Route planning problems and hybrid control

Roberto Ferretti

Department of Mathematics and Physics, Roma Tre University

ferretti@mat.uniroma3.it

ICODE Paris, 10.01.20

joint works with

S. Cacace (Roma Tre) and A. Festa (Torino)
Outline

1. A general setting
 - Stochastic hybrid systems
 - The optimal control problem

2. Approximation via monotone schemes
 - Monotone schemes, value iteration

3. Route planning problems and race strategy
 - Tacking strategy for a single sailing boat
 - Tacking strategy in *match race* conditions

4. Computational issues

5. Conclusions
State equations of a stochastic hybrid system (1)

- **State** of the system: \((X(t), Q(t)) \in \Omega \times \mathbb{I}\), with \(\Omega \subseteq \mathbb{R}^d\), \(\mathbb{I} = \{1, \ldots, Q_m\}\). The discrete variable \(Q(t)\) (with initial value \(q = Q(0)\)) tells **which dynamics is active at time** \(t\).

- A measurable **control** \(u(t)\) mapping \((0, +\infty)\) into a compact set \(U\).

- A stochastic term driven by the coefficient \(\sigma\).

State equation

Evolution for given initial values of \(X\) and \(Q\):

\[
egin{cases}
 dX(t) = f(X(t), Q(t), u(t))dt + \sigma(X(t), Q(t))dW(t), \\
 X(0) = x, \\
 Q(0) = q.
\end{cases}
\]
State equations of a stochastic hybrid system (1)

- **State** of the system: \((X(t), Q(t)) \in \Omega \times \mathbb{I}\), with \(\Omega \subseteq \mathbb{R}^d\), \(\mathbb{I} = \{1, \ldots, Q_m\}\). The discrete variable \(Q(t)\) (with initial value \(q = Q(0)\)) tells **which dynamics is active at time** \(t\)

- A measurable **control** \(u(t)\) mapping \((0, +\infty)\) into a compact set \(U\)

- A stochastic term driven by the coefficient \(\sigma\)

State equation

Evolution for given initial values of \(X\) and \(Q\):

\[
\begin{align*}
 dX(t) &= f(X(t), Q(t), u(t))dt + \sigma(X(t), Q(t))dW(t), \\
 X(0) &= x, \\
 Q(0) &= q.
\end{align*}
\]

Inside a given set \(C\), **the state may jump** from a state \((x, q)\) to a different state \((x', q')\) \(\in D\). The choice of a new state is part of the control strategy.
State equations of a hybrid system (2)

The state space is endowed with the **product topology** (metric in x, discrete in q)
A **control** for this hybrid system is a triple:

\[\theta = (u, \{\xi_k\}, \{(X, Q)(\xi^+_k)\}) \]

- **u** is the controls for the **continuous system dynamics** \(f \)
- **\(\xi_k \)** is a **sequence of switching times** for the optional jumps and \((X, Q)(\xi^+_k)\) are the corresponding states after each jump
Optimal control problem

Cost functional

In the **discounted infinite horizon case**, the cost functional is defined by

\[
J(x, q, \theta) = \int_0^{+\infty} \ell(X(t), Q(t), u(t))e^{-\lambda t} \, dt
\]

\[+ \sum_{i=0}^{\infty} C(X(\xi_i^-), Q(\xi_i^-), X(\xi_i^+), Q(\xi_i^+))e^{-\lambda \xi_i}
\]

(1)

(2)
Optimal control problem

Cost functional

In the **discounted infinite horizon case**, the cost functional is defined by

\[
J(x, q, \theta) = \int_0^{+\infty} \ell(X(t), Q(t), u(t))e^{-\lambda t} \, dt \\
+ \sum_{i=0}^{\infty} C(X(\xi^-_i), Q(\xi^-_i), X(\xi^+_i), Q(\xi^+_i))e^{-\lambda \xi_i}
\]

- (1) is the cost related to **continuous control**
Optimal control problem

Cost functional

In the **discounted infinite horizon case**, the cost functional is defined by

\[
J(x, q, \theta) = \int_0^\infty \ell(X(t), Q(t), u(t)) e^{-\lambda t} \, dt \tag{1}
\]

\[
+ \sum_{i=0}^{\infty} C(X(\xi_i^-), Q(\xi_i^-), X(\xi_i^+), Q(\xi_i^+)) e^{-\lambda \xi_i} \tag{2}
\]

- (1) is the cost related to **continuous control**
- (2) is the cost related to **optional (controlled) commutations**
Optimal control problem

Cost functional

In the **discounted infinite horizon case**, the cost functional is defined by

\[
J(x, q, \theta) = \int_{0}^{+\infty} \ell(X(t), Q(t), u(t)) e^{-\lambda t} \, dt
\]

\[
+ \sum_{i=0}^{\infty} C(X(\xi^+_i), Q(\xi^-_i), X(\xi^-_i), Q(\xi^-_i)) e^{-\lambda \xi_i}
\]

- (1) is the cost related to **continuous control**
- (2) is the cost related to **optional (controlled) commutations**

\(\lambda > 0 \), usual boundedness and Lipschitz continuity assumptions on \(f, C \) and \(\ell \)
Bellman Equation (1)

Once defined the value function

\[V(x, q) = \inf_{\theta} \mathbb{E}(J(x, q, \theta)) \]

it can be proved that (in a suitably adapted viscosity sense) \(V \) satisfies the Quasi-Variational Inequality

\[
\begin{cases}
\max(V(x, q) - \mathcal{N}V(x, q), LV(x, q) + H(x, q, D_x V(x, q))) = 0 & (x, q) \in C, \\
LV(x, q) + H(x, D_x V(x, q)) = 0 & \text{else}
\end{cases}
\]
Bellman Equation (1)

Once defined the value function

\[V(x, q) = \inf_{\theta} \mathbb{E}(J(x, q, \theta)) \]

it can be proved that (in a suitably adapted viscosity sense) \(V \) satisfies
the Quasi-Variational Inequality

\[
\begin{cases}
\max(V(x, q) - N V(x, q), LV(x, q) + H(x, q, D_x V(x, q))) = 0 & \text{for } (x, q) \in C, \\
LV(x, q) + H(x, D_x V(x, q)) = 0 & \text{else}
\end{cases}
\]

Known results:

- Existence of a viscosity solution
- Strong comparison principle
Value iteration for monotone schemes

“Classical” approach for the approximation: value iteration with monotone schemes (e.g., Upwind, Lax–Friedrichs, Semi-Lagrangian + monotone approximation of the switching operators).

Starting from a time-marching formulation, the scheme can be put in

Fixed-point form

\[
V^h(x, q) = T^h(x, q, V^h) = \begin{cases}
\min \{ N^h V^h(x, q), S^h(x, q, V^h) \} & \text{if } x \in C_q \\
S^h(x, q, V^h) & \text{else.}
\end{cases}
\]
Value iteration for monotone schemes

“Classical” approach for the approximation: value iteration with monotone schemes (e.g., Upwind, Lax–Friedrichs, Semi-Lagrangian + monotone approximation of the switching operators).

Starting from a time-marching formulation, the scheme can be put in fixed-point form

\[
V^h(x, q) = T^h(x, q, V^h) = \begin{cases}
\min \{ N^h V^h(x, q), S^h(x, q, V^h) \} & \text{if } x \in C_q \\
S^h(x, q, V^h) & \text{else.}
\end{cases}
\]

- The solution can be computed via the iteration \(V^h_{k+1} = T^h(V^h_k) \)
- Monotone and \(L^\infty \) stable under natural assumptions
- From Barles–Souganidis theorem, \(V^h(x, q) \to V(x, q) \) as \(h \to 0 \)
- Construction of a quasi-optimal control from the numerical solution
- Fast solvers via policy iteration
Tacking strategy for a single sailing boat (1)

In its most basic form, the route planning problem treats the optimal tacking strategy of a sailing boat in a windward leg of a regatta.

- The boat sails at about 45° from the wind direction, which represents the best windward speed obtainable from the polar plot of the boat speed w.r.t. the angle with the wind.
- Neglecting the loss of speed in tacking would result in the unphysical possibility of sailing against the wind.
The wind direction α has a **partly stochastic evolution**:

$$d\alpha = c_\alpha dt + \sigma_\alpha dW$$

and its variations should be exploited so as to reach the windward mark in **minimum expected time**
The **loss of speed** during a change of tack may be modelled as a **switching cost** when jumping between different dynamics.

\[Q = 1 \quad \text{and} \quad Q = 2 \]
Tacking strategy for a single sailing boat (3)

The **loss of speed** during a change of tack may be modelled as a **switching cost** when jumping between different dynamics.

$$Q = 1 \quad \text{original}$$

$$Q = 2 \quad \text{simplified}$$
Tacking strategy for a purely windward sailing (1)

Aim: to move in the windward direction as much as possible – in this case, the problem does not depend on the position, but only on the wind direction

- **Cost functional:** discounted *position* + constant *switching cost*

\[
J(x, q, \theta) = \int_{0}^{+\infty} \bar{s} \cos (X(t) + \phi Q(t)) \ e^{-\lambda t} \ dt + \sum_{i=0}^{\infty} C e^{-\lambda \xi_i}
\]

with:

- \(X(t) = \alpha(t)\) state variable (wind direction)
- \(\bar{s}\) speed of the boat
- \(\phi Q(t) \approx \pm \pi/4\) angles of the route w.r.t. the wind direction
- \(C\) tacking cost

- **State space:** \(\mathbb{R} \times \{1, 2\}\) (wind direction \(\alpha\) + boat dynamics (L, R))

- **Heuristics:** “tacking on a lift” strategy
Tacking strategy for a purely windward sailing (2)

The resulting **Quasi-Variational Inequality** is in the form

\[
\min \left(v(x, q) - v(x, \hat{q}) - C, \lambda v(x, q) - \bar{s} \cos(x + \phi_q) - \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} v(x, q) \right) = 0
\]

with \(\hat{q} \neq q \).
Tacking strategy for a purely windward sailing (2)

The resulting **Quasi-Variational Inequality** is in the form

\[
\min \left(v(x, q) - v(x, \hat{q}) - C, \lambda v(x, q) - \bar{s} \cos(x + \phi_q) - \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} v(x, q) \right) = 0
\]

with \(\hat{q} \neq q \).

Its solution has the typical behaviour below (semi-explicit solution):

- **value functions**
- **zoom of the difference**
- **swiching map**
Tacking strategy with a windward target (1)

Cost functional: discounted *minimum time* + constant cost for controlled switching

\[
J(x, q, \theta) = \int_0^{T_{\text{stop}}} e^{-\lambda t} \, dt + \sum_{\xi_i < T_{\text{stop}}} ^\infty C e^{-\lambda \xi_i}
\]

- **State space**: \(\mathbb{R}^3 \times \{1, 2\} \) (two space dimensions + wind direction + boat direction (L, R))
- **Target problem**: minimum time + penalized distance from the windward mark as a stopping cost
- **Discretization**: SL, \(80 \times 80 \times 80\) grid, Modified Policy Iteration
- **Boundary conditions**: state constraints
Tacking strategy with a windward target (2)

\[x_3 = -0.25 \quad x_3 = 0 \quad x_3 = 0.25 \]

Switching sets, \(c_\alpha = 0 \)
Tacking strategy with a windward target (3)

No deterministic drift of the wind \((c_\alpha = 0)\), SL discretization as above. **Sample optimal trajectories** for increasing variance of the wind direction:

- \(\sigma_\alpha = 0\)
- \(\sigma_\alpha = 0.01\)
- \(\sigma_\alpha = 0.1\)

- **Heuristically known**: the tacking region **shrinks** at the increase of wind variance
- **At** \(\sigma_\alpha \approx 0\) the **numerical viscosity** dominates (the effect can be reduced by using the **full dynamics instead of the simplified one**)
Tacking strategy with a windward target (4)

Anti-clockwise drift of the wind ($c_\alpha > 0$), SL discretization as above. **Sample optimal trajectories** for increasing variance of the wind direction:

- $\sigma_\alpha = 0$
- $\sigma_\alpha = 0.05$
- $\sigma_\alpha = 0.1$

Heuristically known: the optimal strategy tends to keep the trajectory on the left side of the state space.

- For increasing σ_α this strategy is blended with the previous one
Tacking strategy in a match race (1)
Tacking strategy in a match race (2)

Aim: be *ahead* of the other player – as in a *pursuit–evasion* game. Each of the players wants to *avoid the turbulent region below the other player*, and vice versa each of the two wants to exploit this region to *slow down the other one* (video).
Tacking strategy in a match race (2)

Aim: be **ahead** of the other player – as in a **pursuit–evasion** game

Each of the players wants to **avoid the turbulent region below the other player**, and vice versa each of the two wants to exploit this region to **slow down the other one** (video)

Dynamics: both players follow the dynamics of a single boat, but there exists an **influence** between the two:

The turbulence generated by a player is modelled as a region of **reduced speed** for the other
Tacking strategy in a match race (3)

- **Wind dynamics**: purely Brownian
- **Cost functional**: discounted difference for the component $X_2 +$ no autonomous switching + constant cost for controlled switching

$$J(x, q, \theta^A, \theta^B) = \int_0^{+\infty} \left(X_A^2(t) - X_B^2(t) \right) e^{-\lambda t} dt$$

$$+ \sum_{i=0}^{\infty} C^B e^{-\lambda \xi^B_i} - \sum_{i=0}^{\infty} C^A e^{-\lambda \xi^A_i}$$

- **State space**: $\mathbb{R}^3 \times \{1, 2, 3, 4\}$ (two space dimensions + wind direction + both boat directions (LL, LR, RL, RR)). Use of reduced coordinates as in a pursuit–evasion game
- **Aim**: being as windward as possible w.r.t. the other player: $A \rightarrow \max J, B \rightarrow \min J$
- **Use of the one-dimensional problem to provide boundary conditions for the value function**
Tacking strategy in a match race (4)

Value functions: in principle,
\[
\sup_{\theta^A} \inf_{\theta^B} \neq \inf_{\theta^B} \sup_{\theta^A}
\]

so we should consider Upper and Lower Value Functions (in the sense of non-anticipative strategies by Elliot-Kalton):

\[
V^-(x, q) = \inf_{\theta^B} \sup_{\theta^A} \mathbb{E} \left(J(x, q, \theta^A, \theta^B) \right)
\]

\[
V^+(x, q) = \sup_{\theta^A} \inf_{\theta^B} \mathbb{E} \left(J(x, q, \theta^A, \theta^B) \right)
\]

- Each of the two value functions may be characterized via a suitable quasi-variational inequality
- Technical conditions ("no free loop condition") for obtaining a comparison lemma, and hence uniqueness. If a suitable extended Isaacs’ condition is satisfied, then the game has a value (this seems to be the case from numerical simulations)
A test in asymmetric conditions

Both players have the same speed. The red player leads at the start, but has a higher switching cost. The black player exploits better the wind variations and eventually passes the other one.
Computational issues (1)

- **Numerical examples** carried out on a Lenovo Ultrabook X1 Carbon (4 cores, i5, 1.9 GHz), C++/OpenMP code
Computational issues (1)

- **Numerical examples** carried out on a Lenovo Ultrabook X1 Carbon (4 cores, i5, 1.9 GHz), C++/OpenMP code
- **First-Order upwind** scheme for the QVI, first attempts with value iteration (or modified policy iteration for the one-player case), warm start for the game
- **Boundary conditions**: penalization (state constraints) for the one-player case, **decoupled game** for the Isaacs’ case
Computational issues (1)

- **Numerical examples** carried out on a Lenovo Ultrabook X1 Carbon (4 cores, i5, 1.9 GHz), C++/OpenMP code
- **First-Order upwind** scheme for the QVI, first attempts with value iteration (or modified policy iteration for the one-player case), warm start for the game
- **Boundary conditions**: penalization (state constraints) for the one-player case, **decoupled game** for the Isaacs’ case
- Up to $3.2 \cdot 10^7$ DOF handled
- **OpenMP** parallelization suffers from heavy data exchange. With a $100 \times 100 \times 100$ grid:

<table>
<thead>
<tr>
<th>Threads</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>618.2</td>
</tr>
<tr>
<td>2</td>
<td>351.7</td>
</tr>
<tr>
<td>4</td>
<td>279.3</td>
</tr>
</tbody>
</table>
Computational issues (2)

Further attempt: Fast sweeping, but with a decoupling of the diffusive part
Computational issues (2)

Further attempt: Fast sweeping, but with a decoupling of the diffusive part

1. Sweep against the dynamics
2. Exact solver for the diffusion in the vertical direction
Computational issues (3)

- IT: pure value iteration (no adapted order for the variables)
- FS-IT: Fast Sweeping + iterative solution of the diffusion term
- FS-LU: Fast Sweeping + LU solution of the diffusion term
 (LAPACK routines DGTTRF for tridiagonal LU factorization +
 DGTTRS tridiagonal solver)

<table>
<thead>
<tr>
<th>Method</th>
<th>$\sigma = 0$</th>
<th>$\sigma = 0.01$</th>
<th>$\sigma = 0.025$</th>
<th>$\sigma = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>185s (286)</td>
<td>243s (374)</td>
<td>558s (852)</td>
<td>1577s (2412)</td>
</tr>
</tbody>
</table>
Computational issues (3)

- IT: pure value iteration (no adapted order for the variables)
- FS-IT: Fast Sweeping + iterative solution of the diffusion term
- FS-LU: Fast Sweeping + LU solution of the diffusion term
 (LAPACK routines DGTTTRF for tridiagonal LU factorization + DGTTTRS tridiagonal solver)

<table>
<thead>
<tr>
<th>Method</th>
<th>$\sigma = 0$</th>
<th>$\sigma = 0.01$</th>
<th>$\sigma = 0.025$</th>
<th>$\sigma = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>185s (286)</td>
<td>243s (374)</td>
<td>558s (852)</td>
<td>1577s (2412)</td>
</tr>
<tr>
<td>FS-IT</td>
<td>5.9s (12)</td>
<td>39s (79)</td>
<td>160s (326)</td>
<td>550s (1119)</td>
</tr>
</tbody>
</table>
Computational issues (3)

- IT: pure value iteration (no adapted order for the variables)
- FS-IT: Fast Sweeping + iterative solution of the diffusion term
- FS-LU: Fast Sweeping + LU solution of the diffusion term
 (LAPACK routines DGTTRF for tridiagonal LU factorization + DGTTRS tridiagonal solver)

<table>
<thead>
<tr>
<th>Method</th>
<th>$\sigma = 0$</th>
<th>$\sigma = 0.01$</th>
<th>$\sigma = 0.025$</th>
<th>$\sigma = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>185s (286)</td>
<td>243s (374)</td>
<td>558s (852)</td>
<td>1577s (2412)</td>
</tr>
<tr>
<td>FS-IT</td>
<td>5.9s (12)</td>
<td>39s (79)</td>
<td>160s (326)</td>
<td>550s (1119)</td>
</tr>
<tr>
<td>FS-LU</td>
<td>6.3s (9)</td>
<td>7.4s (14)</td>
<td>6.9s (13)</td>
<td>6.8s (13)</td>
</tr>
</tbody>
</table>

CPU time (iteration number) for the various solvers
100 \times 100 \times 100 nodes, stopping tolerance $\varepsilon = 10^{-8}$
Final remarks

- **Sound theoretical framework**, for both the theoretical and the computational aspects
- **Viable and robust design** of a feedback controller in a feasible dimension of the state space
- Possibility of using **acceleration techniques** of Policy Iteration or Fast Sweeping type in the one-player setting
- Heuristically known qualitative features of optimal solutions are **well reproduced**
- Open problems:
 - **Comparison principle** for the Isaacs’ system in the symmetric case (i.e., in lack of the “no free loop condition”)
 - Suitable definition and convergence of **(modified) policy iteration** in the two-player setting
- **Planned improvement**: target problem for the game (5-d, no use of reduced coordinates)

