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Abstract

The aim of this talk is to study the well-posedness, stability and robust-
ness of a class of nonlinear Lagrangian dynamical systems with a multivalued
controller of the form:

M(q(t))q̈(t)+C(q(t), q̇(t))q̇(t)+rV(q(t))+F (t, q(t), q̇(t)) 2 �@�(q̇(t)) (1)

for a.e. t � t0 where t0 2 R is fixed, � : dom(�) = Rn ! R is a convex
function, V 2 C

1
(Rn

;R), F : R ⇥ Rn ⇥ Rn ! Rn is continuous in t,
uniformly locally Lipschitz in x1, x2, the matrices M(q), C(q, q̇) 2 Rn⇥n,
and @� stands for the convex subdifferential of �. The model in (1) appears
widely in many scientific fields such as physics, economics, biology, electri-
cal engineering, and especially in unilateral mechanics. The vector q repre-
sents the generalized coordinates, n is the number degrees of freedom, M(q)

is the inertia matrix, C(q, q̇) is the centripetal - Coriolis matrix. The function
F (t, q(t), q̇(t)) represents a perturbation force which is usually bounded by
a constant. Historically, numerous articles deal with the case when M and C

are constant matrices, but the study of (1) is very limited.

In addition, the piecewise linear approximate function constructed by the
following implicit time-discretized scheme:
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is proved to converge to a solution of (1) with order 1/2.
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