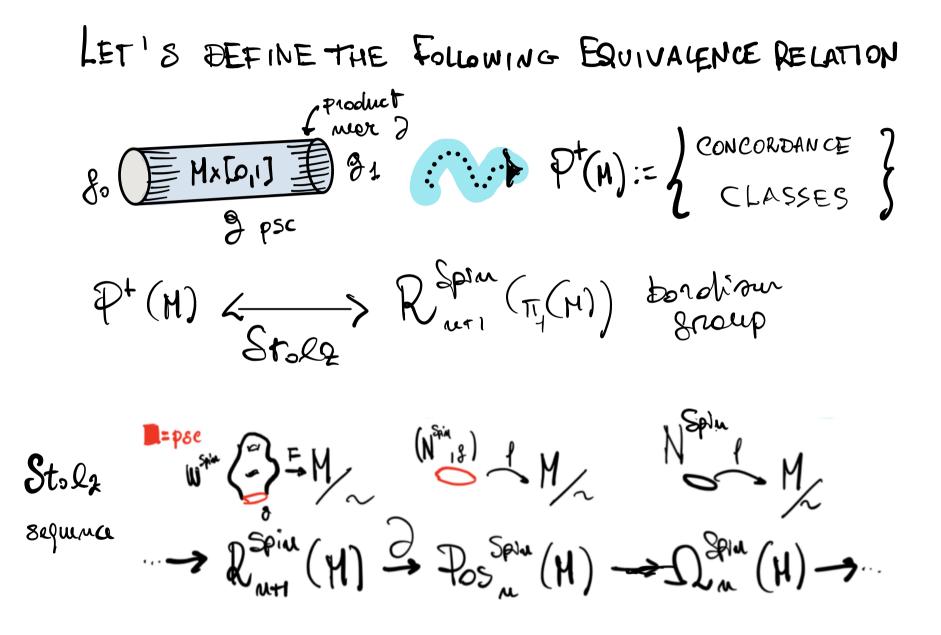
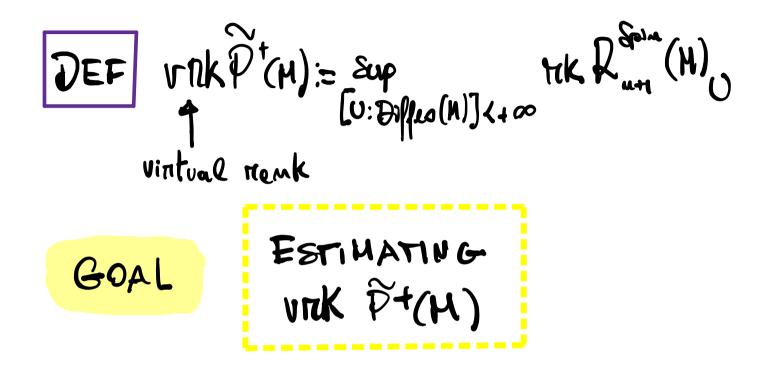


$$\frac{\text{DEF}}{\text{Uol}\left(\mathcal{B}_{\alpha}^{(\mathbf{H},\mathbf{g})}\right)} = 1 - \frac{\text{Scel}_{\alpha}(\mathbf{g})}{6(\mathbf{M},\mathbf{g})} \pi^{2} + O(\pi^{4})$$

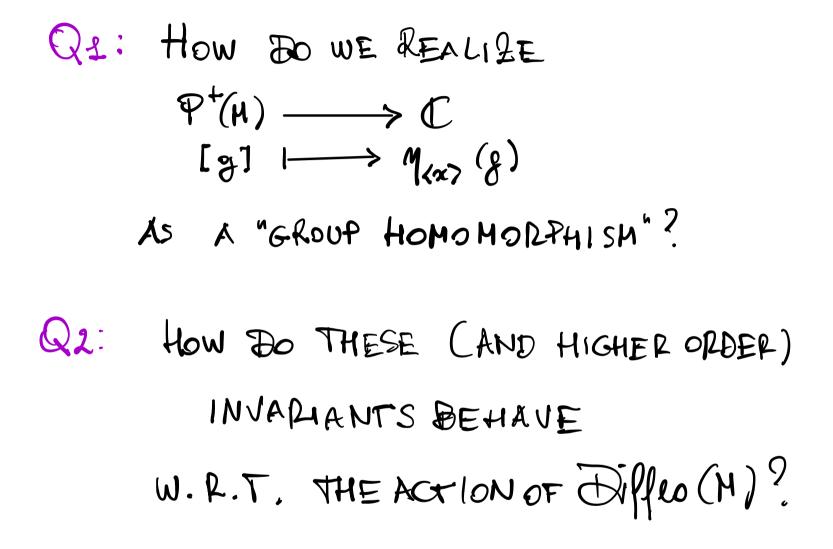


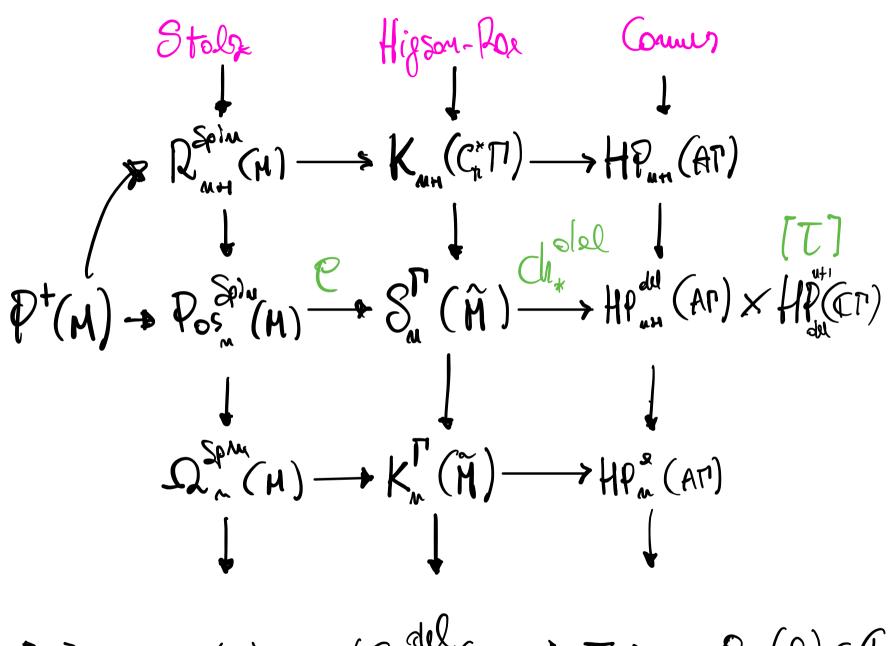


To THIS AIM WE WILL USE

HIGHER DEGCALIZED INVARIANTS OF THE DIRAC OPERATORS ON M.

(N,g) Riemennien Spin mp $\beta_g \rightarrow H$ Spinon bundle **DEF** $\mathcal{D}_{g}: S \mapsto \Sigma_{c(e_i)} \nabla_{e_i} S \in C^{\infty}(\mu; g_g)$ Elliptic differential => Frucholm. LICHNEROWICE FORMULA $\mathcal{D}_{g}^{2} = \nabla^{*}\nabla + \frac{1}{4}\operatorname{scel}(g)$ Cor scal(g)>0 => De invertible





 $[g] \longmapsto \varrho(g) \mapsto \langle Ch_*^{del}(o(g)), T \rangle := \mathcal{C}_{\mathcal{T}}(g) \in ([$

THEOPEN (PIAZZA - Schick - Z. 2019 - 2021)
IF e dim M
$$\geq 5$$
 s.t. $\exists g$ with scal(3)>0
 $f:=\pi_1(H)$ hyperboloc
 $s.t. |Out(T)| < 100$
THEN
 $e_{f(g)}:=f_{F_{T_{n}}}\int_{H^{-1}}\pi_n(\chi_{(g)})f_{(g)} - \chi_{(g_{n})}\pi_n(g_{n-1},g_{n-1}))due_{g} \cdot \tau(g_{n-1},g_{n-1})}$
is well - defined
 $v\pi(k_{(P^{+}(H))}) \geq \sum_{\substack{K>0\\ P=0}}oliw_{H}C^{u+1} - 4k-2p(T)$

Working Progress (H,H) Folsetion
2. 619
8F PSC
$$\rightarrow e(8F) \in k_* (C_n^*(Mbn(H,H))_{od}))$$

 $\downarrow Ch_{S}^{dl}(Mbn(H,H))_{od}))$
 $\downarrow Ch_{S}^{dl}(Mbn_{S}(H,H)))$
 $HP_*^{old}(Q(Mon_S(H,H))))$
 χ
 $HP_*^{bl}(Q(Mbn_S(H,H))))$
 $e_t(g_F) \in Q$ if the monophomy good is hyperbolic
 $eosy$ for Riemennion folseted builds
 $eosy$ for Riemennion folseted builds

