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Introduction

We consider the following bilinear optimal control problem:

inf
u∈L2(0,∞)

J (u, y0) :=

∫ ∞
0

1

2
‖y(t)‖2

Y +
β

2
|u(t)|2dt,

where:

{
ẏ(t) = Ay(t) + Ny(t)u(t) + Bu(t),
y(0) = y0 ∈ Y ,

(P(y0))

with associated value function: V(y0) := infu∈L2(0,∞) J (u, y0).

Key ideas:

The derivatives D jV(0) are characterized by a sequence of
equations.

This allows for the numerical approximation of V and the
optimal feedback law (locally, around 0).
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Assumptions

Functional framework:

V ⊂ Y ⊂ V ∗ is a Gelfand triple of real Hilbert spaces, where
the embedding of V into Y is dense and compact

W (0,∞) = {y ∈ L2(0,∞;V ) | ẏ ∈ L2(0,∞;V ∗)}.

Assumptions:

(A1) The operator −A can be associated with a V -Y coercive
bilinear form a : V × V → R such that ∃λ ∈ R and δ > 0
satisfying a(v , v) ≥ δ‖v‖2

V − λ‖v‖2
Y , for all v ∈ V .

(A2) The operator N is such that N ∈ L(V ,Y ) and N∗ ∈ L(V ,Y ).

(A3) [Stabilizability] There exists an operator F ∈ L(Y ,R) such
that the semigroup e(A+BF )t is exponentially stable on Y .

Another technical assumption is also needed.
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Roadmap

The Taylor expansion of order k , denoted Vk is of the form:

Vk(y0) =
1

2
T2(y0, y0) +

1

3!
T3(y0, y0, y0) + ...+

1

k!
Tk(y0, ..., y0),

where Tj = D jV(0) is a bounded multilinear form from Y j to R.

Remark: V(0) = 0, DV(0) = 0.

We formally show that

T2 is the unique solution to an algebraic Riccati equation
(ARE)

T3, T4,... are the unique solutions to (linear) generalized
Lyapunov equations (GLE).
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HJB equation

Proposition

Assume that there exists a neighborhood Y0 of 0 such that

1 Problem P(y0) has a continuous solution u, ∀y0 ∈ D(A) ∩ Y0

2 The value function is continuously differentiable on Y0.

Then, for all y0 ∈ D(A) ∩ Y0,

DV(y0)Ay0 + 1
2‖y0‖2

Y − 1
2β

(
DV(y0)(Ny0 + B)

)2
= 0. (HJB)

Moreover, for all continuous solutions ū to problem P(y0),

ū(t) = − 1
βDV(ȳ(t))(Nȳ(t) + B)︸ ︷︷ ︸
Control in feedback form!

, for a.e. t.
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Taylor expansion

The equations characterizing (Tj)j=2,3,... are then obtained by
successive differentiation of the HJB equation.

First differentiation of (HJB) w.r.t. y in some direction
z1 ∈ D(A):

D2V(y)(Ay , z1) + DV(y)Az1 + 〈y , z1〉Y
− 1

β

(
D2V(y)(Ny + B, z1) + DV(y)Nz1

)(
DV(y)(Ny + B)

)
= 0.

Note: y0 → y.
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Taylor expansion

Second differentiation of (HJB):

D3V(y)(Ay , z1, z2) + D2V(y)(Az2, z1) + D2V(y)(Az1, z2) + 〈z1, z2〉Y

− 1

β

(
D2V(y)(Ny + B, z1) + DV(y)Nz1

)(
D2V(y)(Ny + B, z2) + DV(y)Nz2

)
− 1

β

(
D3V(y)(Ny + B, z1, z2)

)(
DV(y)(Ny + B)

)
− 1

β

(
D2V(y)(Nz2, z1) + D2V(y)(Nz1, z2)

)(
DV(y)(Ny + B)

)
= 0.

For y = 0, using the representation D2V(0)(z1, z2) = 〈z1,Πz2〉,
where Π: Y → Y , we obtain an algebraic Riccati equation:

A∗Π + ΠA + Id− 1
βΠBB∗Π = 0. (ARE)

It has a unique self-adjoint and non-negative solution.
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Taylor expansion

Third differentiation of (HJB), at y = 0:

D3V(0)(Az3, z1, z2) + D3V(0)(Az2, z1, z3) + D3V(0)(Az1, z2, z3)

− 1

β

(
D3V (0)(B, z1, z3) + D2V(0)(Nz3, z1) + D2V(0)(Nz1, z3)

)
D2V(0)(B, z2)

− 1

β

(
D3V(0)(B, z2, z3) + D2V(0)(Nz3, z2) + D2V(0)(Nz2, z3)

)
D2V(0)(B, z1)

− 1

β

(
D3V(0)(B, z1, z2) + D2V(0)(Nz2, z1) + D2V(0)(Nz1, z2)

)
D2V(0)(B, z3) = 0.

We set: AΠ = A− 1
βBB

∗Π, we obtain:

T3(AΠz1, z2, z3) + T3(z1,AΠz2, z3) + T3(z1, z2,AΠz3)

=
1

2β
R3(z1, z2, z3), ∀(z1, z2, z3) ∈ D(A)3,

where the trilinear form R3 : Y 3 → R is determined by Π, N, and B.
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Taylor expansion

Differentiation of order j of (HJB), at y = 0:

Tj(AΠz1, z2, ..., zk) + ...+ Tj(z1, ..., zk−1,AΠzk)

=
1

2β
Rj(z1, ..., zj), ∀(z1, ..., zj) ∈ D(A)j . (GLE(j))

Properties of the derived generalized Lyapunov equations:

linear equation

computable right-hand side:
the multilinear form Rj : Y j → R is explicitely determined by
Π, D3V(0),...,D j−1V(0), N, and B.
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Theorem

There exists a unique sequence (Tj)j=3,4,... of symmetric bounded
multilinear forms such that Tj : Y j → R is a solution to GLE(j).

Proof. Representation formula:

Tj(z1, ..., zk) = −
∫ ∞

0
Rj

(
eAπtz1, ..., e

Aπzk
)

dt.

Remark: the well-posedness of the GLEs can be established
without knowledge regarding the differentiability of V.
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Feedback law

Polynomial Vk of degree k :

Vk(y) =
∑k

k=2
1
j!Tj(y , ..., y).

Feedback law uk of order k :

uk : y ∈ Y 7→ uk(y) = − 1

β
DVk(y)(Ny + B).

Closed-loop system of order k :

ẏk(t) = Ayk(t) + (Nyk(t) + B)uk(yk(t)), yk(0) = y0.

Open-loop control Uk(y0) generated by the feedback uk and y0:

Uk(y0; t) = uk(yk(t)).
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Numerical approach

1 Discretize the operators A, N, and B in such a way that the
bilinear structure is preserved (e.g. with finite differences)

2 Find a reduced-order model with a generalization of the
balanced truncation method:

inf
u∈L2(0,∞)

J(u, y0) :=

∫ ∞
0

1

2
‖Cryr (t)‖2

Rn +
β

2
|u(t)|2dt,

where:

{
ẏr (t) = Aryr (t) + Nryr (t)u(t) + Bru(t),
yr (0) = y0,r ∈ Y .

3 Solve the reduced GLE with a tensor-calculus technique.
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Lyapunov equations

The associated reduced GLE of order k :

Tk,r (AΠ,rz1, z2, ..., zk) + ...+ Tk,r (z1, ..., zk−1,AΠ,rzk)

= 1
2βRk,r (z1, ..., zk)

is equivalent to a linear system with rk variables. Solution:

Tk,r (z1, ..., zk) = −
∫ ∞

0
Rk,r (eAΠ,r tz1, ..., e

AΠ,r tzk)dt.

An approximation is given by:

∑̀
i=−`

wiRk,r (eAΠ,r ti z1, ..., e
AΠ,r ti zk),

for an appropriate choice of points ti and weights wi .
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Fokker-Planck equation

Controlled Fokker-Planck equation:

∂ρ

∂t
= ν∆ρ+∇ · (ρ∇G ) + u∇ · (ρ∇αj) in Ω× (0,∞),

0 = (ν∇ρ+ ρ∇G ) · ~n on Γ× (0,∞),

ρ(x , 0) = ρ0(x) in Γ,

where Ω ∈ Rd denotes a bounded domain with smooth boundary Γ.

For all t, ρ(·, t) is the probability density function of Xt , sol. to

dX (t) = −∇xV (X (t), t)dt +
√

2νdWt ,

where the potential V is controlled by u:

V (x , t) = G (x) + u(t)α(x), ∀x ∈ Ω, ∀t ≥ 0.
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Fokker-Planck equation

The uncontrolled Fokker-Planck equation is known to converge to
its stationary distribution ρ∞.
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(a) Ground potential
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(b) Stationary distribution
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Fokker-Planck equation

Optimal control problem:

inf
u∈L2(0,∞)

∫ ∞
0

1

2
‖ρ(·, t)− ρ∞(·)‖2

L2(Ω) + β|u(t)|2dt,

where ρ satisfies the Fokker-Planck equation.

Under regularity assumptions on G and α, the problem can be
reformulated, so that it falls in the abstract framework.

Control shape function α(x) ≈ x/12.

Discretization of Ω = (−6, 6): n = 100.

Reduction: r = 21 (selection of singular values above 10−6).

Results for two initial values (a close one/a further one),
different values of β.
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Numerical results (test case 1)
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Numerical results (test case 1)
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Numerical results (test case 1)

β J(u2) J(u3) J(u4) J(u5) J(u6) J(uopt)

1e−3 0.156 0.155 0.155 0.155 0.155 0.154
1e−4 0.138 0.122 0.120 0.120 0.120 0.119
1e−5 0.205 0.194 0.104 0.111 0.113 0.095

(a) Cost of the controls uk

β
‖uk − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5 p = 6

1e−3 1.149 0.169 0.119 0.034 0.031
1e−4 18.50 7.02 3.16 4.01 1.52
1e−5 90.5 78.0 39.0 42.6 34.3

(b) L2-distance between the controls uk and the optimal control uopt
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Numerical results (test case 2)
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Numerical results (test case 2)
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Numerical results

β J(u2) J(u3) J(u4) J(u5) J(u6) J(uopt)

1e−2 0.788 0.788 0.788 0.788 0.788 0.787
1e−3 0.525 0.511 0.511 0.512 0.510 0.507
1e−4 0.381 0.368 2.689 ∞ ∞ 0.246

(a) Cost of the controls uk

β
‖uk − uopt‖L2(0,T )

k = 2 k = 3 k = 4 k = 5 k = 6

1e−2 0.19 0.15 0.15 0.15 0.15
1e−3 4.88 1.50 1.77 2.31 1.52
1e−4 46.34 35.36 57.08 ∞ ∞

(b) L2-distance between the controls uk and the optimal control uopt
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Elements of analysis

Theorem

There exists δ > 0 such that

for all y0 ∈ B(δ), problem P(y0) has a unique solution ū,

the value function V is infinitely differentiable on B(δ).

For all k ≥ 2, there exist δ > 0 and C > 0 such that:

The closed-loop system (of order k) is well-posed and
generates an open-loop control in L2(0,∞).

The following estimates hold true:

J (Uk(y0), y0) ≤ V(y0) + C‖y0‖2k
Y

‖ū −Uk(y0)‖L2(0,∞) ≤ C‖y0‖kY .

Remark: local result, δ and C depend on k.
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Elements of analysis

Result 1 (optimality conditions for the original problem).
For all solutions ū with trajectory ȳ , there exists p̄ ∈W (0,∞)
such that

˙̄p + (A + ūN)∗p̄ + ȳ = 0, βū + (Ny + B)∗p̄ = 0.

Result 2 (optimality conditions for the closed loop system).
For the control uk and the trajectory yk generated by the feedback
of order k , there exists pk ∈ L2(0,∞;V ) such that

ṗk + (A + ukN)∗pk + yk = wk , βuk + (Nyk + B)∗pk = 0,

where ‖wk‖ ≤ C‖y0‖kY .
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Elements of analysis

Result 3 (sensitivity analysis).
The mapping Φ: (y , u, p) ∈W (0,∞)× L2(0,∞)× L2(0,∞;V ) 7→

Φ(y , u, p) =

 y(0)
ẏ − (Ay + Nyu + Bu)
−ṗ − (A + uN)∗p − y
βu + (Ny + B)∗p


is locally invertible around (0, 0, 0), with a C∞ inverse.

Proof: application of the inverse mapping theorem.

DΦ(0, 0, 0)(δy , δu, δp) = (ω1, ω2, ω3, ω4)

⇐⇒


δy(0) = ω1

δẏ = Aδy + Bδu + ω2

−δṗ = A∗δp + δy + ω3

βδu + B∗δp = ω4


⇐⇒ (δy , δu) unique sol. of a LQ problem.



Taylor expansions and feedback laws Numeric results Elements of analysis Receding-horizon algorithm

Elements of analysis

Conclusion (for ‖y0‖ small enough).

(ȳ , ū) is a solution to P(y0) with costate p̄ implies

Φ(ȳ , ū, p̄) = (y0, 0, 0, 0)⇐⇒ (ȳ , ū, p̄) = Φ−1(y0, 0, 0, 0).

Uniqueness and smoothness of V follow.

(yk , uk , pk) is as in Step 2 implies

Φ(yk , uk , pk) = (y0, 0,wk , 0)⇐⇒ (yk , uk , pk) = Φ−1(y0, 0,wk , 0).

Error estimate:

‖(yk , uk , pk)− (ȳ , ū, p̄)‖ = ‖Φ−1(y0, 0,wk , 0)− Φ−1(y0, 0, 0, 0)‖
≤ C‖wk‖ ≤ C‖y0‖kY .
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Introduction

Main result: an upper bound of

‖yRH − ȳ‖W (0,∞) + ‖uRH − ū‖L2(0,∞), where:

(ȳ , ū) is the solution to P(y0)

(yRH , uRH) is an approximate solution obtained with the
Receding-Horizon method (= Model Predictive Control).

We aim at analyzing the effect of

the sampling time τ

the prediction horizon T

the penalty function φ.
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Algorithm

Main idea of the RHC method: replace P(y0) by a sequence of
(tractable) finite-horizon problems.

For a given terminal cost function φ : Y → R, consider the
truncated problem

inf
u∈L2(0,∞)

∫ T

0

1

2
‖y(t)‖2

Y +
β

2
|u(t)|2dt + φ(y(T )),

where:

{
ẏ(t) = Ay(t) + Ny(t)u(t) + Bu(t),
y(0) = yinit ∈ Y ,

(PT ,φ(yinit))
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Algorithm

Method.

1 Set n = 0.

2 Compute a solution (y , u) to PT ,φ(yn).

3 Set uRH(t) = u(nτ + t), yRH(t) = y(nτ + t) for t ∈ (0, τ).

4 Set yn+1 = yRH((n + 1)τ), n = n + 1, and go back to Step 2.

Remark

If V is used as a terminal cost, then by the dynamic
programming principle, the RH-algorithm generates the
exact solution to the problem.

Limit case when (τ,T )→ 0: Feedback control.
Limit case when (τ,T )→∞: Open-loop control.
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Result

Theorem

For all k ≥ 1, there exist τ0 > 0, δ > 0, and M > 0 such that for
all τ ≥ τ0, for all T ≥ τ , and all y0 ∈ BY (δ), the RHC method with

φ = Vk

is well-posed. Moreover,

‖yRH − ȳ‖W∞ + ‖uRH − ū‖L2(0,∞) ≤ Me−λ(T−τ)−λkT‖y0‖kY

where ū is the unique solution to the problem with trajectory ȳ .

Proof: based on a sensitivity analysis.
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Conclusion

Summary:

General method for deriving polynomial feedback laws

Implementation for an infinite-dimensional problem thanks to
model reduction

Good results, but only locally.

Theoretical result for the RHC method.

Extensions:

Other systems, with different non-linearities.

Analysis of other kind of feedback mechanisms (e.g. SDRE).

Analysis of other kind of problems (e.g. problems with
turnpike property).
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