Taylor expansions and feedback laws 00000000

Numeric results

Elements of analysis

Receding-horizon algorithm 0000

Taylor Expansions of the Value Function Associated with Stabilization Problems

Laurent Pfeiffer Inria-Saclay and CMAP, Ecole Polytechnique Joint work with Tobias Breiten and Karl Kunisch (U. Graz)

ICODE Workshop on numerical solutions of HJB equations, January 8, 2020

Innia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Taylor expansions and feedback laws Numeric results Elements of analysis Receding-horizon 00000000 0000 0000 0000 0000	algorithm

We consider the following bilinear optimal control problem:

$$\inf_{\substack{u \in L^{2}(0,\infty)}} \mathcal{J}(u, y_{0}) := \int_{0}^{\infty} \frac{1}{2} \|y(t)\|_{Y}^{2} + \frac{\beta}{2} |u(t)|^{2} dt,$$

where:
$$\begin{cases} \dot{y}(t) = Ay(t) + Ny(t)u(t) + Bu(t), \\ y(0) = y_{0} \in Y, \end{cases}$$
 (P(y_{0}))

with associated value function: $\mathcal{V}(y_0) := \inf_{u \in L^2(0,\infty)} \mathcal{J}(u, y_0)$. Key ideas:

- The derivatives D^jV(0) are characterized by a sequence of equations.
- This allows for the numerical approximation of V and the optimal feedback law (locally, around 0).

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm
Assumptions			

Functional framework:

- V ⊂ Y ⊂ V* is a Gelfand triple of real Hilbert spaces, where the embedding of V into Y is dense and compact
- $W(0,\infty) = \{y \in L^2(0,\infty; V) \mid \dot{y} \in L^2(0,\infty; V^*)\}.$

Assumptions:

- (A1) The operator -A can be associated with a V-Y coercive bilinear form $a: V \times V \to \mathbb{R}$ such that $\exists \lambda \in \mathbb{R}$ and $\delta > 0$ satisfying $a(v, v) \ge \delta \|v\|_{V}^{2} \lambda \|v\|_{Y}^{2}$, for all $v \in V$.
- (A2) The operator N is such that $N \in \mathcal{L}(V, Y)$ and $N^* \in \mathcal{L}(V, Y)$.
- (A3) **[Stabilizability]** There exists an operator $F \in \mathcal{L}(Y, \mathbb{R})$ such that the semigroup $e^{(A+BF)t}$ is exponentially stable on Y.

Another technical assumption is also needed.

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Taylor expansions and feedback laws

2 Numeric results

3 Elements of analysis

4 Receding-horizon algorithm

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

1 Taylor expansions and feedback laws

2 Numeric results

3 Elements of analysis

4 Receding-horizon algorithm

Taylor expansions and feedback laws ●0000000	Numeric results	Elements of analysis	Receding-horizon algorithm 0000
Roadmap			

The **Taylor expansion** of order k, denoted V_k is of the form:

$$\mathcal{V}_k(y_0) = rac{1}{2}\mathcal{T}_2(y_0,y_0) + rac{1}{3!}\mathcal{T}_3(y_0,y_0,y_0) + ... + rac{1}{k!}\mathcal{T}_k(y_0,...,y_0),$$

where $\mathcal{T}_j = D^j \mathcal{V}(0)$ is a **bounded multilinear form** from Y^j to \mathbb{R} . *Remark:* $\mathcal{V}(0) = 0$, $D\mathcal{V}(0) = 0$.

We formally show that

- *T*₂ is the unique solution to an **algebraic Riccati equation** (ARE)
- *T*₃, *T*₄,... are the unique solutions to (linear) generalized Lyapunov equations (GLE).

Taylor	expansions	and	feedback	laws
0000	0000			

Numeric results

Elements of analysis

Receding-horizon algorithm 0000

HJB equation

Proposition

Assume that there exists a neighborhood Y_0 of 0 such that

- **1** Problem $P(y_0)$ has a continuous solution $u, \forall y_0 \in \mathcal{D}(A) \cap Y_0$
- **2** The value function is continuously differentiable on Y_0 .

Then, for all $y_0 \in \mathcal{D}(A) \cap Y_0$,

 $D\mathcal{V}(y_0)Ay_0 + \frac{1}{2}||y_0||_Y^2 - \frac{1}{2\beta} (D\mathcal{V}(y_0)(Ny_0 + B))^2 = 0.$ (HJB)

Moreover, for all continuous solutions \bar{u} to problem $P(y_0)$,

$$ar{u}(t) = -rac{1}{eta} D \mathcal{V}(ar{y}(t)) (N ar{y}(t) + B), ext{ for a.e. } t.$$

Control in feedback form!

Taylor expansions and feedback laws 00●00000	Numeric results	Elements of analysis	Receding-horizon algorithm 0000
Taylor expansion			

The equations characterizing $(\mathcal{T}_j)_{j=2,3,...}$ are then obtained by successive **differentiation** of the HJB equation.

First differentiation of (HJB) w.r.t. *y* in some direction $z_1 \in \mathcal{D}(A)$:

$$D^{2}\mathcal{V}(y)(Ay, z_{1}) + D\mathcal{V}(y)Az_{1} + \langle y, z_{1} \rangle_{Y}$$

- $\frac{1}{\beta} (D^{2}\mathcal{V}(y)(Ny + B, z_{1}) + D\mathcal{V}(y)Nz_{1}) (D\mathcal{V}(y)(Ny + B)) = 0.$

Note: $y_0 \rightarrow y$.

Taylor expansions and feedback laws 000●0000	Numeric results	Elements of analysis	Receding-horizon algorithm 0000
Taylor expansion			

Second differentiation of (HJB):

$$D^{3}\mathcal{V}(y)(Ay, z_{1}, z_{2}) + D^{2}\mathcal{V}(y)(Az_{2}, z_{1}) + D^{2}\mathcal{V}(y)(Az_{1}, z_{2}) + \langle z_{1}, z_{2} \rangle_{Y}$$

- $\frac{1}{\beta} (D^{2}\mathcal{V}(y)(Ny + B, z_{1}) + D\mathcal{V}(y)Nz_{1}) (D^{2}\mathcal{V}(y)(Ny + B, z_{2}) + D\mathcal{V}(y)Nz_{2})$
- $\frac{1}{\beta} (D^{3}\mathcal{V}(y)(Ny + B, z_{1}, z_{2})) (D\mathcal{V}(y)(Ny + B))$
- $\frac{1}{\beta} (D^{2}\mathcal{V}(y)(Nz_{2}, z_{1}) + D^{2}\mathcal{V}(y)(Nz_{1}, z_{2})) (D\mathcal{V}(y)(Ny + B)) = 0.$

For y = 0, using the representation $D^2 \mathcal{V}(0)(z_1, z_2) = \langle z_1, \Pi z_2 \rangle$, where $\Pi: Y \to Y$, we obtain an algebraic Riccati equation:

$$A^*\Pi + \Pi A + \mathsf{Id} - \frac{1}{\beta}\Pi BB^*\Pi = 0.$$
 (ARE)

It has a unique self-adjoint and non-negative solution.

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm
0000€000		0000	0000
Taylor expansion			

Third differentiation of (HJB), at y = 0:

$$D^{3}\mathcal{V}(0)(Az_{3}, z_{1}, z_{2}) + D^{3}\mathcal{V}(0)(Az_{2}, z_{1}, z_{3}) + D^{3}\mathcal{V}(0)(Az_{1}, z_{2}, z_{3})$$

- $\frac{1}{\beta}(D^{3}V(0)(B, z_{1}, z_{3}) + D^{2}\mathcal{V}(0)(Nz_{3}, z_{1}) + D^{2}\mathcal{V}(0)(Nz_{1}, z_{3}))D^{2}\mathcal{V}(0)(B, z_{2})$
- $\frac{1}{\beta}(D^{3}\mathcal{V}(0)(B, z_{2}, z_{3}) + D^{2}\mathcal{V}(0)(Nz_{3}, z_{2}) + D^{2}\mathcal{V}(0)(Nz_{2}, z_{3}))D^{2}\mathcal{V}(0)(B, z_{1})$
- $\frac{1}{\beta}(D^{3}\mathcal{V}(0)(B, z_{1}, z_{2}) + D^{2}\mathcal{V}(0)(Nz_{2}, z_{1}) + D^{2}\mathcal{V}(0)(Nz_{1}, z_{2}))D^{2}\mathcal{V}(0)(B, z_{3}) = 0.$

We set: $A_{\Pi} = A - \frac{1}{\beta}BB^*\Pi$, we obtain:

$$egin{aligned} \mathcal{T}_3(egin{aligned} & \mathcal{T}_3(egin{aligned} & \mathcal{T}_3(egin{aligned} & \mathcal{T}_1, egin{aligned} & \mathcal{T}_3(egin{aligned} & \mathcal{T}_1, egin{aligned} & \mathcal{T}_2, egin{aligned} & \mathcal{T}_3(egin{aligned} & \mathcal{T}_1, egin{aligned} & \mathcal{T}_3(egin{aligned} & \mathcal{T}_3, eg$$

where the trilinear form $\mathcal{R}_3 \colon Y^3 \to \mathbb{R}$ is determined by Π , N, and B.

Taylor expansions and feedback laws 00000●00	Numeric results	Elements of analysis	Receding-horizon algorithm 0000
Taylor expansion			

Differentiation of order j of (HJB), at y = 0:

$$\mathcal{T}_{j}(A_{\Pi}z_{1}, z_{2}, ..., z_{k}) + ... + \mathcal{T}_{j}(z_{1}, ..., z_{k-1}, A_{\Pi}z_{k})$$

= $\frac{1}{2\beta}\mathcal{R}_{j}(z_{1}, ..., z_{j}), \quad \forall (z_{1}, ..., z_{j}) \in \mathcal{D}(A)^{j}.$ (GLE(j))

Properties of the derived generalized Lyapunov equations:

- linear equation
- computable right-hand side: the multilinear form *R_j*: *Y^j* → ℝ is explicitely determined by Π, *D³V*(0),...,*D^{j-1}V*(0), *N*, and *B*.

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm
00000000			

Theorem

There exists a unique sequence $(\mathcal{T}_j)_{j=3,4,...}$ of symmetric bounded multilinear forms such that $\mathcal{T}_j: Y^j \to \mathbb{R}$ is a solution to GLE(j).

Proof. Representation formula:

$$\mathcal{T}_j(z_1,...,z_k) = -\int_0^\infty \mathcal{R}_j(e^{A_\pi t}z_1,...,e^{A_\pi}z_k)\,\mathrm{d}t.$$

Remark: the well-posedness of the GLEs can be established without knowledge regarding the differentiability of V.

Taylor expansions and feedback laws 0000000●	Numeric results	Elements of analysis	Receding-horizon algorithm
Feedback law			

Polynomial \mathcal{V}_k of degree *k*:

$$\mathcal{V}_k(y) = \sum_{k=2}^k \frac{1}{j!} \mathcal{T}_j(y, ..., y).$$

Feedback law u_k of order k:

$$\mathbf{u}_k$$
: $y \in Y \mapsto \mathbf{u}_k(y) = -\frac{1}{\beta} D\mathcal{V}_k(y)(Ny+B).$

Closed-loop system of order k:

 $\dot{y}_k(t) = Ay_k(t) + (Ny_k(t) + B)\mathbf{u}_k(y_k(t)), \quad y_k(0) = y_0.$

Open-loop control U_k(y_0) generated by the feedback **u**_k and y_0 :

 $\mathbf{U}_k(y_0;t)=\mathbf{u}_k(y_k(t)).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

1 Taylor expansions and feedback laws

2 Numeric results

3 Elements of analysis

4 Receding-horizon algorithm

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = 釣�?

Taylor expansions and feedback laws	Numeric results •0000000000	Elements of analysis	Receding-horizon algorithm
Numerical approach			

- **Discretize** the operators *A*, *N*, and *B* in such a way that the bilinear structure is preserved (e.g. with finite differences)
- Find a reduced-order model with a generalization of the balanced truncation method:

$$\inf_{u \in L^{2}(0,\infty)} J(u, y_{0}) := \int_{0}^{\infty} \frac{1}{2} \|C_{r}y_{r}(t)\|_{\mathbb{R}^{n}}^{2} + \frac{\beta}{2} |u(t)|^{2} dt,$$

where:
$$\begin{cases} \dot{y}_{r}(t) = A_{r}y_{r}(t) + N_{r}y_{r}(t)u(t) + B_{r}u(t), \\ y_{r}(0) = y_{0,r} \in Y. \end{cases}$$

3 Solve the reduced GLE with a **tensor-calculus technique**.

 Taylor expansions and feedback laws
 Numeric results
 Elements of analysis
 Receding-horizon algorithm

 OOOOOOOO
 OOOO
 OOOO
 OOOO
 OOOO

 Lyapunov equations

The associated reduced GLE of order k:

$$T_{k,r}(A_{\Pi,r}z_1, z_2, ..., z_k) + ... + T_{k,r}(z_1, ..., z_{k-1}, A_{\Pi,r}z_k)$$

= $\frac{1}{2\beta}R_{k,r}(z_1, ..., z_k)$

is equivalent to a **linear system with** r^k variables. Solution:

$$T_{k,r}(z_1,...,z_k) = -\int_0^\infty R_{k,r}(e^{A_{\Pi,r}t}z_1,...,e^{A_{\Pi,r}t}z_k) dt.$$

An approximation is given by:

$$\sum_{i=-\ell}^{\ell} w_i R_{k,r}(e^{A_{\Pi,r}t_i}z_1,...,e^{A_{\Pi,r}t_i}z_k),$$

for an appropriate choice of points t_i and weights w_i .

 Taylor expansions and feedback laws
 Numeric results
 Elements of analysis
 Receding-horizon algorithm

 00000000
 000000000
 0000
 0000
 0000

Fokker-Planck equation

f

Controlled Fokker-Planck equation:

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla G) + u \nabla \cdot (\rho \nabla \alpha_j) & \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla G) \cdot \vec{n} & \text{on } \Gamma \times (0, \infty), \\ \rho(x, 0) &= \rho_0(x) & \text{in } \Gamma, \end{aligned}$$

where $\Omega \in \mathbb{R}^d$ denotes a bounded domain with smooth boundary Γ . For all t, $\rho(\cdot, t)$ is the probability density function of X_t , sol. to

$$\mathsf{d}X(t) = -
abla_{\mathsf{X}} \mathsf{V}(\mathsf{X}(t), t) \mathsf{d}t + \sqrt{2
u} \mathsf{d}W_t,$$

where the **potential** V is controlled by u:

 $V(x,t) = G(x) + u(t)\alpha(x), \quad \forall x \in \Omega, \ \forall t \ge 0.$

 Taylor expansions and feedback laws
 Numeric results
 Elements of analysis
 Receding-horizon algorith

 00000000
 000000000
 0000
 0000
 0000

Fokker-Planck equation

The uncontrolled Fokker-Planck equation is known to converge to its stationary distribution ρ_{∞} .

Taylor expansions and feedback laws 00000000 Numeric results

Elements of analysis

Receding-horizon algorithm 0000

Fokker-Planck equation

Optimal control problem:

 $\inf_{u\in L^2(0,\infty)}\int_0^\infty \frac{1}{2}\|\rho(\cdot,t)-\rho_\infty(\cdot)\|_{L^2(\Omega)}^2+\beta|u(t)|^2\mathrm{d}t,$

where ρ satisfies the Fokker-Planck equation.

Under regularity assumptions on G and α , the problem can be reformulated, so that it falls in the abstract framework.

- Control shape function $\alpha(x) \approx x/12$.
- Discretization of $\Omega = (-6, 6)$: n = 100.
- Reduction: r = 21 (selection of singular values above 10^{-6}).
- Results for two initial values (a close one/a further one), different values of β.

Taylor expansions and feedback laws	Numeric results 00000000000	Elements of analysis	Receding-horizon algorithm 0000
Numerical results (test case 1)		

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Numerical manufactor	(++ 1)		
Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

Taylor expansions and feedback laws	Numeric results	Elements of analysis 0000	Receding-horizon algorithm 0000
Numerical results	(test case 1)		

β	$J(u_2)$	$J(u_3)$	$J(u_4)$	$J(u_5)$	$J(u_6)$	$J(u_{opt})$
1e ⁻³	0.156	0.155	0.155	0.155	0.155	0.154
1e ⁻⁴	0.138	0.122	0.120	0.120	0.120	0.119
1e ⁻⁵	0.205	0.194	0.104	0.111	0.113	0.095

(a) Cost of the controls u_k

в	$\ u_k - u_{opt}\ _{L^2(0,T)}$				
ρ	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
1e ⁻³	1.149	0.169	0.119	0.034	0.031
$1e^{-4}$	18.50	7.02	3.16	4.01	1.52
$1e^{-5}$	90.5	78.0	39.0	42.6	34.3

(b) L^2 -distance between the controls u_k and the optimal control u_{opt}

00000000 000000000 0000 0000 0000	NI second and second to a	(1		
Taylor expansions and feedback laws Numeric results Elements of analysis Receding-horizon algorithm	Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Taylor expansions and feedback laws	Numeric results	Elements of analysis 0000	sis Receding-horizon algorithm 0000	
NI 1 1 (

Taylor	expansions	and	feedback	

Numeric results

Elements of analysis

Receding-horizon algorithm 0000

Numerical results

β	$J(u_2)$	$J(u_3)$	$J(u_4)$	$J(u_5)$	$J(u_6)$	$J(u_{opt})$
1e ⁻²	0.788	0.788	0.788	0.788	0.788	0.787
$1e^{-3}$	0.525	0.511	0.511	0.512	0.510	0.507
1e ⁻⁴	0.381	0.368	2.689	∞	$ \infty$	0.246

(a) Cost of the controls u_k

в	$\ u_k - u_{opt}\ _{L^2(0,T)}$				
Ρ	k = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5	<i>k</i> = 6
$1e^{-2}$	0.19	0.15	0.15	0.15	0.15
$1e^{-3}$	4.88	1.50	1.77	2.31	1.52
$1e^{-4}$	46.34	35.36	57.08	∞	∞

(b) L^2 -distance between the controls u_k and the optimal control u_{opt}

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

1 Taylor expansions and feedback laws

2 Numeric results

3 Elements of analysis

4 Receding-horizon algorithm

Taylor expansions and feedback laws

Numeric results

Elements of analysis

Receding-horizon algorithm 0000

Elements of analysis

Theorem

There exists $\delta > 0$ such that

- for all $y_0 \in B(\delta)$, problem $P(y_0)$ has a unique solution \bar{u} ,
- the value function \mathcal{V} is infinitely differentiable on $B(\delta)$.

For all $k \ge 2$, there exist $\delta > 0$ and C > 0 such that:

- The closed-loop system (of order k) is well-posed and generates an open-loop control in L²(0,∞).
- The following estimates hold true:

 $\mathcal{J}(\mathbf{U}_{k}(y_{0}), y_{0}) \leq \mathcal{V}(y_{0}) + C \|y_{0}\|_{Y}^{2k}$ $\|\bar{u} - \mathbf{U}_{k}(y_{0})\|_{L^{2}(0,\infty)} \leq C \|y_{0}\|_{Y}^{k}.$

Remark: **local result**, δ and *C* depend on *k*.

Taylor expansions and feedback laws	Numeric results	Elements of analysis 0000	Receding-horizon algorithm
Elements of analysis			

Result 1 (optimality conditions for the original problem). For all solutions \bar{u} with trajectory \bar{y} , there exists $\bar{p} \in W(0,\infty)$ such that

 $\dot{\bar{p}} + (A + \bar{u}N)^* \bar{p} + \bar{y} = 0, \quad \beta \bar{u} + (Ny + B)^* \bar{p} = 0.$

Result 2 (optimality conditions for the closed loop system). For the control u_k and the trajectory y_k generated by the feedback of order k, there exists $p_k \in L^2(0, \infty; V)$ such that

 $\dot{p}_k + (A + u_k N)^* p_k + y_k = w_k, \quad \beta u_k + (Ny_k + B)^* p_k = 0,$

where $||w_k|| \le C ||y_0||_Y^k$.

Taylor expansions and feedback laws

Numeric results

Elements of analysis

Receding-horizon algorithm 0000

Elements of analysis

Result 3 (sensitivity analysis).

The mapping $\Phi \colon (y, u, p) \in W(0, \infty) \times L^2(0, \infty) \times L^2(0, \infty; V) \mapsto$

$$\Phi(y, u, p) = \begin{pmatrix} y(0) \\ \dot{y} - (Ay + Nyu + Bu) \\ -\dot{p} - (A + uN)^*p - y \\ \beta u + (Ny + B)^*p \end{pmatrix}$$

is locally invertible around (0,0,0), with a ${\ensuremath{C^\infty}}$ inverse.

Proof: application of the inverse mapping theorem.

$$D\Phi(0,0,0)(\delta y, \delta u, \delta p) = (\omega_1, \omega_2, \omega_3, \omega_4)$$

$$\iff \begin{pmatrix} \delta y(0) = \omega_1 \\ \delta \dot{y} = A \delta y + B \delta u + \omega_2 \\ -\delta \dot{p} = A^* \delta p + \delta y + \omega_3 \\ \beta \delta u + B^* \delta p = \omega_4 \end{pmatrix}$$

$$\iff (\delta y, \delta u) \text{ unique sol. of a LQ problem.}$$

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

Taylor expansions and feedback laws	Numeric results	Elements of analysis 000●	Receding-horizon algorithm
Elements of analysis			

Conclusion (for $||y_0||$ small enough).

• (\bar{y}, \bar{u}) is a solution to $P(y_0)$ with costate \bar{p} implies

 $\Phi(\bar{y},\bar{u},\bar{p}) = (y_0,0,0,0) \Longleftrightarrow (\bar{y},\bar{u},\bar{p}) = \Phi^{-1}(y_0,0,0,0).$

Uniqueness and smoothness of \mathcal{V} follow.

• (y_k, u_k, p_k) is as in Step 2 implies

 $\Phi(y_k, u_k, p_k) = (y_0, 0, w_k, 0) \iff (y_k, u_k, p_k) = \Phi^{-1}(y_0, 0, w_k, 0).$

Error estimate:

$$\begin{split} \|(y_k, u_k, p_k) - (\bar{y}, \bar{u}, \bar{p})\| &= \|\Phi^{-1}(y_0, 0, w_k, 0) - \Phi^{-1}(y_0, 0, 0, 0)\| \\ &\leq C \|w_k\| \leq C \|y_0\|_Y^k. \end{split}$$

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Taylor expansions and feedback laws

2 Numeric results

3 Elements of analysis

4 Receding-horizon algorithm

Taylor expansions and feedback laws	Numeric results	Elements of analysis 0000	Receding-horizon algorithm ●000
Introduction			

Main result: an upper bound of

 $\|y_{RH} - \bar{y}\|_{W(0,\infty)} + \|u_{RH} - \bar{u}\|_{L^2(0,\infty)},$ where:

- (\bar{y}, \bar{u}) is the solution to $P(y_0)$
- (y_{RH}, u_{RH}) is an approximate solution obtained with the Receding-Horizon method (= Model Predictive Control).

We aim at analyzing the effect of

- the sampling time au
- the prediction horizon T
- the penalty function ϕ .

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm 0●00
Algorithm			

Main idea of the RHC method: replace $P(y_0)$ by a sequence of (tractable) finite-horizon problems.

For a given terminal cost function $\phi \colon Y \to \mathbb{R}$, consider the truncated problem

$$\inf_{u \in L^{2}(0,\infty)} \int_{0}^{T} \frac{1}{2} \|y(t)\|_{Y}^{2} + \frac{\beta}{2} |u(t)|^{2} dt + \phi(y(T)),$$

$$\text{where:} \quad \left\{ \begin{array}{l} \dot{y}(t) = Ay(t) + Ny(t)u(t) + Bu(t), \\ y(0) = y_{\text{init}} \in Y, \end{array} \right.$$

$$(P_{T,\phi}(y_{\text{init}}))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm 00●0
Algorithm			

Method.

ъ

- **1** Set n = 0.
- **2** Compute a solution (y, u) to $P_{T,\phi}(y_n)$.
- **3** Set $u_{RH}(t) = u(n\tau + t)$, $y_{RH}(t) = y(n\tau + t)$ for $t \in (0, \tau)$.
- 4 Set $y_{n+1} = y_{RH}((n+1)\tau)$, n = n + 1, and go back to Step 2.

Remark

- If V is used as a terminal cost, then by the dynamic programming principle, the RH-algorithm generates the exact solution to the problem.
- Limit case when (τ, T) → 0: Feedback control. Limit case when (τ, T) → ∞: Open-loop control.

Taylor	expansions	and	feedback	

Numeric results

Elements of analysis

Receding-horizon algorithm $000 \bullet$

Result

Theorem

For all $k \ge 1$, there exist $\tau_0 > 0$, $\delta > 0$, and M > 0 such that for all $\tau \ge \tau_0$, for all $T \ge \tau$, and all $y_0 \in B_Y(\delta)$, the RHC method with

 $\phi = \mathcal{V}_k$

is well-posed. Moreover,

 $\|y_{RH} - \bar{y}\|_{W_{\infty}} + \|u_{RH} - \bar{u}\|_{L^{2}(0,\infty)} \le Me^{-\lambda(T-\tau)-\lambda kT}\|y_{0}\|_{Y}^{k}$

where \bar{u} is the unique solution to the problem with trajectory \bar{y} .

Proof: based on a sensitivity analysis.

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm
	00000000000	0000	0000
Conclusion			

Summary:

- General method for deriving polynomial feedback laws
- Implementation for an infinite-dimensional problem thanks to model reduction
- Good results, but only locally.
- Theoretical result for the RHC method.

Extensions:

- Other systems, with different non-linearities.
- Analysis of other kind of feedback mechanisms (e.g. SDRE).

 Analysis of other kind of problems (e.g. problems with turnpike property).

Taylor expansions and feedback laws	Numeric results	Elements of analysis 0000	Receding-horizon algorithm 0000
References			

- A. Krener, C. Aguilar, T. Hunt. Series solutions of HJB equations. Mathematical system theory, 2013. \rightarrow **Polynomial feedback laws.**
- J. Borggaard, L. Zietsman. Computation of nonlinear feedbacks for flow control problems, ACC, 2018. \rightarrow Polynomial feedback laws.
- L. Thevenet, J.M. Buchot, J.P. Raymond. Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM Control Optim. Calc. Var., 2010. \rightarrow **Polynomial feedback laws.**
- P. Benner, T. Damm. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SICON, 2011.

\rightarrow Model reduction.

L. Grazedyck. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing, 2004. \rightarrow Lyapunov equations.

Taylor expansions and feedback laws	Numeric results	Elements of analysis	Receding-horizon algorithm
References			

- T. Breiten, K. Kunisch, L.P. Taylor Expansions of the Value Function Associated with a Bilinear Optimal Control Problem. Ann. Inst. H. Poincaré, 2019.
 - T. Breiten, K. Kunisch, L.P. Numerical Study of Polynomial Feedback Laws for a Bilinear Control Problem. Math. Control Relat. Fields, 2019.
 - T. Breiten, K. Kunisch, L.P. Infinite-Horizon Bilinear Optimal Control Problems: Sensitivity Analysis and Polynomial Feedback Laws. SIAM J. Control Optim, 2018.

K. Kunisch, L.P. The Effect of the Terminal Penalty in Receding Horizon Control for a Class of Stabilization Problems. ESAIM Control Optim. Calc. Var., to appear.

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Thank you for your attention!