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Motivation and Ingredients I.‘ DAEDALUS

RTG 2433

Aim: Calculate optimal feedback laws (via HJB) for controlled PDEs.

Ingredients:
@ Reformulate the HJB equation as operator equation.
@ Use Monte Carlo integration for least squares approximation.

@ Use non linear, smooth Ansatz space: HT/TT — tree-based tensors.

Mathias Oster (TU Berlin) Solve HJB in high-dimensions ICODE 2/21



Classical optimal control problem L'JE@E%‘LUS
Optimal control problem: find u € L?(0, o) such that
min J(x, u) = min —[|x(s)||gn + =|u(s)|ds,
u u 0 2 2

subject to

x=f(x,u), xe€QCR
x(0) = xo

@ Note that the differential equation can be high-dimensional
@ linear ODE and quadratic cost — Riccati equation

@ nonlinear ODE and nonlinear cost — Hamilton-Jacobi-Bellman (HJB)
equation
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Feedback control problem I.‘ DAEDALUS
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Define a feedback-law a(x(t)) = u(t). Rephrase

min () = min [ Zlx(s.0) s+ 3 (@()(E) P .

=:ro(x)

Our goal: find an optimal feedback law a*(x) = u.
Defining the value function

v(x) = ir;f J¥(x) eR
Idea: if v is differentiable, the feedback law is given by

1
a(x) = —XDXV(X) o D,f(x,u) (easy to calculate!).

Mathias Oster (TU Berlin) Solve HJB in high-dimensions ICODE 4/21



The HJB equation EDAEDALUS

RTG 2433

The value function obeys
inf {f(x,(x)) - Vv(x) + r*(x)} =0
(6%
HJB equation is highly nonlinear and potentially high-dimensional!

But: For fixed policy a(x) it reduces to a linear equation: Defining
LY := —f(x,a) -V we get

LYY(x) — r*(x) = 0.
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Methods of characteristics EDAEDALUS
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Linearized HJB:
LY(x) — r*(x) = 0.

Using the methods of characteristics we obtain
x(t) = f(x, a),
ve(x(0)) = / r(x(t))dt + v¥(x(s)),
0

which we call Bellman-like equation.
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Reformulation as Operator Equation I.‘ P

RTG 2433

Consider the Koopman operator:
K7+ Lioc,oo() = Lioc,oo(2),  K7'[g](x) = &(x(7)).
Rewrite the Bellman-like equation: For all x € :
AO) = [ ()t + v (),
0

as

(Id — K)[V](x) = /0 KEr(x)dt .

—_———
=R (x)
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Policy iteration I.‘ DAEDALUS
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Policy iteration uses a sequence of linearized HJB equations.

Algorithm (Policy iteration)

Initialize with stabilizing feedback . Solve until convergence
Q Find vjy1 such that (/d— Kgi)v,q_l(-) = Rgi(-) =0.

Q@ Update policy according to aiiy1(x) = — Dxvit1(x) o Dyf(t, x, u).
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L east squares ansatz I.‘ DAEDALUS
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Problem: We need to solve
(1d = K™ a() = R () = 0.
Idea: Solve on suitable S

Vai = argen;in [(1d — KZ)v(-) — Rg"(')”é(m -

— o (= K2 ()— RE ()
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Projected Policy iteration I.‘ DAEDALUS
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Algorithm (Projected Policy iteration)
Initialize with stabilizing feedback . Solve until convergence
Q Find

Viy1 = arg n;in [(1d = KZ)v(-) — R?i(')||i2(§z)-
ve

@ Update policy according to aij1(x) = —%Dyvit1(x) o Dyf(x, u).
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Variational Monte-Carlo EDAEDALUS
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Approximate by Monte-Carlo quadrature

I(1d = K2 () = RY()IIz2q) ZI (Id — K2)v(x) — R () 2.

ns_argmm_z‘ Id_Ka )V(XJ) Rgi(xj)‘z
veS
Jj=1

Proposition ([Eigel, Schneider et al, 19)

| Let € > 0 such that vlsneﬂs |v* — v5||%2(9) <e. Then

P[|lv* - V(*n,s)H%z(Q) > €] < C1(6)e_c2(6)”

with ¢, c; > 0.

Exponential decay with number of samples chosen.
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Solving the VMC equation I.‘ DAEDALUS

arg min Z (Id — K2 )v(x;) — R (x;) |-
j=1

@ v(xj) — evaluate v at samples x;.
@ K2iv(x;j) — evaluate v at transported samples (with policy «;).
@ R{i(xj) — approximate reward by trapezoidal rule

What do we need for solving the equation?
Model-free solution is possible. Only a black-box solver of the ODE is
needed.

What do we need for updating the policy?
We need D,f(x, u), i.e. The derivative of the rhs w.r.t. the control.
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Possible ansatz spaces

@ Full linear space of polynomials
@ Low-rank tensor manifolds
@ Deep Neural Networks

Here used:
Low rank Tensor Train (T T-tensor) manifold

@ Riemanian manifold structure
o Explicit representation of tangential space
@ Convergence theory for optimization algorithms
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Tensor Trains I.‘ DAEDALUS
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e Consider M; = (1, x;, x?,x3, .., x¥) one-dimensional polynomials.
@ Tensor product M= 7, ;.
o dim(M) = (k+1)", huge if n > 0.

@ Reduce size of Ansatz space by considering non-linear M C I1.

X1 X2 X3 X4
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Cost functional I.‘ DAEDALUS
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Modify cost-functional:

Ru(v) = 3" [(1d = Ke)w(og) — Rg)P
j=1

+ [VO)1? + [VV(0) P + sl vy
—_——

vanishes in exact case

regularizer
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Example: Schloegl-like equation EDAEDALUS
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Consider a Schlogl like system with Neumann boundary condition, c.f. [1,
Dolgov, Kalise, Kunisch, 19]. Solve for x € Q = L2(—1, 1)

1 A
min J(x, u) = min/ ZlIx(s)IP + S u(s)[?ds,
u u 0 2 2
subject to
x(t) = o Ax(t) + x(t)® + xou(t)

x(0) = xo.
Xw is characteristic function on w = [—0.4,0, 4].

After discretization in space (finite differences): 0
X1 X1 Xl3

=A|l |+ | +u]l

Xn Xp x;:’ :

0
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Example: Schloegl-like equation L.J DAEDALUS
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TT Degrees of Freedom
Full space: 532. Reduced to ~ 5000.
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Example: Schloegl-like equation L.‘Rmm
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Figure: The generated controls for different initial values.
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Example: Schloegl-like equation L.Jmm

0 0.0
-2.5
- —5.0
~7.5
-10
—10.0
s —125
—— Riccati 1504 — Riccati
— V2 — Vi
—201 —— Vi —17.5 Vin
1 2 3 4 5 0 1 2 3 4 5
time time
(a) Generated controls, initial value xo (b) Generated controls, initial value x;

Figure: The generated controls for different initial values.
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What do we need for optimization I.‘ DAEDALUS
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We only need
@ a discretization of the flow ® (blackbox)

o the derivative of the rhs f(x, u) w.r.t. the control (easy if linear)
@ the cost functional

to solve the equation and generate a feedback law.

Thank you for your attention
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