Simulations of water-vapor two-phase flows with non-condensable gas using a Noble-Able-Chemkin equation of state

Lucie Quibel

PhD supervisor: Philippe Helluy, IRMA, Strasbourg (France). Industrial supervisor: Olivier Hurisse, EDF Lab, Chatou (France).

Tuesday, Juny 22th 2021

Outline

- Flows of interest
 - Industrial context
 - Multiphasic models with a realistic thermodynamical behaviour
- 2 A Homogeneous Model taking into account non-condensable gas
- NASG-CK EOS for liquid water
- 4 Implementation of the model

Pressurized Water Reactors (PWR)

Pressurized Water Reactors (from IRSN website)

Loss of Coolant Accident (LOCA) scenario : breach in the primary circuit

SUPERCANON experiment, representative of a LOCA scenario

Flows of interest

Possible fields:

- Liquid Water (I)
- Vapor Water (v)
- Non-condensable gas (a) : air, hydrogen...

Diffuse interface models: the exact interfaces and flow geometry (bubbles...) are NOT known.

Minimal required mathematical properties

In order to achieve code Verification :

- Hyperbolicity of the model : time stability of numerical solutions.
- Existence of an entropy inequality: in order to comply with the second principle of thermodynamics and to define admissible shock waves.
- Unicity of jump relations : to correctly define the shock waves.

Other requirements:

- Ability to handle monophasic flows.
- Preservation of the thermodynamical admissible domain.
- ...

Outline

- Flows of interest
- 2 A Homogeneous Model taking into account non-condensable gas
 - Modelling of hybrid miscibility conditions
 - System of equations
- NASG-CK EOS for liquid water
- 4 Implementation of the model

Flow:

Chosen homogeneous model

Direct extension of an homogeneous model proposed by T. Barberon and P. Helluy 1 , already studied by H. Mathis 2 .

Only one equilibrium assumption : kinematic equilibrium between fields.

^{1.} T. Barberon, P. Helluy, Finite volume simulation of cavitating flows, Computers and Fluids 34 (7) (2005) 832–858.

^{2.} H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM: Mathematical Modelling and Numerical Analysis 53 (1) (2019) 63–84.

Miscibility and immiscibility constraints

Flow:

$$M$$
 , V , E

$$\alpha_k = \frac{V_k}{V} \text{ (volume fraction) }; y_k = \frac{M_k}{M} \text{ (mass fraction) }; z_k = \frac{E_k}{E} \text{ (energy fraction)}.$$

Immiscibility constraints:

$$V_l + V_a = V$$
;

$$M_l + M_a = M$$
;

$$E_I + E_g = E$$
.

Miscibility constraints:

$$V_{v} = V_{a} = V_{a}$$
;

$$M_V + M_a = M_a$$
;

$$E_v + E_a = E_g$$
.

Miscibility and immiscibility constraints

Flow: M, V, E

$$\alpha_k = \frac{V_k}{V} \text{ (volume fraction) }; y_k = \frac{M_k}{M} \text{ (mass fraction) }; z_k = \frac{E_k}{E} \text{ (energy fraction)}.$$

$$\alpha_l + \alpha_v = 1;$$
 $\alpha_v = \alpha_a;$ $y_l + y_v + y_a = 1;$ $z_l + z_v + z_a = 1.$

System of equations and closures

$$\begin{cases} \frac{\partial}{\partial t} (\rho) + \frac{\partial}{\partial x} (\rho U) = 0 \\ \frac{\partial}{\partial t} (\rho U) + \frac{\partial}{\partial x} (\rho U^{2} + P) = 0 \\ \frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x} (\rho U E + U P) = 0 \\ \frac{\partial}{\partial t} (\rho \alpha_{v}) + \frac{\partial}{\partial x} (\rho U \alpha_{v}) = \rho \frac{\alpha_{v}^{\text{eq}} - \alpha_{v}}{\lambda} \\ \frac{\partial}{\partial t} (\rho y_{v}) + \frac{\partial}{\partial x} (\rho U y_{v}) = \rho \frac{y_{v}^{\text{eq}} - y_{v}}{\lambda} \\ \frac{\partial}{\partial t} (\rho z_{v}) + \frac{\partial}{\partial x} (\rho U z_{v}) = \rho \frac{z_{v}^{\text{eq}} - z_{v}}{\lambda} \\ \frac{\partial}{\partial t} (\rho y_{a}) + \frac{\partial}{\partial x} (\rho U y_{a}) = 0 \\ \frac{\partial}{\partial t} (\rho z_{a}) + \frac{\partial}{\partial x} (\rho U z_{a}) = \rho \frac{z_{a}^{\text{eq}} - z_{a}}{\lambda} \end{cases}$$

- ρ mixture density $(kg.m^{-3})$;
- ρU : mixture momentum $(kg.m^{-3})$;
- ρE : mixture total energy $(J.m^{-3})$.

$$\mathbf{W} = (\rho, \rho U, \rho E, \rho \alpha_{v}, \rho y_{v}, \rho z_{v}, \rho y_{a}, \rho z_{a}).$$

Closures for :

- pressure P?
- relaxation time λ ?

Outline

- Flows of interest
- 2 A Homogeneous Model taking into account non-condensable gas
- NASG-CK EOS for liquid water
 - Admissible EOS
 - Stiffened gas EOS
 - NASG-CK EOS
 - Comparison of both EOS
- 4 Implementation of the model

Thermodynamical planes

Potential	Entry plane	"Gibbs relation"	Conjugate variables
μ	(P, T)	$d\mu = -sdT + \tau dP$	$\tau = \frac{\partial \mu}{\partial P}\Big _{T}; s = -\frac{\partial \mu}{\partial T}\Big _{P}$
S	(τ, e)	$ds = \frac{P}{T}d\tau + \frac{1}{T}de$	$\frac{P}{T} = \frac{\partial s}{\partial \tau}\Big _{e}; \frac{1}{T} = \frac{\partial s}{\partial e}\Big _{\tau}$

- ullet μ : chemical potential (*J*) in pressure *P* (*Pa*) temperature *T* (*K*) plane;
- s: specific entropy $(J.K^{-1}.kg^{-1})$ in specific volume τ $(m^3.kg^{-1})$ internal energy e $(J.kg^{-1})$ plane;

Thermodynamical closure

P defined with a **complete Equation Of State** (EOS).

Given EOS : specific entropies

$$s_l(\tau_l, e_l)$$
 ; $s_v(\tau_v, e_v)$; $s_a(\tau_a, e_a)$.

② Phasic Gibbs relation : $T_k ds_k = de_k + P_k d\tau_k$

$$\left. \frac{P_k}{T_k} = \left. \frac{\partial s_k}{\partial \tau_k} \right|_{e_k} \quad ; \quad \frac{1}{T_k} = \left. \frac{\partial s_k}{\partial e_k} \right|_{\tau_k}.$$

- Mixture entropy given by : $s = (1 y_v y_a)s_l(\tau_l, e_l) + y_v s_v(\tau_v, e_v) + y_a s_a(\tau_a, e_a).$
- $\begin{tabular}{l} \textbf{Mixture Gibbs relation can be deduced} : \\ Tds = de + Pd\tau + \partial_{\alpha_{v}} s|_{e,\tau,y_{k},z_{k}} d\alpha_{v} + \partial_{y_{v}} s|_{e,\tau,\alpha_{v},y_{a},z_{k}} dy_{v} + \partial_{z_{k}} s|_{e,\tau,\alpha_{v},y_{k}} dz_{k}, \\ \end{tabular}$

$$P = \frac{(1 - \alpha_{V})\frac{P_{I}}{T_{I}} + \alpha_{V}(\frac{P_{V}}{T_{V}} + \frac{P_{a}}{T_{a}})}{\frac{1 - z_{V} - z_{a}}{T_{I}} + \frac{z_{V}}{T_{V}} + \frac{z_{a}}{T_{a}}} \quad ; \quad \frac{1}{T} = \frac{1 - z_{V} - z_{a}}{T_{I}} + \frac{z_{V}}{T_{V}} + \frac{z_{a}}{T_{a}}.$$

Requirements for an admissible EOS

- Mathematical sufficient conditions to ensure model hyperbolicity :
 - specific entropy s_k is strictly concave with respect to internal specific energy e_k and specific volume τ_k ;
 - temperature $T_k = \left(\frac{\partial s_k}{\partial e_k}\right)\Big|_{\tau_k}^{-1}$ is strictly positive.
- In practical simulations: the EOS needs to be available in several thermodynamical planes:
 - in (e, τ)-plane (internal energy specific volume): to get the right shock waves without too numerical difficulties;
 - in (P, T)-plane (pressure temperature): not mandatory, but enables to use a robust algorithm for computing the thermodynamical equilibrium³.

^{3.} Gloria Faccanoni, Samuel Kokh, and Grégoire Allaire. "Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1029-1054.

Stiffened gas

$$s_{k}(e_{k}, \tau_{k}) = C_{v_{k}} \ln((e_{k} - Q_{k} - \Pi_{k}\tau_{k})\tau_{k}^{\gamma_{k}-1})) + s_{k}^{0}$$

$$\mu_{k}(P_{k}, T_{k}) = \gamma_{k}C_{v, k}T_{k} + Q_{k} - T_{k}(\gamma_{k}C_{v, k}\ln(T_{k}) - (\gamma_{k} - 1)C_{v, k}\ln(P_{k} + \Pi_{k}) + k_{k})$$

Pros:

- + Very easy to change of thermodynamical plane (explicit formula).
- + SG EOS is admissible (in terms of convexity) under natural physical conditions
- + Low CPU-time consuming.

Cons:

 accurate only in a restricted domain, close to a reference point.

Noble-Able Chemkin stiffened gas (NASG-CK) for liquid water

$$\begin{split} \mu_{I}(P_{I},T_{I}) &= \mu_{I}^{0}(T_{I}) + b_{I}P_{I} + \mathcal{C}_{I}(T)\ln(P_{I} + \Pi_{I}), \\ \mu_{I}^{0}(T_{I}) &= RT_{I}\left(A_{I}(1 - \ln(T_{I})) - \frac{B_{I}}{2}T_{I} - \frac{C_{I}}{6}T_{I}^{2} - \frac{D_{I}}{12}T_{I}^{3} - \frac{E_{I}}{20}T_{I}^{4} + \frac{F_{I}}{T_{I}} - G_{I}\right), \\ \mathcal{C}_{I}(T_{I}) &= C_{V,I}(\gamma_{I} - 1)T_{I}. \end{split}$$

$$P_{I}(\tau_{I}, T_{I}) = \frac{C_{v,I}(\gamma_{I} - 1)T_{I}}{\tau_{I} - b_{I}} - \Pi_{I}$$

$$P(\tau, T) = \frac{rT}{\tau - b} + \frac{a}{\tau^{2}}$$
cf: Van der Waals EOS

$$C_{p_I}(T_I) = R(A_I + B_I T_I + C_I T_I^2 + D_I T_I^3 + E_I T_I^4).$$

Pros:

+ More accurate.

Cons:

- Inversion towards (e, τ) -plane not explicit.
- NASG-CK EOS is admissible if the following condition holds :

$$C_{p_I}(T_I) - C_{vI}(\gamma_I - 1) > 0.$$

NASG-CK inversion towards (e, τ) -plane

•
$$P_l = P_l(\tau_l, T_l) : P_l = \frac{C_{v,l}(\gamma_l - 1)T_l}{\tau_l - b_l} - \Pi_l = P_l(\tau_l, T_l);$$

2 then, $e_l = e_l(\tau_l, T_l)$:

$$e_{l} = RT_{l} \left(A_{l} + \frac{B_{l}}{2} T_{l} + \frac{C_{l}}{3} T_{l}^{2} + \frac{D_{l}}{4} T_{l}^{3} + \frac{E_{l}}{5} T_{l}^{4} + \frac{F_{l}}{T_{l}} \right) - C_{v,l} (\gamma_{l} - 1) T_{l} + \Pi_{l} (\tau_{l} - b_{l});$$

3 T_I can be deduced from τ_I and e_I by implicitly solving the previous equation, one equation with one unknown (for instance with a secant method algorithm).

Choice of EOS coefficients 6

- NASG-CK:
 - ullet $A_I,\ B_I,\ C_I,\ D_I,\ E_I$ by fitting $\mu_I,\ au_I,\ C_{p,I}$ on IAPWS-IF97 4 data;
 - γ_I , $C_{V,I}$, Π_I , b_I : from an extension of an empirical method ⁵, by imposing some quantities $(\tau_I, \alpha_{P,I}, C_{V,I} \text{ and } c_I)$ at a reference point $(P_0 = 80bar, T_0 = 425K)$;
 - F_I , G_I : by fitting $(\mu_I \mu_V)(T_{IAPWS}^{sat}(P))$.
- SG: γ_k , $C_{v,k}$, Π_k , Q_k , k_k obtained by fitting μ_l , τ_l , $C_{p,l}$ on IAPWS-IF97 data.

^{4.} Wagner, W. and Kretzschmar, H.-J. (2008), "International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97"

^{5.} F. Daude, P. Galon, Z. Gao, E. Blaud, Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition. Computers and Fluids 94 (2014) 112–138.

 $^{\,}$ 6. L. Quibel, Simulation of water-vapor two-phase flows with non-condensable gas, PhD, Universit\'e de Strasbourg

NASG-CK VS SG accuracy for liquid water : specific volume au_l

Relative error w.r.t IAPWS: NASG-CK

Relative error w.r.t IAPWS : SG

NASG-CK VS SG accuracy for liquid water : heat capacity $C_{p,j}$

Relative error w.r.t IAPWS: NASG-CK

Relative error w.r.t IAPWS : SG

hosen EOS lumerical implementation WPERCANON simulations : at equilibrium simulations WPERCANON simulations : out-of-equilibrium simulations

Outline

- Flows of interest
- 2 A Homogeneous Model taking into account non-condensable gas
- NASG-CK EOS for liquid water
- 4 Implementation of the model
 - Chosen EOS
 - Numerical implementation
 - SUPERCANON simulations : at equilibrium simulations
 - SUPERCANON simulations : out-of-equilibrium simulations

Chosen EOS

NASG-CK for liquid :

$$\begin{split} \mu_{I}(P_{I},T_{I}) &= \mu_{I}^{0}(T_{I}) + b_{I}P_{I} + \mathcal{C}_{I}(T)\ln(P_{I} + \Pi_{I}), \\ \mu_{I}^{0}(T_{I}) &= RT_{I}\left(A_{I}(1 - \ln(T_{I})) - \frac{B_{I}}{2}T_{I} - \frac{C_{I}}{6}T_{I}^{2} - \frac{D_{I}}{12}T_{I}^{3} - \frac{E_{I}}{20}T_{I}^{4} + \frac{F_{I}}{T_{I}} - G_{I}\right), \\ \mathcal{C}_{I}(T_{I}) &= C_{v,I}(\gamma_{I} - 1)T_{I}; \end{split}$$

• SG for vapor and air (k = v, a):

$$\mu_k(P_k, T_k) = \gamma_k C_{v,k} T_k + Q_k - T_k (\gamma_k C_{v,k} \ln(T_k) - (\gamma_k - 1) C_{v,k} \ln(P_k + \Pi_k) + k_k).$$

General method

The numerical method is based on a fractional step method :

• First step: we account for the convective part of the system.

First-order explicit and conservative finite volumes schemes are used. By noting : W_i^n the space-average value of W on the mesh cell Ω_i at time t^n , $W_i^{n+1,*}$ at the next time step $t^n + \Delta t^n$ is obtained from :

$$\Delta x_i(W_i^{n+1,*} - W_i^n) + \Delta t^n \left(F(W_i^n, W_{i+1}^n) - F(W_{i-1}^n, W_i^n) \right) = 0$$

with F the numerical flux to be defined for each scheme. In this work : **Relaxation scheme** 7 .

Second step: the fractions are relaxed in accordance with the source terms, once the thermodynamical equilibrium is computed.

The thermodynamical equilibrium is the state $(\bar{\alpha_v}, \bar{y_v}, \bar{z_v}, \bar{y_a}, \bar{z_a})$ which maximizes the mixture entropy s for a given specific volume τ and internal energy e.

7. Chalons C., Coulombel J.F., (2008), JMAA, Vol. 348, pp. 872-893

Conditions of thermodynamical equilibrium depending on the present fields

Equilibrium $I \oplus (v + a)$:

$$\left\{ \begin{array}{l} T_I(\bar{\mathcal{V}}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = T_v(\bar{\mathcal{V}}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v) = T_a(\bar{\mathcal{V}}_a,\bar{\mathcal{M}}_a,\bar{\mathcal{E}}_a) \\ P_I(\bar{\mathcal{V}}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = P_v(\bar{\mathcal{V}}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v) + P_a(\bar{\mathcal{V}}_a,\bar{\mathcal{M}}_a,\bar{\mathcal{E}}_a) \\ \mu_I(\bar{\mathcal{V}}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = \mu_v(\bar{\mathcal{V}}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v). \end{array} \right.$$

Equilibrium | + v :

$$\left\{ \begin{array}{l} T_I(\bar{V}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = T_v(\bar{V}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v) \\ P_I(\bar{V}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = P_v(\bar{V}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v) \\ \mu_I(\bar{V}_I,\bar{\mathcal{M}}_I,\bar{\mathcal{E}}_I) = \mu_v(\bar{V}_v,\bar{\mathcal{M}}_v,\bar{\mathcal{E}}_v). \end{array} \right.$$

Equilibrium I (+) a :

$$\begin{cases}
T_{I}(\bar{\mathcal{V}}_{I}, \bar{\mathcal{M}}_{I}, \bar{\mathcal{E}}_{I}) = T_{a}(\bar{\mathcal{V}}_{a}, \bar{\mathcal{M}}_{a}, \bar{\mathcal{E}}_{a}) \\
P_{I}(\bar{\mathcal{V}}_{I}, \bar{\mathcal{M}}_{I}, \bar{\mathcal{E}}_{I}) = P_{a}(\bar{\mathcal{V}}_{a}, \bar{\mathcal{M}}_{a}, \bar{\mathcal{E}}_{a}).
\end{cases}$$

Equilibrium (v + a):

$$\mathcal{T}_{\nu}(\bar{\mathcal{V}}_{\nu},\bar{\mathcal{M}}_{\nu},\bar{\mathcal{E}}_{\nu})=\mathcal{T}_{a}(\bar{\mathcal{V}}_{a},\bar{\mathcal{M}}_{a},\bar{\mathcal{E}}_{a}).$$

+ monophasic cases.

SUPERCANON facility

- LOCA = accidental scenario in which a breach occurs in the primary circuit (validation test case).
- SUPERCANON: experimental facility⁸, reproducing a LOCA scenario.

A closed tube filled with liquid at 150 *bars* and $300^{\circ}C$ is suddenly opened in air at 1bar.

Experimental dataset : pressure with respect to time at points $P_1, ..., P_6$ and void fraction at P_t .

^{8.} B. Riegel, PhD, Contribution à l'étude de la décompression d'une capacité en régime diphasique 1978

Chosen EOS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulation

At-equilibrium simulations

	Left State	Right State
Fields in the mixture	Liquid water + Air	Air + Vapor (moist rate=55 %)
<i>y</i> _a ?	various <i>y</i> a	$y_v = 0.0085162$
Pressure (Pa)	150 bar	1 bar
Temperature (°C)	300 °C	20 °C

Relaxation time $\lambda = 0$.

Chosen EUS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulatio

Results: importance of out-of-equilibrium effects

Results: influence of y_a on the sound speed

5×10⁶ 0.002 0.004 0.006 0.008 0.01 in accordance with the experimental one.

Pressure near the tube wall within time.

Chosen EOS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulations

Out-of-equilibrium simulations

	Left State	Right State
Fields in the mixture	Liquid water + Air	Air + Vapor (moist rate=55 %)
<i>y</i> _a ?	$y_a = 5 \times 10^{-5}$	$y_{\nu} = 0.0085162$
Pressure (Pa)	150 bar	1 bar
Temperature (°C)	300 °C	20 °C

Relaxation time λ :

- defined with a toy law t_{toy};
- ullet defined with a simple model, based on nucleation theory t_{nuc} .

Toy law for relaxation time λ

$$\lambda = t_{toy} = \lambda_0 f(lpha_v) \exp\left(-\left(rac{lpha_v - ar{lpha_v}}{\delta lpha}
ight)^2
ight)$$

with the following parameters : $\lambda_0 = 10^{-2}$ s et $\delta\alpha = 5.75 \ 10^{-4}$, a = 1, b = 0.05, c = 0, $\alpha_1 = 0$, $\alpha_2 = 0.15$, $\alpha_3 = 0.25$, $\alpha_4 = 0.65$.

Definition of the function $\alpha \in [0, 1] \mapsto f(\alpha)$ used for the definition of λ .

Simplified model based on nucleation for relaxation time λ

Hypothesis : out-of-equilibrium effects related to the first bubbles appearance in liquid.

Arrhenius law:

$$\lambda = t_{nuc} = \frac{a_0}{\Delta P^3} \exp\left(\frac{\varphi E_a}{k_B T}\right)$$

$$arphi \in [exttt{0,1}]$$
 such as :

- ullet arphi o 0 : heterogeneous nucleation
- ullet arphi=1 : homogeneous nucleation.

Parameters definition:

- fixed $a_0 = P \times T$, P = 1bar; $T = 4.389m/1481 \text{ m.s}^{-1}$,
- variable $\varphi = \left\{ egin{array}{ll} 1 & \mbox{if } y_{\nu} + y_{a} < 10^{-9}, \\ (y_{\nu} + y_{a})^{2} & \mbox{otherwise.} \end{array} \right.$

In practical simulations :

- t_{nuc} relevant only while y_v stays small;
- *t_{nuc}* is regularized through a cosine function, to avoid too sharp discontinuities: some arbitrary thresholds appear...

First interesting qualitative results

Conclusion and perspectives

Main results

- NASG-CK EOS is a good compromise between simplicity and accuracy for liquid water.
- Non-condensable gas has an influence on the thermodynamical properties of the mixture, such as the sound speed.
- Out-of-equilibrium effects are important to obtain realistic results on sudden depressurization such as SUPERCANON test case.

Perspectives :

- With three fields, the thermodynamical equilibrium computation may be tricky (numerical threshold on fractions for missing fields).
- Some improvements are needed on relaxation time scale λ modelling.

Chosen EOS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulations

Some references

- Preprint: O. Hurisse, L. Quibel, Simulations of a two-phase flow homogeneous model with a gaseous phase as a miscible mixture of vapor and non-condensable gas.
- T. Barberon, P. Helluy, Finite volume simulation of cavitating flows, Computers and Fluids 34 (7) (2005) 832–858.
- H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM: Mathematical Modelling and Numerical Analysis 53 (1) (2019) 63–84.
- Gloria Faccanoni, Samuel Kokh, and Grégoire Allaire. "Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1029-1054.
- P. Boivin, M. Cannac, O. Le Metayer, A thermodynamic closure for the simulation of multiphase reactive flows, International Journal of Thermal Sciences 137 (2019) 640–649.

Out-of-equilibrium SUPERCANON simulations, with several EOS

With SG EOS for liquid.

 $^{^{9}}$ With IAPWS look-up table for liquid. 10

^{9.} Hurisse O., (2017), Computers and Fluids, Vol. 152.

^{10.} Hurisse O., Quibel L., (2020), ATH2020 proceedings.

Algorithm to compute the thermodynamical equilibrium

- If $y_a = 1$: monophasic a equilibrium, END.
- - If admissible : I + v equilibrium, END.
 - Else :
 - If $s_l(\tau, e) > s_v(\tau, e)$: monophasic I equilibrium, END.
 - Else: monophasic v equilibrium, END.
- Else : try to compute a I ⊕ (v + a) equilibrium :
 - If admissible : I (v + a) equilibrium, END.
 - Else :
 - If $s_{Ia}(y_a, \tau, e) > s_{Va}(y_a, \tau, e) : I \oplus a$ equilibrium, END.
 - Else: (v + a) equilibrium, END.

Empirical method to fit NASG-CK EOS coefficient

A point $(P_0 = 80bar, T_0 = 425K)$ is chosen:

- $\tau_0(P_0, T_0)$, $\alpha_{P,0}(P_0, T_0)$, $C_{V,0}(P_0, T_0)$ and $c_0(P_0, T_0)$ are obtained with the IAPWS-97 formulation.

$$\mathcal{A}_{I} = (\gamma^{NASG-CK} - 1) \times C_{v}^{NASG-CK} = \left(\frac{1}{c_0^2 \alpha_{P,0}^2 T_0} + \frac{1}{C_{p}^{NASG-CK}}\right)^{-1}.$$

- $C_v^{NASG-CK} = C_{v,0}(P_0, T_0)$, so that $\gamma^{NASG-CK} = \frac{A_I}{C_{v,0}(P_0, T_0)} + 1$.
- $\exists \ \Pi_l \text{ and } b_l \text{ are deduced from } \tau_0 \text{ and } \mathcal{B}_l : \\ \Pi_l = \frac{\mathcal{B}_l + T_0 \times \mathcal{A}_l}{\tau_0} P_0 \text{ and } b_l = \frac{\mathcal{B}_l}{(P_0 + \Pi_l)}.$

Building of analytical solutions

Riemann problem with one intermediate state; U-c: "ghost wave"; U: contact wave; U+c: shock wave; c is the sound speed.

Analytical solution :

- in the domain 1: initial left state $(\alpha_L, y_L, z_L, U_L, \tau_L, e_L)$;
- in the domain 2: intermediate state $(\alpha_*, y_*, z_*, U_*, \tau_*, e_*)$;
- in the domain 3: initial right state $(\alpha_R, y_R, z_R, U_R, \tau_R, e_R)$.

Chosen EOS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulations

A more accurate EOS: IAPWS-IF97 11

In each region, a different EOS is provided with a polynomial obtained by interpolation of experimental data.

Pros:

+ Accurate.

Cons:

 High CPU-time consuming: impossible to use it directly in industrial simulations!

^{11.} Wagner, W. and Kretzschmar, H.-J. (2008), "International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97"

Construction of IAPWS-IF97 look-up table

- IAPWS EOS is sampled in (P, T)-plane, with local refinement to get a compromise between CPU-time efficiency and accuracy.
- ② Gibbs relation has to be fulfilled : $d\mu = -sdT + \tau dP$.
- ullet μ is \mathcal{C}^1 ; on the widest cells, μ is obtained from IAPWS; on smaller cells, μ is computed to ensure the continuity of μ , s and τ at the junction between cells of different size.

Chosen EUS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulations

Comparison of EOS: accuracy/efficiency on a given test case

EOS	SG	NASG-CK	IAPWS look-up table	IAPWS
CPU time?	1	≃ 2	8	700
Max relative error?	≥ 40%	≥ 20%	10 ⁻⁵	Ref

IAPWS look-up table is much cheaper than the direct IAPWS formulation, for an equivalent accuracy. Its CPU-cost is reasonable with respect to analytical EOS.

Possibility of verification with the look-up table?

Two Riemann problems have been defined :

- one using a Stiffened Gas EoS;
- one using the look-up table.

Three convective numerical schemes have been compared on convergence studies :

- Rusanov scheme ¹²;
- VFRoe-ncv scheme ¹³;
- a relaxation scheme proposed by Chalons and Coulombel ¹⁴.

^{12.} Rusanov V., (1961), ZVMMF, Vol. 1, pp. 267-279.

^{13.} Buffard T., Gallouët T., Hérard J.-M., (2000), Computers and Fluids, Vol. 29, pp. 813–847.

^{14.} Chalons C., Coulombel J.F., (2008), Journal of Mathematical Analysis and Applications, Vol. 348, pp. 872–893.

Robustness and accuracy of the relaxation scheme

log(L1-error) VS log(mesh size) (from 100 to 250 000 cells)

- Verification is possible with IAPWS look-up table.
- VFRoe-ncv scheme is not robust enough when using the look-up table.
- The relaxation scheme is very robust and far more accurate than Rusanov scheme.

Chosen EOS
Numerical implementation
SUPERCANON simulations: at equilibrium simulations
SUPERCANON simulations: out-of-equilibrium simulations

Verification test cases for several configurations with IAPWS look-up table

Waves	Equilibrium	EOS	Initial states Left/Right
Contact	No	LuT	liq. + vap. / liq. + vap.
Shock	No	LuT	liq. + vap. / liq. + vap.
Contact + shock	No	SG	liq. + vap. / liq. + vap.
Contact + shock	No	LuT	liq. + vap. / liq. + vap.
Contact	Yes	LuT	liq. + vap. / liq. + vap.
Shock	Yes	LuT	liq. + vap. / liq. + vap.
Contact + shock	Yes	LuT	liq. + vap. / liq. + vap.
Contact	Yes	LuT	liq. / liq. + vap.
Shock	Yes	LuT	liq. / liq. + vap.

 \rightarrow A far more complete study is available in ¹⁵.

^{15.} Quibel L., Helluy P., Hurisse, O., (2020), "Assessment of numerical schemes for complex two-phase flows with real equations of state", Computers and Fluids, Vol. 29, pp. 813–847.

Relaxation scheme ¹⁶

One additionnal scalar unknown is introduced \mathcal{T} , so that $(\rho \mathcal{T})_i^0 = 1 \ \forall i$.

- New pressure $\Pi = P(\mathcal{T}, s) + a^2(\mathcal{T} \tau)$;
- Relaxation specific total energy $\Sigma = \frac{u^2}{2} + e(\mathcal{T}, s) + \frac{\Pi^2 P^2(\mathcal{T}, s)}{2a^2}$;

where a is a positive constant which should satisfy a stability condition :

$$a^{2} > \max(-\partial_{\tau}p(\tau_{r}), -\partial_{\tau}p(\tau_{l})) = \max(\frac{|C_{l}|}{\tau_{l}}, \frac{|C_{r}|}{\tau_{r}})$$
 (1)

This enlarged system is solved, with all the characteristic fields linearly degenerate :

$$\begin{cases}
\partial_{t}\rho + \partial_{x}(\rho U) = 0 \\
\partial_{t}(\rho U) + \partial_{x}(\rho U^{2} + \Pi) = 0 \\
\partial_{t}(\rho \Sigma) + \partial_{x}(\rho U \Sigma + U \Pi) = 0 \\
\partial_{t}(\rho Y) + \partial_{x}(\rho Y U) = 0 \\
\partial_{t}(\rho T) + \partial_{x}(\rho T U) = \frac{1}{\epsilon}\rho(\tau - T)
\end{cases} (2)$$

^{16.} Chalons C., Coulombel J.F., (2008), Journal of Mathematical Analysis and Applications, Vol. 348, pp. 872–893.