Taylor Expansions of the Value Function
Associated with Stabilization Problems

Laurent Pfeiffer
Inria-Saclay and CMAP, Ecole Polytechnique
Joint work with Tobias Breiten and Karl Kunisch (U. Graz)

ICODE Workshop on numerical

solutions of HJB equations, ﬁ,‘l 72 :’2
January 8, 2020

W2 1P PARIS



Introduction

We consider the following bilinear optimal control problem:

. 1
ot )= [ I + Sl

u€el?(0,00)

. y(t) = Ay(t) + Ny(t)u(t) + Bu(t),
where: { i(o) :yé/e Y, y

(P(y0))

with associated value function: V(yo) := inf,c;2(0,00) J (U, Y0)-

Key ideas:

m The derivatives D/V(0) are characterized by a sequence of
equations.

m This allows for the numerical approximation of V and the
optimal feedback law (locally, around 0).



Functional framework:

m V CY C V*is a Gelfand triple of real Hilbert spaces, where
the embedding of V into Y is dense and compact

m W(0,00) = {y € L2(0,00; V) |y € L%(0, 00; V*)}.

Assumptions:

(A1) The operator —A can be associated with a V-Y coercive
bilinear form a: V x V. — R such that IA € R and § > 0
satisfying a(v, v) > §||v|[3, — A||v|]3/, for all v € V.

(A2) The operator N is such that N € £(V,Y) and N* € L(V,Y).

(A3) [Stabilizability] There exists an operator F € L(Y,R) such
that the semigroup e(AtBF)t is exponentially stable on Y.

Another technical assumption is also needed.
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Roadmap

The Taylor expansion of order k, denoted V is of the form:

1 1 1
Vi(yo) = 57'2()/0,)/0) + 575()/0,)/0,)/0) +..+ ﬂﬁ()/o, s Y0):

where 7; = D/V(0) is a bounded multilinear form from Y7 to R.
Remark: V(0) =0, DV(0) = 0.
We formally show that

m 7 is the unique solution to an algebraic Riccati equation
(ARE)

m 73, 7a,... are the unique solutions to (linear) generalized
Lyapunov equations (GLE).
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HJB equation

Assume that there exists a neighborhood Yy of 0 such that

Problem P(yy) has a continuous solution u, Yyy € D(A)N Yy
The value function is continuously differentiable on Yj.
Then, for all yo € D(A)N Yo,

2
DV(y0)Ayo + 31y0ll% — 25 (DV(v0)(Nyo + B)) = 0. (HJB)
Moreover, for all continuous solutions i to problem P(yp),

a(t) = —%DV(Y(t))(NY(t) + B), fora.e. t.

Control in feedback form!
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Taylor expansion

The equations characterizing (7;)j=23,... are then obtained by
successive differentiation of the HJB equation.

First differentiation of (HJB) w.r.t. y in some direction
z;1 € D(A):

D*V(y)(Ay,z1) + DV(y)Az + (y, z1)y

- ;(D2V(y)(Ny + B,21) + DV(y)Nz1) (DV(y)(Ny + B)) = 0.

Note: yo — y.
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Taylor expansion

Second differentiation of (HJB):
D*V(y)(Ay, 21, 22) + D*V(y)(Az, 21) + D*V(y)(Az1, ) + (21, )y

(D*V(y)(Ny + B, z1) + DV(y)Nz) (D*V(y)(Ny + B, 2) + DV(y)Nz,)

1

B

%( V(y)(Ny + B, z1,2)) (DV(y)(Ny + B))
1

(D*V(y)(Nz2, 21) + D*V(y)(Nar, 22)) (DV(y)(Ny + B)) = 0.

For y = 0, using the representation D?V(0)(z1,z2) = (z1, Mz),
where [1: Y — Y, we obtain an algebraic Riccati equation:

AT+ TA+1d — 1NBB M =0. (ARE)

It has a unique self-adjoint and non-negative solution.
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Taylor expansion

Third differentiation of (HJB), at y = 0:

D*V(0)(Azs, z1, 22) + D*V(0)(Az, z1, z3) + D*V(0)(Az1, 22, z3)
- %(D3V(O)(B, z1,23) + D*V(0)(Nz3, z1) + D*V(0)(Nz1, 23)) D*V(0)(B, z2)
— L(DV(0)(B. 22, 23) + D*V(0)(Nzs, ) + D*V(0)(Nz2, 23)) D*V(0)(B, 1)

_ %(031/(0)(3,21, 2) + D?V(0)(Nzs, 1) + D?V(0)(Naz1, 22)) D2V(0)(B, z3) = 0.
We set: Ap=A— %BB*I‘I, we obtain:
T3(Anzi, 22, z3) + T3(21, Anz2, z3) + T3(21, 22, Anz3)

1
= %7%(21,22,23), ¥(z1, 22, z3) € D(A)3,

where the trilinear form R3: Y3 — R is determined by M, N, and B.
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Taylor expansion

Differentiation of order j of (HJB), at y = 0:

7;(A|'|21, Z2, ..., Zk) + ...+ 7](21, e Zk_l,AnZk)

= 216721'(21, ceny ZJ), V(Z]_, 721) c ’D(A)J (GLE(_]))

Properties of the derived generalized Lyapunov equations:

m linear equation

m computable right-hand side:
the multilinear form R;: Y/ — R is explicitely determined by

n, D3V(0),....0~1Y(0), N, and B.
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There exists a unique sequence (7;)j=3.4,... of symmetric bounded
multilinear forms such that T;: Y/ — R is a solution to GLE(j).

Proof. Representation formula:
> A A
7;(21,...,21():—/ Rj(e "tzl,...,e "Zk)dt.
0

Remark: the well-posedness of the GLEs can be established
without knowledge regarding the differentiability of V.
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Feedback law

Polynomial V of degree k:

k
Vi(y) = Zk:2jl!7j(y7 e Y
Feedback law uy of order k:
1
Uy eY = u(y) = —EDVk(y)(Ny + B).
Closed-loop system of order k:

yi(t) = Ayi(t) + (Nyi(t) + B)uk(yk(t)),  y«(0) = yo.

Open-loop control U, (yp) generated by the feedback u, and yp:

Uk(yo; t) = uk(y(2))-
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Numerical approach

Discretize the operators A, N, and B in such a way that the
bilinear structure is preserved (e.g. with finite differences)

Find a reduced-order model with a generalization of the
balanced truncation method:

_ 1 8
foJ = N Cryr(D|Zn + = u(t)|?dt,
odnf o) = [T ICuOl + lute)

f 3() = Aryi(8) + Noyi(£)u(t) + Bru(t),
where: { yi(0) = yor € Y.

Solve the reduced GLE with a tensor-calculus technique.
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Lyapunov equations

The associated reduced GLE of order k:

Tier(Anrz1, 22, s 2k) + oo + Tier(21, o5 Zk—1, An,r2)

= %R;ﬂ,(zl, ...,Zk)

is equivalent to a linear system with r* variables. Solution:

00
Ter(Zl, ...,Zk) = / Rk7r(eA””t21, c eA””tZk)dt.
0

An approximation is given by:

y4
E W,-Rk,,(eA'Vt"z;l,...,eA“!’t"zk)7
=t

for an appropriate choice of points t; and weights w;.
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Fokker-Planck equation

Controlled Fokker-Planck equation:

% =vAp+ V- (pVG)+uV - (pVe;) in Q x(0,00),
0= (wVp+pVG) - on I x (0,00),
p(x,0) = po(x) in T,

where Q € R? denotes a bounded domain with smooth boundary .

For all t, p(-, t) is the probability density function of X;, sol. to
dX(t) = =V, V(X(t), t)dt + V2vd W,
where the potential V is controlled by u:

V(x,t) = G(x) + u(t)a(x), VxeQ, Vt>0.
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Fokker-Planck equation

The uncontrolled Fokker-Planck equation is known to converge to
its stationary distribution po.

G(x) Poo(T)
T T

40

20| i

0 | | | | | | |

—6 —4 -2 0 2 4 6 —6 —4 —2 0 2 4 6
X xT

(a) Ground potential (b) Stationary distribution



Numeric results
0000®000000

Fokker-Planck equation

Optimal control problem:

. 1
nf [ 000 = Oy + Blule)dr,
0

u€el?(0,00)
where p satisfies the Fokker-Planck equation.

Under regularity assumptions on G and «, the problem can be
reformulated, so that it falls in the abstract framework.

m Control shape function a(x) =~ x/12.

m Discretization of Q = (—6,6): n = 100.

m Reduction: r = 21 (selection of singular values above 107°).

m Results for two initial values (a close one/a further one),
different values of f3.
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Numerical results (test case 1)

(a) Initial/stationary distributions (b) Controls for 8 = 1073
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Numerical results (test case 1)

— uopt(?)

u2 (t)
usg(t) H

uy ()

s us(t)
N ug(t)—H
—200 8

L L L
0 0.5 1 1.5 2
t t

(a) Controls for 3 =10"* (b) Controls for 8 =10"°
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Numerical results (test case 1)

B || S(wa) | S(us) | S(ua) | S(us) | J(us) | J(uopt)
le=3 | 0.156 | 0.155 | 0.155 | 0.155 | 0.155 | 0.154
le=* | 0.138 | 0.122 | 0.120 | 0.120 | 0.120 | 0.119
le || 0.205 | 0.194 | 0.104 | 0.111 | 0.113 | 0.095

(a) Cost of the controls uy

8 [|uk — Uopt||L2(o,T)

p=2|p=3|p=4|p=5|p=6
le 3 || 1.149 | 0.169 | 0.119 | 0.034 | 0.031
le=® || 1850 | 7.02| 3.16| 4.01| 1.52
le™® 905 | 78.0| 39.0| 426 | 343

(b) L2-distance between the controls uy and the optimal control wgpt
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Numerical results (test case 2)

— topt(t)
ua(t)

- 2 uz(t) ||
w4 (t)
us(t)

1 15k —ue(t)

l -
|
6 0 1 2 3 4 5

(a) Initial/stationary distributions (b) Controls for 8 = 1072
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Numerical results (test case 2)

— ‘uopt () 200 *
uz(t) ||
uz(t) 0

ug(t)

us (t) [

\ ) ‘w‘ Uopt (1)
\ —us —200 |- ——ua(t)
N\ 1 ——us()
S ug(t)
—400 us (t)
ug(t)
0 | | | | | |
0 1 2 3 4 5 0 0.5 1 1.5 2
t t

(a) Controls for 3 =103 (b) Controls for 3 =10"*
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Numerical results

B || J(u2) | J(uz) | J(ua) | J(us) | J(us) | J(uopt)
le=2 ] 0.788 | 0.788 | 0.788 | 0.788 | 0.788 | 0.787
le=3 | 0.525 | 0.511 | 0.511 | 0.512 | 0.510 | 0.507
le=* |/ 0.381 | 0.368 | 2.689 00 oo | 0.246

(a) Cost of the controls uy

8 [|uk — Uopt||L2(o,T)

k=2 k=3 k=4]k=5]k=6
le2 019 0.15| 0.15| 0.15| 0.15
le3 488 | 150 | 177 | 231| 152
le=* || 46.34 | 35.36 | 57.08 00 00

(b) L2-distance between the controls uy and the optimal control wgpt
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Elements of analysis

There exists 6 > 0 such that

m for all yo € B(0), problem P(yy) has a unique solution #,

m the value function V is infinitely differentiable on B(9).

For all k > 2, there exist 6 > 0 and C > 0 such that:

m The closed-loop system (of order k) is well-posed and
generates an open-loop control in L?(0, 00).

m The following estimates hold true:

J(Uk(30),¥0) < V(¥0) + Cllyoll3*
17 — Uk(y0)ll2(0,00) < Cllyolly-

Remark: local result, § and C depend on k.
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Elements of analysis

Result 1 (optimality conditions for the original problem).
For all solutions & with trajectory y, there exists p € W/(0, c0)
such that

p+(A+aN)'p+y=0, Bi+ (Ny-+B)p=0.

Result 2 (optimality conditions for the closed loop system).
For the control u, and the trajectory y, generated by the feedback
of order k, there exists px € L?(0,00; V) such that

Pk + (A+ ukN) pr + vk = wi,  Buk + (Nyx + B) pr =0,

where [[wk|| < Cllyoll%.
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Elements of analysis

Result 3 (sensitivity analysis).
The mapping ®: (y, u, p) € W(0,00) x L2(0,00) x L2(0,00; V)
y(0)
y — (Ay + Nyu + Bu)
—p—(A+uN)'p—y
Bu+ (Ny +B)*p
is locally invertible around (0,0,0), with a C* inverse.

Proof: application of the inverse mapping theorem.
Dq)(oa 07 0)(5}/, 5“3 5P) = (UJ17(U2,(4)3, W4)
y(0) = wi
oy = Ady + Bou + wy
— —dp= A"9p+dy+ws
Bou+ B*op= wy

<= (dy, du) unique sol. of a LQ problem.

d(y, u, p) =
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Elements of analysis

Conclusion (for ||yo|| small enough).

m (¥, ) is a solution to P(yp) with costate p implies

¢()77 07 ﬁ) = (y070>0> 0) — ()77 ljv ﬁ) = Cb_l(yOvaOaO)'

Uniqueness and smoothness of V follow.

m (Yk, Uk, pk) is as in Step 2 implies
(v, Uk, P) = (Y0, 0, Wi, 0) <= (yk, uk, px) = ® (%0, 0, wg, 0).
m Error estimate:

”(yk7uk7pk) ( L_I ﬁ)H - H¢ (.y0707 Wk70) _q)il(yOaOJOaO)H
< Cllwll < Cllyolly-
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Introduction

Main result: an upper bound of

lyrRH — y”W(O,oo) + ||lugH — L7HL2(0700), where:

m (y, ) is the solution to P(yo)

® (yrH, UrH) iS an approximate solution obtained with the
Receding-Horizon method (= Model Predictive Control).

We aim at analyzing the effect of
m the sampling time 7
m the prediction horizon T

m the penalty function ¢.
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Algorithm

Main idea of the RHC method: replace P(yp) by a sequence of
(tractable) finite-horizon problems.

For a given terminal cost function ¢: Y — R, consider the
truncated problem

ot ]S+ S lut) e+ (7))

u€el?(0,00

where: { y(1) = Ay(t) + Ny(t)u(t) + Bu(t),
. y(O) = Yt € Y,
(P7.6(¥init))
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Algorithm

Method.
Set n=0.
Compute a solution (y, u) to P1 4(yn)-
Set ugy(t) = u(nt + t), yru(t) = y(nT + t) for t € (0, 7).
Set ynt1 = yru((n+1)7), n=n+1, and go back to Step 2.

m /fV is used as a terminal cost, then by the dynamic
programming principle, the RH-algorithm generates the
exact solution to the problem.

m Limit case when (7, T) — 0: Feedback control.
Limit case when (1, T) — oco: Open-loop control.
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Result

Theorem

For all k > 1, there exist 9 > 0, 6 > 0, and M > 0 such that for
all 7 > 1y, forall T > 7, and all yy € By(9), the RHC method with

¢ = Vk
is well-posed. Moreover,

Iyre — Pl wee + luge — @l 2(0,00) < Me 2T =TI22KT g%

where i is the unique solution to the problem with trajectory .

Proof: based on a sensitivity analysis.



Conclusion

Summary:
m General method for deriving polynomial feedback laws

m Implementation for an infinite-dimensional problem thanks to
model reduction

m Good results, but only locally.
m Theoretical result for the RHC method.

Extensions:
m Other systems, with different non-linearities.
m Analysis of other kind of feedback mechanisms (e.g. SDRE).

m Analysis of other kind of problems (e.g. problems with
turnpike property).
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