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classical dynamic programming

“noncommutative” dynamic programming

Rn

Sn, symmetric matrices

lattice order 6

Loewner order (X < 0 ⇐⇒ λmin(X) > 0)

probability measures

density matrices

Markov operator

Quantum channel

P > 0, Pe = e

K(X) =
∑
iA
∗
iXAi,

∑
iAiA

∗
i = I

value function

How do we fill this box ?

Bellman operator

[T (v)]i = maxj(Aij + vj)

what can it be used for?
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The joint spectral radius

A = {A1, . . . , Am} ⊂ Rn×n, largest growth rate:

ρ(A) := lim
k→∞

sup
Ai1 ,...Aik

∈A
‖Ai1 · · ·Aik‖1/k .

Theorem (Blondel-Tsitsiklis - 2000)

Unless P = NP, there is no polynomial-time computable function ρ̂ of A
and ε satisfying

|ρ(A)− ρ̂(A, ε)| 6 ερ(A)

even if A consists of 2 matrices with entries in {0, 1}.
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Theorem (Barabanov, 1988)

If the set A is irreducible, then there is a norm ν such that

max
i∈[m]

ν(Aix) = ρ(A)ν(x) , ∀x .

Special case of ergodic control problem. Continuous time version:
reduction to an ergodic HJ PDE (Calvez, SG, Gabriel 2014).

Certifying a upper bound of the joint spectral radius

Find a norm ν such that

max
i∈[m]

ν(Aix) 6 ρν(x) , ∀x .

Then ρ(A) 6 ρ.

Goal

Construct a sequence of such norms νk such that the corresponding
upper bounds ρk of ρ(A) do converge to ρ(A).
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This talk

Use ideas / techniques from:

• max-plus basis methods Fleming, McEneaney, Akian, Dower, Kaise,
Qu, SG, . . .

• path-complete automata Ahmadi, Parrilo, Jungers, Roozbehani

• polyhedral approximation: Guglielmi, Kozyakin, Protasov . . .

• geometry of the Loewner order

• non-linear Perron-Frobenius theory, nonexpansive mappings
Nussbaum, Baillon, Bruck, SG, Gunawardena,

• risk-sensitive control Anantharam, Borkar

to obtain a decreasing sequence of upper approximations of the joint
spectral radius.

→ method little sensitive to the curse of dimensionality: can deal with
instances up to dimension 500 (random matrices with real entries) and
even up to dimension 5000 (random matrices with nonnegative entries)
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Bounds arising from piecewise quadratic norms

Look for

ν(x) = max
v∈V

√
xTQvx

with V finite set, such that

max
i∈[m]

ν(Aix) 6 ρν(x) , ∀x .

Then ρ(A) 6 ρ. (Ahmadi et al), related to McEneaney’s max-plus basis
method)

Goal: find collection of matrices (Qv)v such that

max
i∈[n],v∈V

xT (ATi QvAi)x 6 max
w∈V

xT (ρ2Qw)x

2 relaxations (Ahmadi et al.)

• For all v, i, there is w such that ATi QvAi 4 ρ2Qw
• We enforce the choice of w = τ(v, i) for some transition map τ .
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De Bruijn automaton, “concatenate and forget”

• Alphabet: Σ := [m] = {1, . . . ,m}, States: Σd

• Transition map τd:

τd(v, i) = w ⇐⇒

{
v = i1i2 . . . id

w = i2 . . . idi
.

11

12

22

21

1

2

1

2

2

11

2



Path-complete LMI automaton (Ahmadi et al.)

Solve family of LMIs:

(Pρ)

{
Qv � 0 , ∀v
ρ2Qw < ATi QvAi , ∀w = τd(v, i)

Bisection:

ρd := smallest ρ such that (Pρ) is feasible.

Theorem (Ahmadi et al. - SICON 2014)

An optimal solution (Qv)v provides a norm

ν(x) = max
v

(xTQvx)1/2

such that

ρd > ρ(A) >
1

n
1

2(d+1)

ρd

(asymptotically exact as d→∞).

Proof based on the Loewner-John theorem: the Barabanov norm can be
approximated by an Euclidean norm up to a

√
n multiplicative factor.
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Before...

Figure: Computation time (s) vs dimension: red Ahmadi et al., ,



...Now

Figure: Computation time (s) vs dimension: red Ahmadi et al., blue
“quantum” dynamic programming (this talk),



...Now

Figure: Computation time (s) vs dimension: red Ahmadi et al., blue
“quantum” dynamic programming (this talk), green specialization to
nonnegative matrices (this talk - MCRF, 2020)



How do we get there ?

A closer look at simplified LMIs

Q � 0 ρ2Q < ATi QAi , ∀i ∈ [m] .

Solving a wrong equation

We would like to write:

“ρ2Q < sup
i∈[m]

ATi QAi” .

The supremum of several quadratic forms does not exist !

⇒ will replace supremum by a minimal upper bound

Fast computational scheme

Interior point methods are relatively slow

→ Replace optimization by a fixed point approach. For nonnegative
matrices, reduces to a risk-sensitive eigenproblem.
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Minimal upper bounds

x is a minimal upper bound of the set A iff

A 4 x and
(
A 4 y 4 x =⇒ y = x

)
.

The set of minimal upper bounds:
∨
A.

Theorem (Krein-Rutman - 1948)

A cone induces a lattice structure iff it is simplicial (∼= R+
n ).

Theorem (Kadison - 1951)

The Löwner order induces an anti-lattice structure: two symmetric
matrices A,B have a supremum if and only if A 4 B or B 4 A.
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Introduction Minimal upper bounds Noncommutative Dynamic Programming Risk sensitive eigenproblem Concluding remarks

The inertia of the symmetric matrix M is the tuple (p, q, r), where

• p: number of positive eigenvalues of M ,

• q: number of negative eigenvalues of M ,

• r: number of zero eigenvalues of M .

Definition (Indefinite orthogonal group)

O(p, q) is the group of matrices S preserving the quadratic form
x11 + · · ·+ x2p − x2p+1 − · · · − x2p+q:

S
(
Ip
−Iq

)
ST =

(
Ip
−Iq

)
=: Jp,q

O(1, 1) is the group of hyperbolic isometries
(
ε1 ch t ε2 sh t
ε1 sh t ε2 ch t

)
,

where ε1, ε2 ∈ {−1, 1}
O(p)×O(q) is a maximal compact subgroup of O(p, q).

12 / 38
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Theorem (Stott - Proc AMS 2018, Quantitative version of
Kadison theorem)

If the inertia of A−B is (p, q, 0), then∨
{A ,B} ∼= O(p, q)

/
O(p)×O(q) ∼= Rpq .



Introduction Minimal upper bounds Noncommutative Dynamic Programming Risk sensitive eigenproblem Concluding remarks

Example p = q = 1.
O(1, 1)

/
O(1)×O(1) is the group of hyperbolic rotations:{(

ch t sh t
sh t ch t

)
| t ∈ R

}

Figure: Minimal upper bounds of two quadratics

14 / 38



Canonical selection of a minimal upper bound

Ellipsoid: E(M) = {x | xTM−1x 6 1}, where M is symmetric pos. def.

Theorem (Löwner - John)

There is a unique minimum volume ellipsoid containing a convex body C.

Definition-Proposition (Allamigeon, SG, Goubault, Putot, NS, ACM
TECS 2016)

Let A = {Ai}i ⊂ S++
n and C = ∪iE(Ai). We define tA so that E(tA)

is the Löwner ellipsoid of ∪A∈AE(A), i.e.,

(tA)−1 = argmaxX{log detX | X 4 A−1i , i ∈ [m], X � 0} .
Then, tA is a minimal upper bound of A, and t is the only selection
that commutes with the action of invertible congruences:

L(tA)LT = t(LALT ) ,
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TECS 2016)

Let A = {Ai}i ⊂ S++
n and C = ∪iE(Ai). We define tA so that E(tA)

is the Löwner ellipsoid of ∪A∈AE(A), i.e.,

(tA)−1 = argmaxX{log detX | X 4 A−1i , i ∈ [m], X � 0} .
Then, tA is a minimal upper bound of A, and t is the only selection
that commutes with the action of invertible congruences:

L(tA)LT = t(LALT ) ,



Theorem (Allamigeon, SG, Goubault, Putot, NS, ACM TECS 2016)

Computating X t Y reduces to a square root (i.e., SDP-free!).

Suppose Y = I: X t I = 1
2 (X + I) + 1

2 |X − I| .

General case reduces to it by congruence: add 1 Cholesky decomposition
+ 1 triangular inversion. Complexity: O(n3).

� The Loewner selection t is

• continuous on S++
n × S++

n but does not extend continuously to the
closed cone,

• not order-preserving,
• not associative.
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Reducing the search of a joint quadratic Lyapunov function
to an eigenproblem

Goal

Compute norm ν(x) =
√
xTQx such that maxi∈[m] ν(Aix) 6 ρν(x).

Computation: single quadratic form

Corresponding LMI:

ρ2Q < ATi QAi , ∀i .
Eigenvalue problem for a multivalued map

ρ2Q ∈
∨
i

ATi QAi .

17 / 38



Quantum dynamic programming operators

Quantum channels (0-player games)

Completely positive trace perserving operators:

K(X) =
∑
i

AiXA
∗
i ,

∑
i

A∗iAi = In .

Propagation of ”non-commutative probability measures” (analogue of
Fokker-Planck).

Quantum dynamic programming operator (1-player game)

T (X) =
∨
i

ATi XAi

with
∨

the set of least upper bounds in Löwner order (multivalued map).
Propagation of norms (backward equation).
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Quantum dynamic programming operator associated with an
automaton

τd transition map of the De Bruijn automaton on d letters:

X ∈ (S+n )(m
d) and T dw (X) :=

∨
w=τd(v,i)

ATi XvAi

Reduces to the earlier d = 1 case by a block diagonal construction.

Theorem

Suppose that

ρ2X ∈ T d(X)

with ρ > 0 and X positive definite. Then,

ρ(A) 6 ρ .



Theorem

Suppose that A is irreducible. Then there exists ρ > 0 and X such that∑
vXv is positive definite and

ρ2X = T dt(X) ∈ T d(X)

where

[T dt(X)]w :=
⊔

w=τd(v,i)

ATi XvAi .



Exercise: find the mistake in the following proof

We want to show that the following eigenproblem is solvable:

[T dt(X)]w :=
⊔

w=τd(v,i)

ATi XvAi = ρ2Xw

1. suppose, w.l.g., d = 0.

2. Consider the noncommutative simplex,
∆ := {X < 0: traceX = 1}. This set is compact and convex.

3. Consider the normalized map T̃ dt(X) = (traceT dt(X))−1T dt(X). It
sends ∆ to ∆

4. By Brouwer fixed point theorem, it has a fixed point

5. This fixed point is an eigenvector of T d

� t is continuous in intS+n × intS+n , but not on its closure.

→ cannot apply naively Brouwer.
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Fixing the proof of existence of eigenvectors

Lemma

For Yi � 0, we have

1

m

m∑
i=1

Yi 4
m⊔
i=1

Yi 4
m∑
i=1

Yi

Corollary

For all X ∈ S+n , we have

1

m
Kd(X) 4 T dt(X) 4 Kd(X) ,

with

Kd
w(X) =

∑
w=τd(v,i)

ATi XvAi T dt,w(X) =
⊔

w=τd(v,i)

ATi XvAi .



Proof

Reduction to K : X 7→
∑
iA

T
i XAi strictly positive:

X < 0 =⇒ K(X) � 0 .

Let X ∈ ∆ := {X < 0: traceX = 1}. By compactness:

αI 4 K(X) 4 βI , with α > 0 .

Then
α

m
I 4 Tt(X) 4 βI ,

so Tt(∆) ⊂ compact subset of int ∆. Conclude by Brouwer’s fixed point
theorem.
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Computing an eigenvector

We introduce a damping parameter γ:

T γt(X) =
⊔
i

(
ATi XAi + γ(traceX)In

)
.

Theorem

The iteration

Xk+1 =
T γt(X)

traceT γt(X)

converges for a large damping: γ > nm(3d+1)/2

Conjecture

The iteration converges if γ > m1/2n−1/2.

Experimentally: γ ∼ 10−2 is enough! Huge gap between conservative
theoretical estimates and practice. How theoretical estimates are
obtained?



Lipschitz estimations

Riemann and Thompson metrics

Two standard metrics on the cone S++
n

dR(A,B) := ‖ log spec(A−1B)‖2 .
dT (A,B) := ‖ log spec(A−1B)‖∞ .

They are invariant under the action of congruences:
d(LALT , LBLT ) = d(A,B) for invertible L.

Lipschitz constant: LipM t := sup
X1,X2,Y1,Y2�0

dM (X1tX2,Y1tY2)
dM (X1⊕X2,Y1⊕Y2)

.

Theorem

LipT t = Θ(log n) LipR t = 1

Proof.

dT , dR are Riemann/Finsler metrics → work locally + Schur multiplier
estimation (Mathias).
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Scalability: dimension

Table: big-LMI vs Tropical Kraus

Dimension
n

CPU time
(tropical)

CPU time
(LMI)

Error vs LMI

5 0.9 s 3.1 s 0.1 %
10 1.5 s 4.2 s 1.4 %
20 3.5 s 31 s 0.4 %
30 7.9 s 3min 0.2 %
40 13.7 s 18min 0.05 %
45 18.1 s − −
50 25.2 s − −
100 1min − −
500 8min − −
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Figure: Computation time vs dimension
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Scalability: graph size

A1 =

−1 1 −1
−1 −1 1

0 1 1

 A2 =

−1 1 −1
−1 −1 0

1 1 1



Table: big-LMI vs Tropical Kraus: 30− 60 times faster.

Order d 2 4 6 8 10
Size of graph 8 32 128 512 2048

CPU time
(tropical)

0.03s 0.07s 0.4s 2.0s 9.0s

CPU time
(LMI)

1.9s 4.0s 24s 1min 10min

Accuracy 1.1 % 1.3 % 0.4 % 0.4 % 0.6 %
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Special case of nonnegative matrices
Suppose Ai ∈ Rn×n+ , replace the quantum dynamic programming
operator

X ∈ (S+n )(m
d) and T dw (X) :=

∨
w=τd(v,i)

ATi XvAi

by the classical dynamic programming operator

x ∈ (Rn+)(m
d) and T dw(x) := sup

w=τd(v,i)

ATi xv

Operators of this type arise in risk-sensitive control Anantharam, Borkar,
also in games of topological entropy Asarin, Cervelle, Degorre, Dima,
Horn, Kozyakin, Akian, SG, Grand-Clément, Guillaud.

Theorem

Suppose the set of nonnegative matrices A is positively irreducible.

Then, there exists u ∈ (R+)(m
d) \ {0} such that

T d(u) = λdu .

Follows from SG and Gunawardena, TAMS 2004.
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A monotone hemi-norm is a map ν(x) := maxv∈V 〈uv, x〉 with uv > 0
such that x 7→ ν(x) ∨ ν(−x) is a norm.

Theorem (Coro. of Guglielmi and Protasov)

If A ⊂ Rn×n+ is positively irreducible, there is a monotone hemi-norm ν
such that

max
i∈[m]

ν(Aix) = ρ(A)ν(x), ∀x ∈ Rn+

Theorem (Polyhedral monotone hemi-norms)

If A ⊂ Rn×n+ is positively irreducible, if T d(u) = λdu, and

u ∈ (Rn+)(m
d) \ {0}, then

‖x‖u := max
v∈[md]

〈uv, x〉

is a polyhedral monotone hemi-norm and

max
i∈[m]

‖Aix‖u 6 λd‖x‖u .

Moreover, ρ(A) 6 λd 6 n1/(d+1)ρ(A), in particular λd → λ as d→∞.
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How to compute λ such that T d(u) = λu for some u 6= 0, u 6= 0

• Policy iteration: Rothblum

• Spectral simplex: Protasov

• non-linear Collatz-Wielandt theorem + convex programming =⇒
polytime : Akian, SG, Grand-Clément, Guillaud (ACM TOCS 2019)

policy iteration/spectral simplex requires computing eigenvalues
(demanding), need to work with huge scale instances (dimension
N = n×md)
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Krasnoselski-Mann iteration

xk+1 =
1

2
(xk + F (xk))

applies to a nonexpansive map F : ‖F (x)− F (y)‖ 6 ‖x− y‖.

Theorem (Ishikawa)

Let D be a closed convex subset of a Banach space X, let F be a
nonexpansive mapping sending D to a compact subset of D. Then, for
any initial point x0 ∈ D, the sequence xk converges to a fixed point of F .

Theorem (Baillon, Bruck)

‖F (xk)− xk‖ 6 2 diam(D)√
πk

,
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Definition (Projective Krasnoselskii-Mann iteration)

Suppose f : RN+ → RN+ is order preserving and positively homogeneous of
degree 1. Choose any v0 ∈ RN>0 such that

∏
i∈[N ] v

0
i = 1,

vk+1 =

[
f(vk)

G
[
f(vk)

] ◦ vk]1/2 , (1)

where x ◦ y := (xiyi) and G(x) = (x1 · · ·xN )1/N .

Theorem

Suppose in addition that f has a positive eigenvector. Then, the
projective Krasnoselskii-Mann iteration initialized at any positive vector
v0 ∈ RN+ such that

∏
i∈[N ] v

0
i = 1, converges towards an eigenvector of

f , and G(f(vk)) converges to the maximal eigenvalue of f .

Proof idea. This is Krasnoselski iteration applied to F := log ◦f ◦ exp
acting in the quotient of the normed space (Rn, ‖ · ‖∞) by the one
dimensional subspace R1N .
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Corollary

Take f := T d, the risk-sensitive dynamic programming operator, and let

βk := max
i∈[N ]

(f(vk))i/v
k
i .

Then,

log ρ(A) 6 log βk 6 log ρ(A) +
4√
πk
dH(v0, u) +

log n

d+ 1

where dH is Hilbert’s projective metric.



Level d CPU Time (s) Eigenvalue λd Relative error
1 0.01 2.165 6.8%
2 0.01 2.102 3.7%
3 0.01 2.086 2.9%
4 0.01 2.059 1.6%
5 0.02 2.041 0.7%
6 0.05 2.030 0.1%
7 0.7 2.027 0.0%
8 0.32 2.027 0.0%
9 1.12 2.027 0.0%

Table: Convergence of the hierarchy on an instance with 5× 5 matrices and a
maximizing cyclic product of length 6
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Dimension n Level d Eigenvalue λd CPU Time
10 2 4.287 0.01 s

3 4.286 0.03 s
20 2 8.582 0.01 s

3 8.576 0.03 s
50 2 22.34 0.04 s

3 22.33 0.16 s
100 2 44.45 0.17 s

3 44.45 0.53 s
200 2 89.77 0.71 s

3 89.76 2.46 s
500 2 224.88 5.45 s

3 224.88 19.7 s
1000 2 449.87 44.0 s

3 449.87 2.7 min
2000 2 889.96 4.6 min

3 889.96 19.2 min
5000 2 2249.69 51.9 min

3 2249.57 3.3 h

Table: Computation time for large matrices



MEGA

The Minimal Ellipsoid Geometric Analyzer, Stott - available from

http://www.cmap.polytechnique.fr/~stott/

• implements the quantum dynamic programming approach

• 1700 lines of OCaml and 800 lines of Matlab

• uses BLAS/LAPACK via LACAML for linear algebra

• uses OSDP/CSDP for some semidefinite programming

• uses Matlab for other semidefinite programming

http://www.cmap.polytechnique.fr/~stott/


Concluding remarks

• Reduced the approximation of the joint spectral radius to solving
non-linear eigenproblems

• joint spectral radius of general matrices: “quantum” dynamic
programming operator acting on the space of positive semidefinite
matrices, tropical analogue of completely positive maps. “states” =
bunchs of positive semidefinite matrices. yields a piecewise quadratic
approximate extremal norm.

• special case of nonnegative matrices: paradise of risk-sensitive
eigenproblem (computationnally tractable in theory and in practice).

• eigenproblems solved by iterative methods, variations of
Krasnoselskii-Mann, scalable.

• convergence analysis considerably harder in the “quantum” case,
since the dynamic programming operator is not any more
nonexpansive in the natural metrics.

• generalization to the infinitesimal / PDE case ?

Thank you !
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