
On Hamilton-Jacobi partial differential
equation and architectures of neural networks

Jérôme Darbon

Division of Applied Mathematics, Brown University

ICODE Workshop on numerical solution of HJB equation
January 9, 2020

Joint work with Tingwei Meng and Gabriel Provencher Langlois
Work supported by NSF DMS 1820821

J. Darbon, ICODE workshop, January 2020 1 / 27

Context and motivation

Consider the initial value problem
∂S
∂t

(x , t) + H(∇x S(x , t), x , t) = ε4S(x , t), in Rn × (0,+∞)

S(x , 0) = J(x) ∀x ∈ Rn.

Goals: compute the viscosity solution for a given (x , t) ∈ Rn × [0,+∞)

evaluate S(x , t) and ∇x S(x , t)
very high dimension
fast to allow applications requiring real-time computations
low memory and low energy for embedded system

Pros and cons for computations with grid-based approaches:

many advanced and sophisticated numerical schemes (e.g., ENO, WENO,
DG) with excellent theoretical properties
the number of grid-points is exponential in n

→ using numerical approximations is not doable for n ≥ 4

J. Darbon, ICODE workshop, January 2020 2 / 27

Overcoming/mitigating the curse of dimensionality

Several approaches to mitigate/overcome the curse of differentiability
Max-plus methods
[Akian, Dower, McEneaney, Flening, Gaubert, Qu . . .]
Tensor decomposition methods
[Doglov, Horowitz, Kalise, Kunisch, Todorov, . . .]
Sparse grids
[Bokanovski, Garcke, Grieble, Kang, Klompmaker, Kröner, Wilcox]
Model order reduction
[Alla, Kunisch, Falcone, Wolkwein, . . .]
Optimization techniques via representation formulas
[D., Dower, Osher, Yegerov, . . .]
. . .

More recently, there is a significant trend in using Machine Learning and
Neural Network techniques for solving PDEs
→ A key idea is to leverage universal approximation theorems

J. Darbon, ICODE workshop, January 2020 3 / 27

Neural Network: a computational point of view

Pros and cons of Neural Networks for evaluating solutions
It seems to be hard to find Neural Networks that are interpretable,
generalizable which yield reproducible results
Huge computational advantage

dedicated hardware for NN is now available: e.g., Xilinx AI (FPGA + silicon design),
Intel AI (FPGA + new CPU assembly instructions), and many other (startup)
companies
high throughput / low latency (more precise meaning of “fast”)
low energy requirement (e.g., a few Watts)

→ suitable for embedded computing and data centers

Can we leverage these computational resources for high-dimensional
H-J PDEs?
How can we mathematically certify that Neural Networks (NNs) actually
computes a viscosity solution of a H-J PDE?

⇒ Establish new connections between NN architectures and representation
formulas of H-J PDE solutions
→ the physics of some H-J PDEs can be encoded by NN architecture
→ the parameters of the NN define Hamiltonians and initial data
→ no approximation: exact evaluation of S(x , t) and ∇x S(x , t)
→ suggests an interpretation of some NN architectures in terms of H-J PDEs
→ does not rely on NN universal approximation theorems

J. Darbon, ICODE workshop, January 2020 4 / 27

Outline

1. Shallow NN architectures and representation of solution of H-J PDEs

1 A class of first-order H-J
2 Associated conservation law (1D)
3 A class of second order H-J

2. Numerical experiments for solving some inverse problems involving H-J using
data and learning/optimization algorithms

3. Suggestions of other NN architectures for other H-J PDEs

4. Some conclusions

J. Darbon, ICODE workshop, January 2020 5 / 27

A first shallow network architecture

Architecture: fully connected layer followed by the activation function “max-pooling”

This network defines a function f : Rn × [0,+∞)→ R

f (x , t ; {pi , θi , γi}m
i=1) = max

i∈{1,...,m}
{〈pi , x〉 − tθi − γi}.

Goal: Find conditions on the parameters such that f satisfies a PDE, and find
the PDE

J. Darbon, ICODE workshop, January 2020 6 / 27

Assumptions on the parameters

Recall: the network f (x , t ; {pi , θi , γi}m
i=1) = maxi∈{1,...,m}{〈pi , x〉 − tθi − γi}

We adopt the following assumptions on the parameters:

(A1) The parameters {pi}
m
i=1 are pairwise distinct, i.e., pi 6= pj if i 6= j .

(A2) There exists a convex function g : Rn → R such that g(pi) = γi .
(A3) For any j ∈ {1, . . . ,m} and any (α1, . . . , αm) ∈ Rm that satisfy

(α1, . . . , αm) ∈ ∆m with αj = 0,∑
i 6=j αipi = pj ,∑
i 6=j αiγi = γj ,

there holds
∑

i 6=j αiθi > θj .

where ∆m denotes the unit simplex of dimension m

(A1) and (A3) are NOT strong assumptions.
- (A1) simplifies the mathematical analysis - (A3) simply states the each “neuron” should
contribute to the definition of f .
- If (A3) is not satisfied, then it means that some neurons can be removed and the NN still
defines the same function f

J. Darbon, ICODE workshop, January 2020 7 / 27

Define initial data and Hamiltonians from parameters

Recall: the network f

f (x , t ; {pi , θi , γi}m
i=1) = max

i∈{1,...,m}
{〈pi , x〉 − tθi − γi} (1)

Define the initial data J using the NN parameters {pi , γi}m
i=1

f (x , 0) = J(x) := max
i∈{1,...,m}

{〈pi , x〉 − γi} (2)

Then, J : Rn → R is convex, and its Legendre transform J∗ reads

J∗(p) =

min(α1,...,αm)∈∆m∑m
i=1 αi pi =p

{∑m
i=1 αiγi

}
, if p ∈ conv ({pi}m

i=1),

+∞, otherwise.

Denote by A(p) the set of minimizers in the above optimization problem.

Define the Hamiltonian H : Rn → R ∪ {+∞} by

H(p) :=

{
infα∈A(p)

{∑m
i=1 αiθi

}
, if p ∈ dom J∗,

+∞, otherwise.
(3)

J. Darbon, ICODE workshop, January 2020 8 / 27

NN computes viscosity solutions

Theorem

Assume (A1)-(A3) hold. Let f be the neural network defined by Eq. (1) with parameters
{(pi , θi , γi)}m

i=1. Let J and H be the functions defined in Eqs. (2) and (3), respectively, and let
H̃ : Rn → R be a continuous function. Then the following two statements hold.

(i) The neural network f is the unique uniformly continuous viscosity solution to the
Hamilton–Jacobi equation{

∂f
∂t (x , t) + H(∇x f (x , t)) = 0, x ∈ Rn, t > 0,
f (x , 0) = J(x), x ∈ Rn.

(4)

Moreover, f is jointly convex in (x ,t).

(ii) The neural network f is the unique uniformly continuous viscosity solution to the
Hamilton–Jacobi equation{

∂f
∂t (x , t) + H̃(∇x f (x , t)) = 0, x ∈ Rn, t > 0,
f (x , 0) = J(x), x ∈ Rn.

(5)

if and only if H̃(pi) = H(pi) for every i = 1, . . . ,m and H̃(p) > H(p) for every p ∈ dom J∗.

J. Darbon, ICODE workshop, January 2020 9 / 27

NN computes viscosity solutions

The network computes viscosity solution for H and J given by parameters

Hamiltonians are not unique. However, among all possible Hamiltonians, H is the smallest
one.

In addition, ∇x S(x , t) (when it exists) is given by the element that realizes the maximum is
the “max-pooling”

J. Darbon, ICODE workshop, January 2020 10 / 27

NN computes viscosity solutions: An example

Consider Jorig(x) = ‖x‖∞ and Horig(p) = − ‖p‖
2
2

2 for every x ,p ∈ Rn.

Denote by ei the i th standard unit vector in Rn. Let m = 2n, {pi}m
i=1 = {±ei}n

i=1, θi = − n
2 ,

and γi = 0 for every i ∈ {1, . . . ,m}.
The viscosity solution S is given by

S(x , t) = ‖x‖∞ +
nt
2

= max
i∈{1,...,m}

{〈pi , x〉 − tθi − γi}, for every x ∈ Rn and t > 0.

Hence, S can be represented using the proposed neural network with parameters
{(pi ,− n

2 , 0)}m
i=1.

The parameters {(pi ,− n
2 , 0)}m

i=1 define the following initial data and smallest Hamiltonian

J(x) = ‖x‖∞, for every x ∈ Rn;

H(p) =

{
− n

2 , p ∈ Bn;

+∞, otherwise,

where Bn is the unit ball with respect to the l1 norm in Rn, i.e.,
Bn = conv {±ei : i ∈ {1, . . . , n}}

By Thm. 1, S is a viscosity solution to the HJ PDE (5) if and only if H̃(pi) = − n
2 for every

i ∈ {1, . . . ,m} and H̃(p) ≥ − n
2 for every p ∈ Bn \ {pi}m

i=1.

Therefore, the Hamiltonian Horig is one candidate satisfying these constraints.

J. Darbon, ICODE workshop, January 2020 11 / 27

Architecture for the gradient map

This NN architecture computes the spatial gradient of the solution (i.e.,
the momentum)
Consider u : Rn × [0,+∞)→ Rn defined by

u(x , t) = ∇x f (x , t) = pj , where j ∈ argmax
i∈{1,...,m}

{〈pi , x〉 − tθi − γi}. (6)

J. Darbon, ICODE workshop, January 2020 12 / 27

NN architecture and 1D conservation laws

Theorem

Consider the one-dimensional case, i.e., n = 1. Suppose assumptions (A1)-(A3) hold. Let
u := ∇x f be the function from R× [0,+∞) to R defined in Eq. (6). Let J and H be the functions
defined in Eqs. (2) and (3), respectively, and let H̃ : R→ R be a locally Lipschitz continuous
function. Then the following two statements hold.

(i) The neural network u is the entropy solution to the conservation law{
∂u
∂t (x , t) +∇x H(u(x , t)) = 0, x ∈ R, t > 0,
u(x , 0) = ∇J(x), x ∈ R.

(7)

(ii) The neural network u is the entropy solution to the conservation law{
∂u
∂t (x , t) +∇x H̃(u(x , t)) = 0, x ∈ R, t > 0,
u(x , 0) = ∇J(x), x ∈ R,

(8)

if and only if there exists a constant C ∈ R such that H̃(pi) = H(pi) + C for every
i ∈ {1, . . . ,m} and H̃(p) > H(p) + C for any p ∈ conv {pi}m

i=1.

J. Darbon, ICODE workshop, January 2020 13 / 27

Another shallow architecture

Replace “max-pooling” by “smooth max pooling”.

This network defines a function f : Rn × [0,+∞)→ R

fε(x , t) := ε log

(m∑
i=1

e(〈pi ,x〉−tθi−γi)/ε

)
.

J. Darbon, ICODE workshop, January 2020 14 / 27

Specialize this architecture

Specialize the parameters: θi = − 1
2‖pi‖2

2 for i = 1, . . . ,m

This network defines the function f : Rn × [0,+∞)→ R

fε(x , t) := ε log

(
m∑

i=1

e(〈pi ,x〉+
t
2 ‖pi‖

2
2−γi)/ε

)
. (9)

J. Darbon, ICODE workshop, January 2020 15 / 27

NN computes viscosity solutions of some second
order H-J PDEs

Theorem

Let fε defined by (9) with parameters {pi , θi , γi}m
i=1 and let θi = − 1

2 ‖pi‖
2
2 for

i ∈ {1, . . . ,m}. For every ε > 0, the neural network fε ≡ ε log (wε) is the unique
smooth solution to the second-order Hamilton–Jacobi equation{

∂fε(x,t)
∂t − 1

2 ‖∇x fε(x , t)‖2
2 = ε

24x fε(x , t) in Rn × (0,+∞),

fε(x , 0) = ε log
(∑m

i=1 e(〈pi ,x〉−γi)/ε
)

∀x ∈ Rn.
(10)

Moreover, fε is jointly convex in (x , t) and the following holds

lim
ε→0
ε>0

fε(x , t) = max
i∈{1,...,m}

{〈pi , x〉+
t
2
‖pi‖

2
2 − γi} (11)

for every x ∈ Rn and t > 0. Finally, if assumptions (A1)-(A3) hold, then the right hand
side of (11) solves the first-order Hamilton–Jacobi equation (5) with H̃ := − 1

2 ‖·‖
2
2.

J. Darbon, ICODE workshop, January 2020 16 / 27

Partial summary

We have exhibited classes of network architecture that represent
viscosity solution of some H-J PDEs
Initial data and Hamiltonians are induced by the parameters of the
network

Initial datum is completely determined by the parameters of the NN
Hamiltonians are not unique, but there exists a smallest Hamiltonian that is
completely determined by the parameters of the NN.

J. Darbon, ICODE workshop, January 2020 17 / 27

Outline

1. Shallow NN architectures and representation of solution of H-J PDEs

1 A class of first-order H-J
2 Associated conservation law (1D)
3 A class of second order H-J

2. Numerical experiments for solving some inverse problems involving H-J using
data and learning/optimization algorithms

3. Suggestions of other NN architectures for other PDEs

4. Some conclusions

J. Darbon, ICODE workshop, January 2020 18 / 27

Trying to solve some simple inverse problems

We are given data samples {(x j , tj ,S(x j , tj))}N
j=1, where {(x j , tj)}N

j=1 ⊂ Rn × [0,+∞), we
train the neural network f with structure linear + max-pooling using the mean square loss
function defined by

l({(pi , θi , γi)}m
i=1) =

1
N

N∑
j=1

|f (x j , tj ; {(pi , θi , γi)}m
i=1)− S(x j , tj)|2.

The training problem is formulated as
arg min

{(pi ,θi ,γi)}m
i=1⊂Rn×R×R

l({(pi , θi , γi)}m
i=1).

After training, we approximate the initial condition in the HJ equation, denoted by J̃, by
evaluating the trained neural network at t = 0, i.e., we approximate the initial condition by

J̃ := f (·, 0).

We obtain partial information of the Hamiltonian H using the parameters in the trained
neural network via the following procedure: (i) detect the effective neurons of the network,
which we define to be the affine functions {〈pi , x〉 − tθi − γi} that contribute to the
pointwise maximum in the neural network f . Denote by L the set of indices that
correspond to the parameters of the effective neurons, i.e.,

L :=
⋃

x∈Rn, t≥0

arg max
i∈{1,...,m}

{〈pi , x〉 − tθi − γi},

and we finally use each effective parameter (pl , θl) for l ∈ L to approximate the point
(pl ,H(pl)) on the graph of the Hamiltonian.

J. Darbon, ICODE workshop, January 2020 19 / 27

Randomly piecewise affine Hamiltonian and Initial data

We randomly select m parameters ptrue
i in [−1, 1)n for i ∈ {1, . . . ,m}, and define θtrue

i
and γtrue

i as follows

Case 1. θtrue
i = −‖ptrue

i ‖2 and γ true
i = 0, for i ∈ {1, . . . ,m}.

Case 2. θtrue
i = −‖ptrue

i ‖2 and γ true
i = 1

2‖p
true
i ‖

2
2, for i ∈ {1, . . . ,m}.

Case 3. θtrue
i = − 1

2‖p
true
i ‖

2
2 and γ true

i = 0, for i ∈ {1, . . . ,m}.
Case 4. θtrue

i = − 1
2‖p

true
i ‖

2
2 and γ true

i = 1
2‖p

true
i ‖

2
2, for i ∈ {1, . . . ,m}.

Define the function S as

S(x , t) := max
i∈{1,...,m}

{〈ptrue
i , x〉 − tθtrue

i − γtrue
i }.

By our Thm. this function S is a viscosity solution to the HJ equations whose Hamiltonian
and initial function are the piecewise affine functions.

We train the neural network f with training data {(x j , tj ,S(x j , tj))}N
j=1, where the points

{(x j , tj)}N
j=1 are randomly sampled in Rn × [0,+∞) with respect to the standard normal

distribution for each j ∈ {1, . . . ,N}
- The number of training data points is N = 20,000. We run 60,000 descent steps using
the Adam optimizer to train the neural network f .
- The parameters for the Adam algorithm are chosen to be β1 = 0.5, β2 = 0.9, the
learning rate is 10−4 and the batch size is 500.

J. Darbon, ICODE workshop, January 2020 20 / 27

Measure of performance

We compute the relative mean square errors of the sorted parameters in the trained
neural network, denoted by {(pi , θi , γi)}m

i=1, and the sorted underlying true parameters
{(ptrue

i , θtrue
i , γtrue

i)}m
i=1. To be specific, the errors are computed as follows

relative mean square error of {pi} =

∑m
i=1 ‖pi − ptrue

i ‖2
2∑m

i=1 ‖ptrue
i ‖2

2
,

relative mean square error of {θi} =

∑m
i=1 |θi − θtrue

i |2∑m
i=1 |θtrue

i |2
,

relative mean square error of {γi} =

∑m
i=1 |γi − γtrue

i |2∑m
i=1 |γtrue

i |2
.

We test Cases 1–4 on the neural networks with 2 and 4 neurons, and repeat the
experiments 100 times. We then compute the relative mean square errors in each
experiments and take the average.

Note that all relative errors should be 0 provided the optimizer is able to find a global
minimizer.

J. Darbon, ICODE workshop, January 2020 21 / 27

Numerical results: 2 neurons

Case Case 1 Case 2 Case 3 Case 4

Averaged
Relative
Errors of {pi}

2D 4.10E-03 2.10E-03 3.84E-03 2.82E-03
4D 1.41E-09 1.20E-09 1.38E-09 1.29E-09
8D 1.14E-09 1.03E-09 1.09E-09 1.20E-09
16D 1.14E-09 6.68E-03 1.23E-09 7.74E-03
32D 1.49E-09 3.73E-01 1.46E-03 4.00E-01

Averaged
Relative
Errors of {θi}

2D 4.82E-02 7.31E-02 1.17E-01 1.79E-01
4D 3.47E-10 2.82E-10 1.15E-09 1.15E-09
8D 1.47E-10 1.08E-10 2.10E-10 2.25E-10
16D 5.44E-11 1.69E-03 4.75E-11 4.12E-03
32D 3.61E-11 3.27E-01 6.42E-03 2.39E-01

Averaged
Relative
Errors of {γi}

2D 1.35E-02 1.01E-01 1.33E-02 9.24E-02
4D 3.71E-10 1.24E-09 3.67E-10 1.10E-09
8D 2.91E-10 1.74E-10 2.82E-10 2.01E-10
16D 2.80E-10 2.08E-04 3.10E-10 3.20E-04
32D 3.56E-10 1.88E-02 1.56E-01 3.62E-02

J. Darbon, ICODE workshop, January 2020 22 / 27

Numerical results: 4 neurons

Case Case 1 Case 2 Case 3 Case 4

Averaged
Relative
Errors of {pi}

2D 3.12E-01 2.21E-01 2.85E-01 2.14E-01
4D 7.82E-02 6.12E-02 7.92E-02 4.30E-02
8D 2.62E-02 4.31E-03 4.02E-02 7.82E-03
16D 2.88E-02 3.64E-02 4.35E-02 1.73E-02
32D 1.42E-02 3.72E-01 1.42E-01 5.04E-01

Averaged
Relative
Errors of {θi}

2D 2.59E-01 3.68E-01 4.82E-01 1.34E+00
4D 6.07E-02 8.37E-02 9.47E-02 1.23E-01
8D 1.04E-02 8.48E-03 1.41E-02 1.31E-02
16D 2.66E-03 2.53E-02 7.80E-03 1.90E-02
32D 8.09E-04 4.41E-01 1.81E-02 3.66E-01

Averaged
Relative
Errors of {γi}

2D 1.01E-02 3.19E-01 1.51E-02 2.65E-01
4D 6.72E-03 1.79E-02 1.03E-02 1.30E-02
8D 3.22E-03 2.34E-03 3.93E-03 2.65E-03
16D 9.48E-03 3.70E-03 1.92E-02 1.94E-03
32D 1.33E-02 5.35E-02 4.73E-01 1.17E-01

J. Darbon, ICODE workshop, January 2020 23 / 27

Partial summary

Off the shelf standard stochastic optimization optimizer used in machine
learning may not yield “good minimizer” for these non-convex
optimization problems
Other numerical experiments have been conducted and yield the same
mixed results.

J. Darbon, ICODE workshop, January 2020 24 / 27

Outline

1. Shallow NN architectures and representation of solution of H-J PDEs

1 A class of first-order H-J
2 Associated conservation law (1D)
3 A class of second order H-J

2. Numerical experiments for solving some inverse problems involving H-J using
data and learning/optimization algorithms

3. Suggestions of other NN architectures for other PDEs

4. Some conclusions

J. Darbon, ICODE workshop, January 2020 25 / 27

Possible extensions

Draw architectures based on Lax-Oleinik formulas on balckboard

J. Darbon, ICODE workshop, January 2020 26 / 27

Conclusion + ongoing work

Some NN architectures represent viscosity solutions of certain H-J
PDEs in very high-dimensions
Hamiltonian and initial data are given by the parameters. Specifically,

Initial data completely determined by the NN parameters
Hamiltonians may not be unique, however, the smallest Hamiltonian is well
defined and determined by the parameters.

Preliminary results on solving some simple inverse problems involving
these NN architecture do not yield satisfactory results.

Standard stochastic gradient algorithm may not be able to find a “good”
minimizer

→ Use properties of HJ solutions to design taylored numerical optimization
algorithms.

We have obtained similar theorems for Lax-Oleinik-based formulas NN
architecture
→ it paves the way to combine the NN architectures with Max-Plus methods

Extension to optimal control of linear ODEs using a generalized
Hopf-based formula
FPGA implementation is underway

J. Darbon, ICODE workshop, January 2020 27 / 27

