
$Q^{+}(M):=\left\{\begin{array}{l}g \text { Riememinien metrics on M } \\ \text { suck that sal }(f)>0\end{array}\right\}$SMooth and Closeddim $M=\mu$ ODDM Spin
DEF

$$
\frac{\operatorname{Val}\left(\mathcal{B}_{x}^{\left(n_{1}\right)}(r)\right)}{\operatorname{Val}\left(B_{0}^{\mathbb{F}_{0}^{n}}(r)\right)}=1-\frac{x_{a l}(f)}{6(u+2)} r^{2}+o\left(r^{4}\right)
$$

$Q:$ How Rich is $\mathbb{R}^{+}(M)$?

Let's aefine the following Equivalence relation

$$
\begin{aligned}
& \begin{array}{l}
\text { Product } \\
\text { neer }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P^{+}(M) \underset{\text { Stolz }}{\longrightarrow} R_{\text {uT1 }}^{\text {Spin }}\left(\pi_{+}(M)\right) \begin{array}{c}
\text { bondiour } \\
\text { Sroup }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sequance } \cdots R_{\mu+1}^{\text {spiu }}(M) \xrightarrow{\partial} \operatorname{Pos}_{\mu}^{\text {spiu }}(M) \rightarrow \Omega_{\mu}^{\text {spin }}(H) \rightarrow
\end{aligned}
$$

Diffeo (M) acts on $P^{+}(M)$

GOAL
Estimating work $\widetilde{P}+(M)$

To This AIM WE WILL USE higher delocalized invariants of the Dirac operators on M.
(M, g) Riememien $\delta_{\text {pin }}$ ans $\phi_{g} \rightarrow M$
spinor baudle
DEF $\varnothing_{g}: s+\sum c\left(R_{i}\right) \nabla_{Q_{i}} s \in C^{\omega}\left(\mu_{i} \phi_{g}\right)$
Elliptic differmitial \Rightarrow Frudholur.
Lichnerowicz Formula

$$
D_{g}^{2}=\nabla^{*} \nabla+1 / 4 \operatorname{scol}(y)
$$

CoR Scal (8) $>0 \Rightarrow \Phi_{8}$ invertible
$\Gamma \rightarrow \tilde{M} \rightarrow M$ UNIVERSAL COVERING $\leadsto \widetilde{D}_{g} \Gamma$-inverieat loft

$$
\operatorname{scol}(z)>0 \Rightarrow \frac{\widetilde{\varnothing}_{8}}{\left|\tilde{ø}_{8}\right|}
$$

Well-olfined cuitery iu $\varphi_{\Gamma}^{0}(\hat{\mu})$ (Γ - equiverovent $9 D_{0}$)

Ex: Lott's delocalized η-inveriants

$$
\eta_{\langle x\rangle}(g):=\frac{1}{2} \sum_{\gamma \in\langle x\rangle} \int_{V_{k}} T_{r}\left(\frac{\tilde{D}_{g}}{\left|\mathscr{D}_{g}\right|}\left(\tilde{m} \gamma_{1} \tilde{m}\right)\right) d \operatorname{vol}_{g}(\tilde{m})
$$

condagency elers of Γ Rfindermental doweise

Q1: How do we realize

$$
\begin{aligned}
\Phi^{+}(\mu) & \longrightarrow \mathbb{C} \\
{[g] } & \longmapsto \eta_{\langle x\rangle}(g)
\end{aligned}
$$

As A "GROUP HOMOMORPHISM"?

Q2: How do THESE (AND HIGHER ORDER)
INVARIANTS BEHAVE
W.R.T. THE ACTION OF Differs (M)?

$$
[g] \mapsto p(g) \mapsto\left\langle C_{h_{*}}^{\operatorname{del}}(o(g)), \tau\right\rangle:=e_{\tau}(g) \in \mathbb{C}
$$

DEFINITION/THEOREM (Z. 2019)
The Higrom-Roe exect sepuence is induced in k-theary by the fallowing SES:

$$
0 \rightarrow \Sigma \otimes C_{\pi}^{*}(\tilde{M} \times \tilde{\Gamma}) \rightarrow\left(C(M) \subset \varphi_{\Gamma}^{0}(\tilde{M})\right) \rightarrow C_{0}\left(T^{*} M\right) \rightarrow 0
$$

THEOREM/DEFINITION (BURGHELEA)

THEDREM (PiAzza-Saricr-z.2019-2021)
IF. $\operatorname{dim} M \geq 5$ s.t. \exists gith soal g) >0 - $\Gamma:=\pi_{1}(M)$ hy perboloc

$$
\text { s.t. } \mid \text { Out }(\Gamma) \mid<+\infty
$$

THEN

- vikk $\left(\tilde{P}^{+}(\mu)\right) \geq \sum_{\substack{k=0 \\ p=0,1}} \operatorname{dim} H C^{u+1-4 k-2 p}(\mathbb{T} \rho)$

Working Progress (μ, y) Fobietion

$$
\begin{aligned}
& \text { Z. } 2019
\end{aligned}
$$

 $e_{\tau}\left(\partial_{F}\right) \in \mathbb{C}$ if the monootionny gpd is hyperbdic

- easy for hicmemuisan folseted buidlles
- chelluging for geuerd tobefieus.

