulations

Ý relative error below 0.2
Ý Fluid+Network errors vary like the Fluid+Kinetic one
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Stability
Stability
Ý no guarantee of stability
Ý instabilities triggered by irregular
reconstruction of the heat flux due to
slicing

Smoothing of the output

q̃(x) =

∫ 3σ

−3σ

q(x+ t)w(t) dt.

w: Gaussian kernel with standard
deviation σ
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Stability
Stability
Ý no guarantee of stability
Ý instabilities triggered by irregular
reconstruction of the heat flux due to
slicing

Smoothing of the output

q̃(x) =

∫ 3σ

−3σ

q(x+ t)w(t) dt.

w: Gaussian kernel with standard
deviation σ

Numerical results: proportion of simulations reaching final time

Ý σ = 0.06 leads to stable numerical simulations
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Convergence
Two options for considering refined grids
Ý option 1: use slicing
Ý option 2: use downsampling to the refinement used for learning

Ý keep close to the data used in training set (same resolution)
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CPU cost
Typical simulation time for Tf = 8 with Nx = 512 andNv = 101:

Kinetique 70 sec

Fluid+Kinetic 78 sec

Fluid+Network 74 sec

Navier-Stokes 3 sec

Ý Fluid+Network not competitive
Ý but non optimal implementation ( CPU/GPU communications)
Ý but would be better in higher dimension

V-Net 1D O(2`d2pNx)

V-Net 2D O(`d2p2N2
x)

V-Net 3D O(d2p3N3
x)

Kinetic mD O(Nm
v N

m
x )
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Conclusion

Fluid Neural Network closure

• based on a V-net architecture
• Good results in the range ε ∈ [0.01, 1]

• Stability and convergence properties are numerically observed

Perpectives:
• Extension to dimension 2 and optimization
• Add a magnetic field
• Closure for models with more moments
• stability with reinforcement learning ?
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