A near model-free method for solving the Hamilton-Jacobi-Bellman equation in high dimensions

Mathias Oster, Leon Sallandt, Reinhold Schneider

Technische Universität Berlin
ICODE Workshop on numerical solutions of HJB equations
10.01.2020

Freie Universität (13 Berlin

Motivation and Ingredients

Aim: Calculate optimal feedback laws (via HJB) for controlled PDEs.

Ingredients:
(1) Reformulate the HJB equation as operator equation.
(2) Use Monte Carlo integration for least squares approximation.
(3) Use non linear, smooth Ansatz space: HT/TT - tree-based tensors.

Classical optimal control problem

Optimal control problem: find $u \in L^{2}(0, \infty)$ such that

$$
\min _{u} J(x, u)=\min _{u} \int_{0}^{\infty} \frac{1}{2}\|x(s)\|_{\mathbb{R}^{n}}^{2}+\frac{\lambda}{2}|u(s)|^{2} \mathrm{ds},
$$

subject to

$$
\begin{aligned}
\dot{x} & =f(x, u), \quad x \in \Omega \subset \mathbb{R} \\
x(0) & =x_{0}
\end{aligned}
$$

(1) Note that the differential equation can be high-dimensional
(2) linear ODE and quadratic cost \rightarrow Riccati equation
(3) nonlinear ODE and nonlinear cost \rightarrow Hamilton-Jacobi-Bellman (HJB) equation

Feedback control problem

Define a feedback-law $\alpha(x(t))=u(t)$. Rephrase

$$
\min _{\alpha} J^{\alpha}(x)=\min _{\alpha} \int_{0}^{\infty} \underbrace{\frac{1}{2}\|x(s, \alpha)\|_{\mathbb{R}^{n}}^{2}+\frac{\lambda}{2}|(\alpha(x))(s)|^{2}}_{=: r^{\alpha}(x)} \mathrm{ds}
$$

Our goal: find an optimal feedback law $\alpha^{*}(x)=u$.
Defining the value function

$$
v(x):=\inf _{\alpha} J^{\alpha}(x) \in \mathbb{R}
$$

Idea: if v is differentiable, the feedback law is given by

$$
\alpha(x)=-\frac{1}{\lambda} D_{x} v(x) \circ D_{u} f(x, u) \quad \text { (easy to calculate!). }
$$

The HJB equation

The value function obeys

$$
\inf _{\alpha}\left\{f(x, \alpha(x)) \cdot \nabla v(x)+r^{\alpha}(x)\right\}=0
$$

HJB equation is highly nonlinear and potentially high-dimensional!

But: For fixed policy $\alpha(x)$ it reduces to a linear equation: Defining $L^{\alpha}:=-f(x, \alpha) \cdot \nabla$ we get

$$
L^{\alpha} v^{\alpha}(x)-r^{\alpha}(x)=0
$$

Methods of characteristics

Linearized HJB:

$$
L^{\alpha} v^{\alpha}(x)-r^{\alpha}(x)=0 .
$$

Using the methods of characteristics we obtain

$$
\begin{aligned}
& \dot{x}(t)=f(x, \alpha) \\
& v^{\alpha}(x(0))=\int_{0}^{\tau} r^{\alpha}(x(t)) d t+v^{\alpha}(x(s))
\end{aligned}
$$

which we call Bellman-like equation.

Reformulation as Operator Equation

Consider the Koopman operator:

$$
K_{\tau}^{\alpha}: L_{l o c, \infty}(\Omega) \rightarrow L_{l o c, \infty}(\Omega), \quad K_{\tau}^{\alpha}[g](x)=g(x(\tau))
$$

Rewrite the Bellman-like equation: For all $x \in \Omega$:

$$
v^{\alpha}(x(0))=\int_{0}^{\tau} r^{\alpha}(x(t)) d t+v^{\alpha}(x(s))
$$

as

$$
\left(\operatorname{Id}-K_{\tau}^{\alpha}\right)[v](x)=\underbrace{\int_{0}^{\tau} K_{t}^{\alpha} r(x) d t}_{=: R_{\tau}^{\alpha}(x)}
$$

Policy iteration

Policy iteration uses a sequence of linearized HJB equations.

Algorithm (Policy iteration)

Initialize with stabilizing feedback α_{0}. Solve until convergence
(1) Find v_{i+1} such that $\left(I d-K_{\tau}^{\alpha_{i}}\right) v_{i+1}(\cdot)-R_{\tau}^{\alpha_{i}}(\cdot)=0$.
(2) Update policy according to $\alpha_{i+1}(x)=-\frac{1}{\lambda} D_{x} v_{i+1}(x) \circ D_{u} f(t, x, u)$.

Least squares ansatz

Problem: We need to solve

$$
\left(\mathrm{Id}-K_{\tau}^{\alpha_{i}}\right) v^{\alpha_{i+1}}(\cdot)-R_{\tau}^{\alpha_{i}}(\cdot)=0
$$

Idea: Solve on suitable S

$$
v_{\alpha_{i+1}}=\underset{v \in S}{\arg \min } \underbrace{\left\|\left(\operatorname{Id}-K_{\tau}^{\alpha_{i}}\right) v(\cdot)-R_{\tau}^{\alpha_{i}}(\cdot)\right\|_{L^{2}(\Omega)}^{2}}_{=\int_{\Omega}\left|\left(\operatorname{ld}-K_{\tau}^{\alpha_{i}}\right) v(x)-R_{\tau}^{\alpha_{i}}(x)\right|^{2} d x} .
$$

Algorithm (Projected Policy iteration)

Initialize with stabilizing feedback α_{0}. Solve until convergence
(1) Find

$$
v_{i+1}=\underset{v \in S}{\arg \min }\left\|\left(I d-K_{\tau}^{\alpha_{i}}\right) v(\cdot)-R_{\tau}^{\alpha_{i}}(\cdot)\right\|_{L^{2}(\Omega)}^{2}
$$

(2) Update policy according to $\alpha_{i+1}(x)=-\frac{1}{\lambda} D_{x} v_{i+1}(x) \circ D_{u} f(x, u)$.

Variational Monte-Carlo

Approximate by Monte-Carlo quadrature

$$
\begin{gathered}
\left\|\left(\operatorname{ld}-K_{\tau}^{\alpha_{i}}\right) v(\cdot)-R_{\tau}^{\alpha_{i}}(\cdot)\right\|_{L^{2}(\Omega)}^{2} \approx \frac{1}{n} \sum_{j=1}^{n}\left|\left(\operatorname{ld}-K_{\tau}^{\alpha_{i}}\right) v\left(x_{j}\right)-R_{\tau}^{\alpha_{i}}\left(x_{j}\right)\right|^{2} . \\
v_{n, s}^{*}=\underset{v \in S}{\arg \min } \frac{1}{n} \sum_{j=1}^{n}\left|\left(\operatorname{Id}-K_{\tau}^{\alpha_{i}}\right) v\left(x_{j}\right)-R_{\tau}^{\alpha_{i}}\left(x_{j}\right)\right|^{2}
\end{gathered}
$$

Proposition ([Eigel, Schneider et al, 19)

] Let $\epsilon>0$ such that $\inf _{v_{s} \in S}\left\|v^{*}-v_{s}\right\|_{L_{2}(\Omega)}^{2} \leq \epsilon$. Then

$$
\mathbb{P}\left[\left\|v^{*}-v_{(n, s)}^{*}\right\|_{L_{2}(\Omega)}^{2}>\epsilon\right] \leq c_{1}(\epsilon) e^{-c_{2}(\epsilon) n}
$$

with $c_{1}, c_{2}>0$.
Exponential decay with number of samples chosen.

Solving the VMC equation

$$
\arg \min \sum_{j=1}^{n}\left|\left(\operatorname{Id}-K_{\tau}^{\alpha_{i}}\right) v\left(x_{j}\right)-R_{\tau}^{\alpha_{i}}\left(x_{j}\right)\right|^{2} .
$$

(1) $v\left(x_{j}\right) \rightarrow$ evaluate v at samples x_{j}.
(2) $K_{\tau}^{\alpha_{i}} v\left(x_{j}\right) \rightarrow$ evaluate v at transported samples (with policy α_{i}).
(3) $R_{\tau}^{\alpha_{i}}\left(x_{j}\right) \rightarrow$ approximate reward by trapezoidal rule

What do we need for solving the equation?

Model-free solution is possible. Only a black-box solver of the ODE is needed.

What do we need for updating the policy?
We need $D_{u} f(x, u)$, i.e. The derivative of the rhs w.r.t. the control.

Possible ansatz spaces

- Full linear space of polynomials
- Low-rank tensor manifolds
- Deep Neural Networks

Here used:

Low rank Tensor Train (TT-tensor) manifold

- Riemanian manifold structure
- Explicit representation of tangential space
- Convergence theory for optimization algorithms

Tensor Trains

- Consider $\Pi_{i}=\left(1, x_{i}, x_{i}^{2}, x_{i}^{3}, . ., x_{i}^{k}\right)$ one-dimensional polynomials.
- Tensor product $\Pi=\bigotimes_{i=1}^{n} \Pi_{i}$.
- $\operatorname{dim}(\Pi)=(k+1)^{n}$, huge if $n \gg 0$.
- Reduce size of Ansatz space by considering non-linear $\mathcal{M} \subset \Pi$.

Cost functional

Modify cost-functional:

$$
\begin{aligned}
& \mathcal{R}_{N}(v)=\frac{1}{n} \sum_{j=1}^{n}\left|\left(\mathrm{Id}-K_{\tau}^{\alpha_{i}}\right) v\left(x_{j}\right)-R\left(x_{j}\right)\right|^{2} \\
&+\underbrace{|v(0)|^{2}+|\nabla v(0)|^{2}}_{\text {vanishes in exact case }}+\underbrace{\mu\|v\|_{H^{1}(\Omega)}^{2}}_{\text {regularizer }}
\end{aligned}
$$

Example: Schloegl-like equation

Consider a Schlögl like system with Neumann boundary condition, c.f. [1, Dolgov, Kalise, Kunisch, 19]. Solve for $x \in \Omega=L^{2}(-1,1)$

$$
\min _{u} J(x, u)=\min _{u} \int_{0}^{\infty} \frac{1}{2}\|x(s)\|^{2}+\frac{\lambda}{2}|u(s)|^{2} \mathrm{ds}
$$

subject to

$$
\begin{aligned}
& \dot{x}(t)=\sigma \Delta x(t)+x(t)^{3}+\chi_{\omega} u(t) \\
& x(0)=x_{0} .
\end{aligned}
$$

χ_{ω} is characteristic function on $\omega=[-0.4,0,4]$.
After discretization in space (finite differences):

Example: Schloegl-like equation

TT Degrees of Freedom

Full space: 5^{32}. Reduced to ≈ 5000.

Example: Schloegl-like equation

(a) Initial values.

(b) Generated cost and least squares error. Blue is Riccati, orange is $V_{L_{2}}$ and green is $V_{H_{1}}$.

Figure: The generated controls for different initial values.

Example: Schloegl-like equation

(a) Generated controls, initial value x_{0}

(b) Generated controls, initial value x_{1}

Figure: The generated controls for different initial values.

What do we need for optimization

We only need

- a discretization of the flow Φ (blackbox)
- the derivative of the rhs $f(x, u)$ w.r.t. the control (easy if linear)
- the cost functional
to solve the equation and generate a feedback law.
Thank you for your attention

References and related work

雷 Sergey Dolgov, Dante Kalise, and Karl Kunisch.
A Tensor Decomposition Approach for High-Dimensional Hamilton-Jacobi-Bellman Equations.
arXiv e-prints, page arXiv:1908.01533, Aug 2019.
(Martin Eigel, Reinhold Schneider, Philipp Trunschke, and Sebastian Wolf.
Variational monte carlo—bridging concepts of machine learning and high-dimensional partial differential equations.

Advances in Computational Mathematics, Oct 2019.

雷 Mathias Oster, Leon Sallandt, and Reinhold Schneider.
Approximating the stationary hamilton-jacobi-bellman equation by hierarchical tensor products, 2019.

