A neural-network fluid closure for the Euler-Poisson system

Laurent Navoret

IRMA, Université de Strasbourg and INRIA Nancy, Tonus

Joint work with Léo Bois, Emmanuel Franck, Vincent Vigon

Université de Strasbourg Tuesday 22 June 2021

Plan

1 Introduction

2 Neural Networks

3 Numerical results

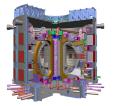
4 Conclusion

2/28

Plasma model

Physical context:

- **Plasma** = gaz made of charged particles (ions and electrons)
- Fusion by magnetic confinement in a tokamak



Different description

- Kinetic description for collisionless plasma distribution function f(x, v, t), with $x \in [0, L]$, $v \in \mathbb{R}$, $t \ge 0$
- Fluid description for collisional plasma density $\rho(x, t)$, velocity u(x, t), temperature T(x, t)
- \rightarrow Knudsen number ε : mean free path between two collisions / L
- \rightarrow fluid description are cheaper
- \rightarrow extend the range of validity of fluid models to weakly collisional plasma

Kinetic model

One-dimensionnal Vlasov-Poisson model on [0, L]:

$$\partial_t f + v \partial_x f - E \partial_v f = Q(f)$$
$$E = -\partial_x \phi, \quad -\partial_{xx} \phi = \rho - \frac{1}{L} \int_0^L \rho(t, x) \, dx$$

+ spatial periodic boundary conditions

- → f(x, v, t): distribution function → E(x, t): electric field
- $\rightarrow \phi(x,t)$: electric potential

BGK collision operator: $Q(f) = \frac{1}{\varepsilon}(M(f) - f)$

- relaxation toward a Maxwellian: $M(f)(x,v,t) = \frac{\rho(x,t)}{\sqrt{2\pi T(x,t)}} e^{-\frac{(v-u(x,t))^2}{2T(x,t)}}$
- ρ , u, T: moments of the distribution function f[density] [pressure] $\rho(x,t) = \int_{-}^{-} f(x,v,t)dv$ p(x,t) =

$$p(x,t) = \int_{\mathbb{R}} f(x,v,t)(v-u(x,t))$$

 $)^{2}dv$

[momentum]

$$\rho(x,t)\mathbf{u}(x,t) = \int_{\mathbb{R}} f(x,v,t)vdv$$

[temperature]

$$\rho(x,t)\mathbf{T}(x,t) = p(x,t)$$

Kinetic model

One-dimensionnal Vlasov-Poisson model on [0, L]:

$$\partial_t f + v \partial_x f - E \partial_v f = Q(f)$$
$$E = -\partial_x \phi, \quad -\partial_{xx} \phi = \rho - \frac{1}{L} \int_0^L \rho(t, x) \, dx$$

+ spatial periodic boundary conditions

- \rightarrow f(x, v, t): distribution function \rightarrow E(x, t): electric field
- $\rightarrow \phi(x,t)$: electric potential

BGK collision operator: $Q(f) = \frac{1}{\varepsilon}(M(f) - f)$

- relaxation toward a Maxwellian: $M(f)(x,v,t) = \frac{\rho(x,t)}{\sqrt{2\pi T(x,t)}} e^{-\frac{(v-u(x,t))^2}{2T(x,t)}}$
- ρ , u, T: moments of the distribution function f
- conservation of mass, momentum, energy: $\int_{\mathbb{R}} Q(f) \begin{vmatrix} 1 \\ v \\ v^2 \end{vmatrix} dv = 0$

From kinetic to fluid

Three first moments

$$\begin{bmatrix} \rho(x,t) \\ \rho u(x,t) \\ w(x,t) \end{bmatrix} = \int_{\mathbb{R}} f(x,v,t) \begin{bmatrix} 1 \\ v \\ v^2/2 \end{bmatrix} dv$$

 $w{:}$ energy $w=\rho u^2/2+p/2$

Integrate the Vlasov equation against $(1, v, v^2/2)^{T}$

$$\int_{\mathbb{R}} \left(\partial_t f + v \partial_x f - E \partial_v f\right) \begin{bmatrix} 1 \\ v \\ v^2/2 \end{bmatrix} dv = 0$$

Fluid equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = -E\rho\\ \partial_t w + \partial_x (w u + p u + q) = -E\rho u \end{cases}$$

From kinetic to fluid

Fluid equation:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = -E\rho\\ \partial_t w + \partial_x (w u + p u + q) = -E\rho u \end{cases}$$

$$ightarrow$$
 heat flux: $q(x,t) = \int_{\mathbb{R}} \frac{1}{2} f(x,v,t) (v-u(x,t))^3 dv$

- \rightarrow system not closed
- \rightarrow Closure: expression of q as a function of the other moments

$$\hat{q} = \mathcal{C}(\varepsilon, \rho, u, T)$$

- \rightarrow first possibilities: from Chapman-Enskog expansion in $O(\varepsilon)$
 - [Euler closure] $f = M(f) + O(\varepsilon) \Rightarrow \hat{q} = 0$
 - [Navier-Stokes closure] $f = M(f) + \varepsilon g + O(\varepsilon^2) \Rightarrow \hat{q} = -\frac{3}{2} \varepsilon p \partial_x T$

Closure

Validity model [Torrilhon, 2016]

Extend range of validity of fluid models

- higher order terms in Chapman-Enskog
 - → Burnett and Super-Burnett systems
 - → ill-posed systems
- higher order moments
 - → Grad 13 model
 - \rightarrow reduced hyperbolicity region
- higher order moments based on entropic closure
 - → Levermore 14 moment
 - \rightarrow entropic minimization not always well-posed

Specific closure for plasmas

Add specific kinetic

- Landau damping effect
 - → phase mixing
 - $\rightarrow\,$ damping of spatial modes $\Rightarrow\,$ damping of electrostatic energy
- Hammett-Perkins closure [Hammett, Perkins 90, 92]
 - \rightarrow fitting dispersion relation of the linearized equation
 - $\rightarrow q$ as Hilbert transform of the temperature

$$\hat{q}_k = -i n_0 \sqrt{rac{8}{\pi}} i \; \mathrm{sign}(k) \hat{T}_k$$

- → non-local closure
- Many extensions in the case of magnetized plasmas

Neural Network closures

Neural network closures:

- turbulent flows [Zhou et al. 2020]
- higher moments for neutral fluid [Han et al, 2019]
- learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for $\varepsilon \in [0.01, 1]$

- \rightarrow Off-line phase: supervised learning from kinetic simulations
- \rightarrow On-line phase: compute the closure at each time step of the fluid solver

Plan

1 Introduction

2 Neural Networks

3 Numerical results

4 Conclusion

10/28

Closure

Non-local Neural Network closure

 $X = (\varepsilon, \rho, u, T) \in (\mathbb{R}^{N_x})^4 \quad \longrightarrow \quad \hat{q} = C_{\hat{\theta}}(\varepsilon, \rho, u, T) \in (\mathbb{R}^{N_x})^4$ $\hat{\theta} \in \Theta: \text{ set of parameters}$

Training: solve the optimization problem (gradient method)

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \operatorname{Loss}(\theta)$$

with loss function:

$$\mathsf{Loss}(\theta) = \frac{1}{|\mathcal{D}|} \sum_{(X;q)\in\mathcal{D}} \frac{1}{N_x} \sum_{i=1}^{N_x} |C_{\theta}(X)_i - q_i|,$$

 ${\mathcal D}$ data set $C_{\theta}(X)$: prediction of the neural network q: true heat flux

- \rightarrow Define the architecture of the network
- → Generate data

Neural Network

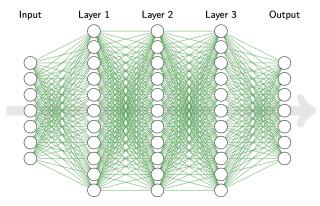
Neural Network

• Layer: linear combination followed by a non-linear activation function

$$Y^{(0)} = X, \quad Y^{(p+1)} = \sigma \left(W^{(p)} Y^{(p)} \right)$$

 $W^{(p)}$: weights matrices

- $\sigma:$ activation function
- Example: fully connected neural network



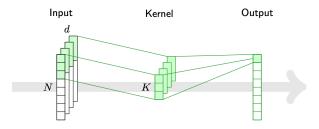
Architecture

Convolutional neural network

- \rightarrow sparse neural networks
- → very efficient for structured data (image, signals)
- \rightarrow each layer: several 1D convolutions with small kernels followed by activation functions

input: X of shape (N, d)output: Y of shape (N, d')kernel: K of shape (p, d, d') size p activation: σ

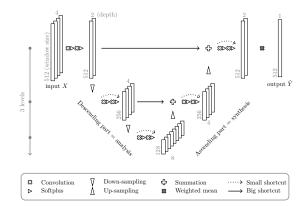
$$Y_{i,k} = \sigma\left(\sum_{j=1}^{d} \sum_{di=1}^{p} X_{i+di,j} K_{di,j,k}\right)$$



Architecture

One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]

- multi-scale analysis (like in wavelet analysis)
- based on up-samplings and dow-samplings
 - $\rightarrow\,$ down-sampling: decrease the size of the signals / increase the number of channels
 - $\rightarrow\,$ up-samping: increase the size of the signals / decrease the number of channels
- shortcut: add the input to output for accelarating the training process



Architecture

Choice of the hyperparameters:

Hyper-parameter	Value
size of the input window (N)	512
number of levels (ℓ)	5
depth (d)	4
size of the kernels (p)	11
activation function	softplus

softplus:
$$\sigma(x) = \ln(1 + \exp(x))$$

 $\rightarrow 15$ layers

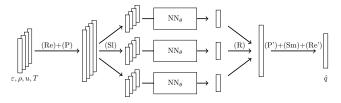
Neural network parameters to learn

- $O(2^{\ell}d^2pN)$
- Here: 161 937 parameters

Full closure

For learning and flexibility:

- \blacksquare Resampling to a given resolution N_x^\prime and preprocessing (standardization of the data)
- **2** Slicing into overlapping "windows" of size N = 512
- 8 Neural network
- 4 Reconstructing
- **6** Post-processing, smoothing and resampling

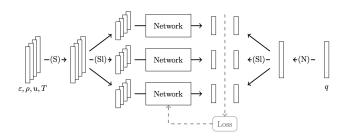


$$C_{\theta}: X \stackrel{(\mathsf{Re})+(\mathsf{P})}{\longmapsto} X^{(P)} \stackrel{(\mathsf{Sl})}{\longmapsto} (X^{(P)}_{j})_{j} \stackrel{(\mathsf{NN}_{\theta})}{\longmapsto} (\hat{Y}^{(P)}_{j})_{j} \stackrel{(\mathsf{R})}{\longmapsto} \hat{Y}^{(P)} \stackrel{(\mathsf{P'})+(\mathsf{Sm})+(\mathsf{Re})}{\longmapsto} \hat{Y}.$$

Training

To train the neural network:

- \rightarrow do the same Resampling and preprocessing
- \rightarrow do the same Slicing



Training

Data generation

Data generation by kinetic solver: for each simulation

• initialization: $f_0(x) = M(\rho, u, T)$, with ρ , u and T as Fourier series :

$$\alpha \times \left(\frac{a_0}{2} + 0.5\sum_{n=1}^{20} (a_n \cos(nx) + b_n \sin(nx))\right), \quad x \in [0, 2\pi].$$

 a_n, b_n : random in [-1/n, 1/n] for $n \ge 1$

density; $a_0/2 = 1$, $\alpha = 1$ temperature: $a_0/2 = 1$, $\alpha \in [0.1, 1]$ random momentum: $a_0/2 \in [-1, 1]$ random, α s.t. Mach number $\in [10^{-4}, 5.10^{-1}]$

- $\varepsilon \in [0.01, 1]$: non-uniform distribution
- 20 recording time $t_1, t_2, \ldots, t_{20} \in [0.1, 2]$
- \rightarrow discretization parameters: $N_x = 1024$, $N_v = 141$
- → Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

$$\rightarrow 20 \times 500 = 10\,000$$
 different spatial data for training

 $\rightarrow 20 \times 500 = 10\,000$ different spatial data for validation

Data generation

Data generation by kinetic solver: for each simulation

Output normalization

- · avoid too small values of the heat flux prediction
- normalisation with the Navier-Stokes heat flux:

$$q_{\mathsf{norm}}^{k_0} = \left\{ \begin{array}{ll} q^{k_0} \times \frac{\theta}{q_{NS}^{k_0}}, & \text{if } 0 < q_{NS}^{k_0} \leqslant \theta, \\ \\ q^{k_0}, & \text{otherwise}, \end{array} \right.$$

Plan

1 Introduction

2 Neural Networks

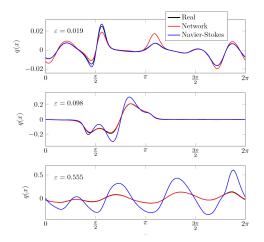
3 Numerical results

4 Conclusion

19/28

Learning results

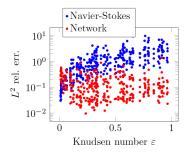
Examples from the validation set:



 \rightarrow For large $\varepsilon:$ neural network closure better than Navier-Stokes one $\approx 10^{-1}$

Learning results

L^2 relavtive error on the validation set:



 \rightarrow For large ε : neural network closure better than Navier-Stokes one

 \rightarrow relative error independent of the Knudsen number $\approx 10^{-1}$

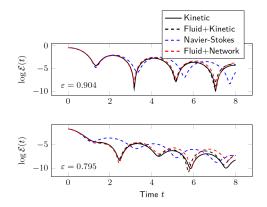
Fluid model with neural network

Fluid+Network: $\hat{q} = C_{\theta}(\varepsilon, \rho, u, T)$ solved with explicit finite volume scheme (Lax-Friedrichs flux) compared with :

- Kinetic
- Fluid+Kinetic $(\hat{q} = q)$
- Fluid+Navier-Stokes ($\hat{q} = -\frac{3}{2}\varepsilon p \,\partial_x T$)
- \rightarrow difference between Kinetic and Fluid+Kinetic results from numerical errors
- \rightarrow cannot expect better than Fluid+Kinetic

Fluid model with neural network

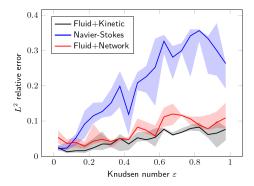
Time evolution of electric energy: $\mathcal{E}(t) = \int_{[0,L]} E^2(x,t) dx$



 \rightarrow for large ε : good results for Fluid+Network

Fluid model with neural network

 L^2 error on density, momentum, energy on 200 simulations



 $[\]rightarrow$ relative error below 0.2

 \rightarrow Fluid+Network errors vary like the Fluid+Kinetic one

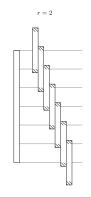
Stability

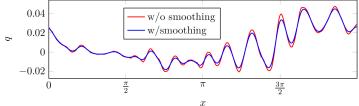
→ no guarantee of stability → instabilities triggered by irregular reconstruction of the heat flux due to slicing

Smoothing of the output

$$\tilde{q}(x) = \int_{-3\sigma}^{3\sigma} q(x+t)w(t) \, dt.$$

w: Gaussian kernel with standard deviation σ





Stability

Stability

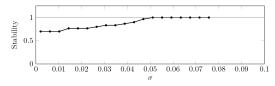
→ no guarantee of stability → instabilities triggered by irregular reconstruction of the heat flux due to slicing

Smoothing of the output

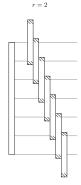
$$\tilde{q}(x) = \int_{-3\sigma}^{3\sigma} q(x+t)w(t) \, dt.$$

w: Gaussian kernel with standard deviation $\boldsymbol{\sigma}$

Numerical results: proportion of simulations reaching final time



$\rightarrow \sigma = 0.06$ leads to stable numerical simulations

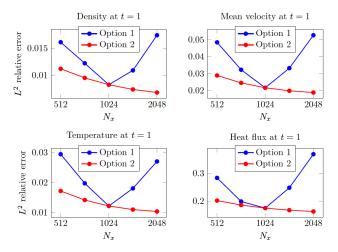


Convergence

Two options for considering refined grids

 \rightarrow option 1: use slicing

 \rightarrow option 2: use downsampling to the refinement used for learning



 \rightarrow keep close to the data used in training set (same resolution)

CPU cost

Typical simulation time for $T_f = 8$ with $N_x = 512$ and $N_v = 101$:

Kinetique	70 sec
Fluid+Kinetic	78 sec
Fluid+Network	74 sec
Navier-Stokes	3 sec

- → Fluid+Network not competitive
- → **but** non optimal implementation (CPU/GPU communications)
- \rightarrow **but** would be better in higher dimension

V-Net 1D	$O(2^{\ell}d^2pN_x)$
V-Net 2D	$O(\ell d^2 p^2 N_x^2)$
V-Net 3D	$O(d^2p^3N_x^3)$
Kinetic mD	$O(N_v^m N_x^m)$

Plan

1 Introduction

2 Neural Networks

3 Numerical results

27/28

Conclusion

Fluid Neural Network closure

- based on a V-net architecture
- Good results in the range $\varepsilon \in [0.01,1]$
- Stability and convergence properties are numerically observed

Perpectives:

- Extension to dimension 2 and optimization
- Add a magnetic field
- Closure for models with more moments
- stability with reinforcement learning ?