Convergence rates for discretized optimal transport

Quentin Mérigot

Université Paris-Sud 11

Based on joint work with F. Chazal and A. Delalande

1. Motivations

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^1([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting?

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting?

```
Theorem (Brenier, McCann) Given \rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d) and \mu \in \operatorname{Prob}(\mathbb{R}^d), \exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d such that T_{\mu\#}\rho = \mu and T_{\mu} = \nabla \phi with \phi convex.
```

- Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]
- $lacktriangledown T_\mu$ is unique ho-a.e. but the convex function ϕ_μ is not necessarily unique.

▶ Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu\#}\rho = \mu$, with $\rho =$ Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

 $ightharpoonup T_{\mu}$ is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

- Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]
- $ightharpoonup T_{\mu}$ is unique ho-a.e. but the convex function ϕ_{μ} is not necessarily unique.
- ▶ $T_{\mu} : \operatorname{spt}(\rho) \to \mathbb{R}^d$ is monotone: $\langle T_{\mu}(x) T_{\mu}(y) | x y \rangle \ge 0$.

Numerical Example: Monge-Kantorovich Depth

Source: $\rho = \text{uniform probability density on } B(0,1) \subseteq \mathbb{R}^2$

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with $N = 10^4$ points

"Monge-Kantorovich depth of y_i " $\simeq ||T_{\mu}^{-1}(y_i)||$.

[Cherzonukov, Galichon, Hallin, Henry]

Numerical Example: Monge-Kantorovich Depth

Source: $\rho = \text{uniform probability density on } B(0,1) \subseteq \mathbb{R}^2$

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with $N = 10^4$ points

"Monge-Kantorovich depth of y_i " $\simeq ||T_{\mu}^{-1}(y_i)||$.

[Cherzonukov, Galichon, Hallin, Henry]

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance} \ \ \text{between} \ \ \mu,\nu \in \operatorname{Prob}_p(\mathbb{R}^d) :$ $W_p(\mu,\nu) = \left(\min_{\gamma \in \Gamma(\mu,\nu)} \|x-y\|^p \operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu) = \text{couplings between} \ \ \mu \ \text{and} \ \ \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance between }\mu,\nu\in\operatorname{Prob}_p(\mathbb{R}^d):$ $W_p(\mu,\nu)=\left(\min_{\gamma\in\Gamma(\mu,\nu)}\|x-y\|^p\operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu)=\text{couplings between }\mu\text{ and }\nu\subseteq\operatorname{Prob}(\mathbb{R}^d\times\mathbb{R}^d).$

► On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu$.

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance between }\mu,\nu\in\operatorname{Prob}_p(\mathbb{R}^d):$ $W_p(\mu,\nu)=\left(\min_{\gamma\in\Gamma(\mu,\nu)}\|x-y\|^p\operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu)=\text{couplings between }\mu\text{ and }\nu\subseteq\operatorname{Prob}(\mathbb{R}^d\times\mathbb{R}^d).$

- ► On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu$.
- ightharpoonup On $\operatorname{Prob}(\mathbb{R})$, any *monotone* coupling γ between μ, ν is optimal in the def of W_p .

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance between }\mu,\nu\in\operatorname{Prob}_p(\mathbb{R}^d):$ $W_p(\mu,\nu)=\left(\min_{\gamma\in\Gamma(\mu,\nu)}\|x-y\|^p\operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu)=\text{couplings between }\mu\text{ and }\nu\subseteq\operatorname{Prob}(\mathbb{R}^d\times\mathbb{R}^d).$

- ► On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu$.
- ▶ On $\operatorname{Prob}(\mathbb{R})$, any *monotone* coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_\mu, T_\nu)_\# \rho$ with $\rho =$ Lebesgue on [0,1] is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p dt \right) = \|T_\mu - T_\nu\|_{L^p([0,1])}$$

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance between }\mu,\nu\in\operatorname{Prob}_p(\mathbb{R}^d):$ $W_p(\mu,\nu)=\left(\min_{\gamma\in\Gamma(\mu,\nu)}\|x-y\|^p\operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu)=\text{couplings between }\mu\text{ and }\nu\subseteq\operatorname{Prob}(\mathbb{R}^d\times\mathbb{R}^d).$

- ► On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu$.
- ▶ On $\operatorname{Prob}(\mathbb{R})$, any *monotone* coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_\mu, T_\nu)_\# \rho$ with $\rho =$ Lebesgue on [0,1] is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p dt \right) = \|T_\mu - T_\nu\|_{L^p([0,1])}$$

In particular, $(\operatorname{Prob}_p(\mathbb{R}), \operatorname{W}_p)$ embeds isometrically in $\operatorname{L}^p([0,1])$!

▶ Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{ \mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p d\mu < +\infty \}.$

 $p\text{-Wasserstein distance between }\mu,\nu\in\operatorname{Prob}_p(\mathbb{R}^d):$ $W_p(\mu,\nu)=\left(\min_{\gamma\in\Gamma(\mu,\nu)}\|x-y\|^p\operatorname{d}\gamma(x,y)\right)^{1/p}.$ where $\Gamma(\mu,\nu)=\text{couplings between }\mu\text{ and }\nu\subseteq\operatorname{Prob}(\mathbb{R}^d\times\mathbb{R}^d).$

- ► On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu$.
- ▶ On $\operatorname{Prob}(\mathbb{R})$, any *monotone* coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_\mu, T_\nu)_\# \rho$ with $\rho =$ Lebesgue on [0,1] is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p dt \right) = \|T_\mu - T_\nu\|_{L^p([0,1])}$$

In particular, $(\operatorname{Prob}_p(\mathbb{R}), \operatorname{W}_p)$ embeds isometrically in $\operatorname{L}^p([0,1])$!

The previous embedding is false in higher dimension: $(Prob_p, W_p)$ is *curved*.

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

- (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \to \mathbb{R}$ and
- (ii) $T_{\mu\#}\rho = \mu$.

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

- (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \to \mathbb{R}$ and
- (ii) $T_{\mu\#}\rho = \mu$.
- ▶ The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.

▶ We fix a reference measure, $\rho = \mathrm{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

- (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \to \mathbb{R}$ and
- (ii) $T_{\mu\#}\rho = \mu$.
- ► The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
 - $\mathbf{W}_{2,\rho}(\mu,\nu) := \|T_{\mu} T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \longrightarrow [\mathsf{Ambrosio}, \mathsf{Gigli}, \mathsf{Savaré} '04]$

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$d_g(x,y)$	$\mathrm{W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\Gamma_{\rho}\operatorname{Prob}_{2}(\mathbb{R}^{d})\subseteq \operatorname{L}^{2}(\rho,X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in T_{\rho}M$	$T_{\mu} \in \mathrm{T}_{\rho}\mathrm{Prob}_{2}(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

▶ We fix a reference measure, $\rho = \mathrm{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_μ as the unique map satisfying

- (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \to \mathbb{R}$ and
- (ii) $T_{\mu\#}\rho = \mu$.
- ▶ The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_{\mu} \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
 - $\mathbf{W}_{2,\rho}(\mu,\nu) := \|T_{\mu} T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \longrightarrow [\mathsf{Ambrosio}, \mathsf{Gigli}, \mathsf{Savaré} '04]$

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$d_g(x,y)$	${ m W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\Gamma_{\rho} \operatorname{Prob}_{2}(\mathbb{R}^{d}) \subseteq \operatorname{L}^{2}(\rho, X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in T_{\rho}M$	$T_{\mu} \in \mathrm{T}_{\rho}\mathrm{Prob}_{2}(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

■ Used in image analysis \longrightarrow [Wang, Slepcev, Basu, Ozolek, Rohde '13]

▶ We fix a reference measure, $\rho = \mathrm{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

- (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \to \mathbb{R}$ and
- (ii) $T_{\mu\#}\rho = \mu$.
- ▶ The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_{\mu} \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
 - $\mathbf{W}_{2,\rho}(\mu,\nu) := \|T_{\mu} T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \longrightarrow [\mathsf{Ambrosio}, \mathsf{Gigli}, \mathsf{Savaré} '04]$

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$d_g(x,y)$	${ m W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\Gamma_{\rho} \operatorname{Prob}_{2}(\mathbb{R}^{d}) \subseteq \operatorname{L}^{2}(\rho, X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in T_{\rho}M$	$T_{\mu} \in \mathrm{T}_{\rho}\mathrm{Prob}_{2}(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

- Used in image analysis → [Wang, Slepcev, Basu, Ozolek, Rohde '13]
- \longrightarrow Representing family of probability measures by family of functions in $\mathrm{L}^2(
 ho)$.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

▶ Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \text{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \geq 0$:

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients $lpha_i$ are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 < i < k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

▶ Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \text{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \geq 0$:

$$\mu := \arg\min_{1 \le i \le k} \sum_{1 < i < k} \alpha_i W_2^2(\mu, \mu_i).$$

- \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.
- ▶ "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.
 - \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

What amount of the Wasserstein geometry is preserved by the embedding $\mu \mapsto T_{\mu}$?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$

where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$
 where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$ (Then, $W_p(\mu_k,\mu) \lesssim \frac{1}{k}$.)

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$
 where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$ (Then, $W_p(\mu_k,\mu) \lesssim \frac{1}{k}$.)

Compute exactly the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$
 where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$ (Then, $W_p(\mu_k,\mu) \lesssim \frac{1}{k}$.)

Compute exactly the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

It is know that T_{μ_k} converges to T_{μ} but convergence rates are unknown in general...

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$
 where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$ (Then, $W_p(\mu_k,\mu) \lesssim \frac{1}{k}$.)

Compute exactly the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

It is know that T_{μ_k} converges to T_{μ} but convergence rates are unknown in general...

In general, the numerical analysis for optimal transport is virtually inexistent, whatever the discretization method.

Motivation 3: numerical analysis of optimal transport

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \ \rho\text{-a.e.} \ T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu\#}\rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

ightharpoonup Approximate μ by a discrete measure, for instance

$$\mu_k = \sum_{i_1 \leq ... \leq i_k} \mu(B_{i_1,...,i_k}) \delta_{(i_1/k,...,i_k/k)}$$
 where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k,i_1/k] \times ... [(i_d-1)/k,i_d/k]$ (Then, $W_p(\mu_k,\mu) \lesssim \frac{1}{k}$.)

Compute exactly the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

It is know that T_{μ_k} converges to T_{μ} but convergence rates are unknown in general...

In general, the numerical analysis for optimal transport is virtually inexistent, whatever the discretization method.

2. Continuity of $\mu \mapsto T_{\mu}$.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho=\mu$ and $T_{\nu\#}\rho=\nu$, one has $\gamma:=(T_{\mu},T_{\nu})_{\#}\rho\in\Gamma(\mu,\nu)$.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \le \int \|x - y\|^2 d\gamma(x, y) = \int \|T_{\mu}(x) - T_{\nu}(x)\|^2 d\rho(x)$.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since
$$T_{\mu\#}\rho = \mu$$
 and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$.
Thus, $W_2^2(\mu, \nu) \le \int \|x - y\|^2 d\gamma(x, y) = \int \|T_{\mu}(x) - T_{\nu}(x)\|^2 d\rho(x)$.

▶ The map $\mu \mapsto T_{\mu}$ is continuous.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since
$$T_{\mu\#}\rho = \mu$$
 and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$.
Thus, $W_2^2(\mu, \nu) \le \int \|x - y\|^2 \, \mathrm{d}\, \gamma(x, y) = \int \|T_{\mu}(x) - T_{\nu}(x)\|^2 \, \mathrm{d}\, \rho(x)$.

- ▶ The map $\mu \mapsto T_{\mu}$ is continuous.
- ▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder.

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\|T_{\mu} - T_{\nu}\|_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since
$$T_{\mu\#}\rho = \mu$$
 and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$.
Thus, $W_2^2(\mu, \nu) \leq \int \|x - y\|^2 d\gamma(x, y) = \int \|T_{\mu}(x) - T_{\nu}(x)\|^2 d\rho(x)$.

- ▶ The map $\mu \mapsto T_{\mu}$ is continuous.
- ▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder.

Take
$$\rho = \frac{1}{\pi} \text{Leb}_{B(0,1)}$$
 on \mathbb{R}^2 , and define $\mu_{\theta} = \frac{\delta_{x_{\theta}} + \delta_{x_{\theta+\pi}}}{2}$, with $x_{\theta} = (\cos(\theta), \sin(\theta))$.

Then
$$T_{\mu_{\theta}}(x) = \begin{cases} x_{\theta} & \langle x_{\theta} | x \rangle \geq 0 \\ x_{\theta+\pi} & \text{if not} \end{cases}$$
,

▶ The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since
$$T_{\mu\#}\rho = \mu$$
 and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$.
Thus, $W_2^2(\mu, \nu) \le \int \|x - y\|^2 \, \mathrm{d}\, \gamma(x, y) = \int \|T_{\mu}(x) - T_{\nu}(x)\|^2 \, \mathrm{d}\, \rho(x)$.

- ▶ The map $\mu \mapsto T_{\mu}$ is continuous.
- ▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder.

Take
$$\rho = \frac{1}{\pi} \text{Leb}_{B(0,1)}$$
 on \mathbb{R}^2 , and define $\mu_{\theta} = \frac{\delta_{x_{\theta}} + \delta_{x_{\theta} + \pi}}{2}$, with $x_{\theta} = (\cos(\theta), \sin(\theta))$.

Then
$$T_{\mu_{\theta}}(x) = \begin{cases} x_{\theta} & \langle x_{\theta} | x \rangle \geq 0 \\ x_{\theta+\pi} & \text{if not} \end{cases}$$
, so that $\|T_{\mu_{\theta}} - T_{\mu_{\theta+\delta}}\|_{\mathrm{L}^{2}(\rho)}^{2} \geq C\delta$

Since on the other hand, $W_2(\mu_{\theta}, \mu_{\theta+\delta}) \leq C\delta$,

$$||T_{\mu_{\theta}} - T_{\mu_{\theta+\delta}}||_{L^{2}(\rho)} \ge C W_{2}(\mu_{\theta}, \mu_{\theta+\delta})^{1/2}$$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

```
Thm: Assume \rho \in \operatorname{Prob}^{\operatorname{ac}}(X) and \mu, \nu \in \operatorname{Prob}(Y) with X, Y \subseteq \mathbb{R}^d compact If T_{\mu} is L-Lipschitz, then \|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu) with C = 4L \operatorname{diam}(X).
```

 $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

```
Thm: Assume \rho \in \operatorname{Prob}^{\operatorname{ac}}(X) and \mu, \nu \in \operatorname{Prob}(Y) with X, Y \subseteq \mathbb{R}^d compact If T_{\mu} is L-Lipschitz, then \|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu) with C = 4L \operatorname{diam}(X).
```

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u \longrightarrow$ consequences in statistics and numerical analysis.

```
Thm: Assume \rho \in \operatorname{Prob}^{\operatorname{ac}}(X) and \mu, \nu \in \operatorname{Prob}(Y) with X, Y \subseteq \mathbb{R}^d compact If T_{\mu} is L-Lipschitz, then \|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu) with C = 4L \operatorname{diam}(X).
```

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x|y \rangle \phi_{\mu}(x)$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x|y \rangle \phi_{\mu}(x)$

```
Thm: Assume \rho \in \operatorname{Prob}^{\operatorname{ac}}(X) and \mu, \nu \in \operatorname{Prob}(Y) with X, Y \subseteq \mathbb{R}^d compact If T_{\mu} is L-Lipschitz, then \|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu) with C = 4L \operatorname{diam}(X).
```

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x|y \rangle \phi_{\mu}(x)$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)}^{2} \le -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu)$.

► **Prop** → **Thm:** Kantorovich-Rubinstein theorem

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x|y \rangle \phi_{\mu}(x)$

Prop: If T_{μ} is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)}^{2} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu)$.

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle \phi_{\mu}(x)$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle \phi_{\mu}(x)$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is L-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightharpoonup \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- lackbox No regularity assumption on $u\longrightarrow$ consequences in statistics and numerical analysis.
- Let $\phi_{\mu}: X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu}: Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y) = \max_{x \in X} \langle x|y \rangle \phi_{\mu}(x)$

$$\int \psi_{\mu} d(\nu - \mu) \ge \int \langle \nabla \psi_{\nu} - \nabla \psi_{\mu} | id \rangle d\rho + \frac{L}{2} \| \nabla \phi_{\mu} - \nabla \phi_{\nu} \|_{L^{2}(\rho)}$$

$$(T_{\mu} = \nabla \phi_{\mu} \text{ L-Lipschitz} \iff \psi_{\mu} = \phi_{\mu}^{*} \text{ is L-strongly convex})$$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary: $||T_{\mu} - T_{\nu}||_{\mathrm{L}^{2}(\rho)}^{2} \leq C \, \mathrm{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}(d+2)}$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary: $||T_{\mu} - T_{\nu}||_{\mathrm{L}^{2}(\rho)}^{2} \leq C \, \mathrm{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}(d+2)}$

lacktriangle The Hölder exponent is terrible, but inequality holds without assumptions on $\mu,
u!$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary:
$$||T_{\mu} - T_{\nu}||_{\mathrm{L}^{2}(\rho)}^{2} \leq C \, \mathrm{W}_{1}(\mu, \nu)^{\alpha}$$
 with $\alpha = \frac{1}{2^{d-1}(d+2)}$

- ▶ The Hölder exponent is terrible, but inequality holds without assumptions on μ, ν !
- ▶ Proof of Berman's theorem relies on techniques from complex geometry.

2. Global, dimension-independent, Hölder-continuity of $\mu\mapsto T_{\mu}$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}$.

First global and dimension-independent stability result for optimal transport maps.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}$.

- First global and dimension-independent stability result for optimal transport maps.
- ▶ Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

- First global and dimension-independent stability result for optimal transport maps.
- ▶ Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...
- ▶ The constant C depend polynomially on diam(X), diam(Y).

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}$.

- First global and dimension-independent stability result for optimal transport maps.
- ▶ Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...
- ▶ The constant C depend polynomially on diam(X), diam(Y).
- ▶ Proof relies on the semidiscrete setting, i.e. the bound is established in the case

$$\mu = \sum_{i} \mu_{i} \delta_{y_{i}}, \ \nu = \sum_{i} \nu_{i} \delta_{y_{i}}.$$

and one concludes using a density argument.

Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ , $\mathcal{T}(\rho, \mu) = \max_{\gamma \in \Gamma(\rho, \mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x, y)$

▶ Let $\rho, \nu \in \operatorname{Prob}_1^{\mathrm{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \text{couplings between } \rho, \mu$,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x|y \rangle \,\mathrm{d}\,\gamma(x,y)$$
 Kantorovich duality
$$= \min_{\phi \oplus \psi \geq \langle \cdot|\cdot \rangle} \int \phi \,\mathrm{d}\,\rho + \int \psi \,\mathrm{d}\,\mu$$

▶ Let $\rho, \nu \in \operatorname{Prob}_1^{\mathrm{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \text{couplings between } \rho, \mu$,

$$\mathcal{T}(\rho, \mu) = \max_{\gamma \in \Gamma(\rho, \mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x, y)$$
$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$
$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

Kantorovich duality

Legendre-Fenchel transform:

$$\psi^*(x) = \max_y \langle x|y\rangle - \psi(y)$$

▶ Let $\rho, \nu \in \operatorname{Prob}_1^{\mathrm{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \text{couplings between } \rho, \mu$,

$$\mathcal{T}(\rho, \mu) = \max_{\gamma \in \Gamma(\rho, \mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x, y)$$

$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

Kantorovich duality

Legendre-Fenchel transform:

$$\psi^*(x) = \max_y \langle x|y\rangle - \psi(y)$$

▶ Let $\mu = \sum_{1 \leq i \leq N} \mu_i \delta_{y_i}$ and $\psi_i = \psi(y_i)$.

▶ Let $\rho, \nu \in \operatorname{Prob}_1^{\mathrm{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \text{couplings between } \rho, \mu$,

$$\mathcal{T}(\rho, \mu) = \max_{\gamma \in \Gamma(\rho, \mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x, y)$$
$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$
$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

Kantorovich duality

Legendre-Fenchel transform:

$$\psi^*(x) = \max_y \langle x|y\rangle - \psi(y)$$

▶ Let $\mu = \sum_{1 \leq i \leq N} \mu_i \delta_{y_i}$ and $\psi_i = \psi(y_i)$. Then, $\psi^*|_{V_i(\psi)} := \langle \cdot | y_i \rangle - \psi_i$ where

$$V_i(\psi) = \{x \mid \forall j, \ \langle x|y_i \rangle - \psi_i \ge \langle x|y_j \rangle - \psi_j\}$$

▶ Let $\rho, \nu \in \operatorname{Prob}_1^{\mathrm{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \text{couplings between } \rho, \mu$,

$$\mathcal{T}(\rho, \mu) = \max_{\gamma \in \Gamma(\rho, \mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x, y)$$

$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

Kantorovich duality

Legendre-Fenchel transform:

$$\psi^*(x) = \max_y \langle x|y\rangle - \psi(y)$$

▶ Let $\mu = \sum_{1 \leq i \leq N} \mu_i \delta_{y_i}$ and $\psi_i = \psi(y_i)$. Then, $\psi^*|_{V_i(\psi)} := \langle \cdot | y_i \rangle - \psi_i$ where

$$V_i(\psi) = \{x \mid \forall j, \ \langle x|y_i \rangle - \psi_i \ge \langle x|y_j \rangle - \psi_j \}$$

Thus,
$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x) + \sum_i \mu_i \psi_i$$

Optimality condition and economic interpretation

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x|y_i \rangle - \psi_i \,\mathrm{d}\,\rho(x)$

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$

► Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \leq i \leq N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x|y_i \rangle - \psi_i \,\mathrm{d}\,\rho(x)$

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x|y_i \rangle - \psi_i \,\mathrm{d}\,\rho(x)$

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

$$\psi \in \mathbb{R}^N$$
 is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$

$$\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x|y_i \rangle - \psi_i \,\mathrm{d}\,\rho(x)$

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

$$\psi \in \mathbb{R}^N$$
 is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$

$$\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$$

$$\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \leq i \leq N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

$$\psi \in \mathbb{R}^N$$
 is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

Economic interpretation: $\rho =$ density of customers, $\{y_i\}_{1 \leq i \leq N} =$ product types

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$

 $\Longleftrightarrow T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

- **Economic interpretation:** $\rho = \text{density of customers, } \{y_i\}_{1 \leq i \leq N} = \text{product types}$
 - \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i\rangle \psi_i$ over all products.

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$

 $\Longleftrightarrow T = \nabla \psi^*$ transports ρ onto $\sum_i \mu_i \delta_{y_i}$

- **Economic interpretation:** $\rho = \text{density of customers, } \{y_i\}_{1 \leq i \leq N} = \text{product types}$
 - \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i\rangle \psi_i$ over all products.
 - $\longrightarrow V_i(\psi) = \{x \mid i \in \arg\max_j \langle x|y_j \rangle \psi_j\} = \text{customers choosing product } y_i.$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where: $\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

- **Economic interpretation:** $\rho =$ density of customers, $\{y_i\}_{1 \leq i \leq N} =$ product types
 - \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i\rangle \psi_i$ over all products.
 - $\longrightarrow V_i(\psi) = \{x \mid i \in \arg\max_j \langle x|y_j \rangle \psi_j\} = \text{customers choosing product } y_i.$
 - $\longrightarrow \rho(V_i) = \text{amount of customers for product } y_i.$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where:
$$\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \leq i \leq N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

- **Economic interpretation:** $\rho =$ density of customers, $\{y_i\}_{1 \le i \le N} =$ product types
 - \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i\rangle \psi_i$ over all products.
 - $\longrightarrow V_i(\psi) = \{x \mid i \in \arg\max_j \langle x|y_j \rangle \psi_j\} = \text{customers choosing product } y_i.$
 - $\longrightarrow \rho(V_i) = \text{amount of customers for product } y_i.$

Optimal transport = finding prices satisfying capacity constraints $\rho(V_i(\psi)) = \mu_i$.

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) - \sum_i \mu_i \psi_i$$
, where:
$$\Phi(\psi) := \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

▶ Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \rho(V_i(\psi))$.

 $\psi \in \mathbb{R}^N$ is a minimizer of dual pb $\iff \forall i, \rho(V_i(\psi)) = \mu_i$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

- **Economic interpretation:** $\rho =$ density of customers, $\{y_i\}_{1 \le i \le N} =$ product types
 - \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i\rangle \psi_i$ over all products.
 - $\longrightarrow V_i(\psi) = \{x \mid i \in \arg\max_j \langle x|y_j \rangle \psi_j\} = \text{customers choosing product } y_i.$
 - $\longrightarrow \rho(V_i) = \text{amount of customers for product } y_i.$

Optimal transport = finding prices satisfying capacity constraints $\rho(V_i(\psi)) = \mu_i$.

▶ Algorithm (Oliker–Prussner): coordinate-wise increment. Complexity: $O(N^3)$.

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} \, x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} \, x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

Let
$$E = \{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) > 0 \}$$

▶ If $\Omega = \{\rho > 0\}$ is connected and $\psi \in E$, then $\mathrm{Ker}\mathrm{D}^2\Phi(\psi) = \mathbb{R}(1,\ldots,1)$.

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

Let
$$E = \{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) > 0 \}$$

▶ If $\Omega = \{\rho > 0\}$ is connected and $\psi \in E$, then $\mathrm{Ker}\mathrm{D}^2\Phi(\psi) = \mathbb{R}(1,\ldots,1)$.

Consider the matrix $L = DG(\psi)$ and the graph H: $(i,j) \in H \iff L_{ij} > 0$

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} \, x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

Let
$$E = \{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) > 0 \}$$

▶ If $\Omega = \{\rho > 0\}$ is connected and $\psi \in E$, then $\mathrm{Ker}\mathrm{D}^2\Phi(\psi) = \mathbb{R}(1,\ldots,1)$.

▶ Consider the matrix $L = DG(\psi)$ and the graph H:

$$(i,j) \in \mathcal{H} \iff L_{ij} > 0$$

▶ If Ω is connected and $\psi \in E$, then H is connected

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

Let
$$E = \{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) > 0 \}$$

▶ If $\Omega = \{\rho > 0\}$ is connected and $\psi \in E$, then $\mathrm{Ker}\mathrm{D}^2\Phi(\psi) = \mathbb{R}(1,\ldots,1)$.

▶ Consider the matrix $L = DG(\psi)$ and the graph H:

$$(i,j) \in \mathcal{H} \iff L_{ij} > 0$$

- ▶ If Ω is connected and $\psi \in E$, then H is connected
- ightharpoonup L is the Laplacian of a connected graph $\Longrightarrow \mathrm{Ker} L = \mathbb{R} \cdot \mathrm{cst}$

(Recall that $G_i(\psi) = \rho(V_i(\psi))$ and $\nabla \Phi = -(G_1, \dots, G_N)$)

Proposition: \blacktriangleright If $\rho \in \mathcal{C}^0(X)$ and $(y_i)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^2(\mathbb{R}^N)$ and

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} \, x \text{ where } \Gamma_{ij} = V_i(\psi) \cap V_j(\psi).$$

$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\psi)$$

Let
$$E = \{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) > 0 \}$$

▶ If $\Omega = \{\rho > 0\}$ is connected and $\psi \in E$, then $\mathrm{Ker}\mathrm{D}^2\Phi(\psi) = \mathbb{R}(1,\ldots,1)$.

▶ Consider the matrix $L = DG(\psi)$ and the graph H:

$$(i,j) \in \mathbf{H} \iff L_{ij} > 0$$

- ▶ If Ω is connected and $\psi \in E$, then H is connected
- lacksquare L is the Laplacian of a connected graph $\Longrightarrow \mathrm{Ker} L = \mathbb{R} \cdot \mathrm{cst}$

Corollary: Global convergence of a damped Newton algorithm.

Source: $\rho = \text{uniform on } [0,1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

$$\psi_0 = \frac{1}{2} \| \cdot \|^2$$

Source: $\rho = \text{uniform on } [0,1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

$$\psi_0 = \frac{1}{2} \| \cdot \|^2$$

$$\psi_1 = \text{Newt}(\psi_0)$$

NB: The points do **not** move.

Source: $\rho = \text{uniform on } [0,1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

$$\psi_0 = \frac{1}{2} \| \cdot \|^2$$

 $\psi_1 = \text{Newt}(\psi_0)$

 $\psi_2 = \operatorname{Newt}(\psi_1)$

NB: The points do **not** move.

Source: $\rho = \text{uniform on } [0,1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

$$\psi_0 = \frac{1}{2} \| \cdot \|^2$$

 $\psi_1 = \text{Newt}(\psi_0)$

 $\psi_2 = \operatorname{Newt}(\psi_1)$

NB: The points do **not** move.

Convergence is *very* fast when $\operatorname{spt}(\rho)$ convex: 17 Newton iterations for $N \geq 10^7$ in 3D.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

▶ Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

▶ Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then,

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

- ► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 \psi^0$. Then, $\langle \mu^1 \mu^0 | v \rangle = \langle G(\psi^1) G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$
 - a) Control of the eigengap: $\langle \mathrm{D}G(\psi^t)v|v\rangle \leq -C(X)\|v\|_{\mathrm{L}^2(\mu_t)}^2$ if $\int v\,\mathrm{d}\,\mu_t=0$. with $\mu^t=G(\psi^t)\longrightarrow$ [Eymard, Gallouët, Herbin '00].

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}$.

- ► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$
 - a) Control of the eigengap: $\langle \mathrm{D}G(\psi^t)v|v\rangle \leq -C(X)\|v\|_{\mathrm{L}^2(\mu_t)}^2$ if $\int v\,\mathrm{d}\,\mu_t=0$. with $\mu^t=G(\psi^t)\longrightarrow$ [Eymard, Gallouët, Herbin '00].
 - b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \geq (1-t)^d \mu^0$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

- ► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 \psi^0$. Then, $\langle \mu^1 \mu^0 | v \rangle = \langle G(\psi^1) G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$
 - a) Control of the eigengap: $\langle \mathrm{D}G(\psi^t)v|v\rangle \leq -C(X)\|v\|_{\mathrm{L}^2(\mu_t)}^2$ if $\int v\,\mathrm{d}\,\mu_t=0$. with $\mu^t=G(\psi^t)$ \longrightarrow [Eymard, Gallouët, Herbin '00].
 - b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \geq (1-t)^d \mu^0$.

Combining a) and b) we get $\|\psi^1 - \psi^0\|_{\mathrm{L}^2(\mu^0)}^2 \lesssim |\langle \mu^1 - \mu^0 | \psi^1 - \psi^0 \rangle|$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}$.

- ► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 \psi^0$. Then, $\langle \mu^1 \mu^0 | v \rangle = \langle G(\psi^1) G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$
 - a) Control of the eigengap: $\langle \mathrm{D}G(\psi^t)v|v\rangle \leq -C(X)\|v\|_{\mathrm{L}^2(\mu_t)}^2$ if $\int v\,\mathrm{d}\,\mu_t=0$. with $\mu^t=G(\psi^t)\longrightarrow$ [Eymard, Gallouët, Herbin '00].
 - b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \geq (1-t)^d \mu^0$.

Combining a) and b) we get $\|\psi^1 - \psi^0\|_{L^2(\mu^0)}^2 \lesssim |\langle \mu^1 - \mu^0 | \psi^1 - \psi^0 \rangle|$ Then, by Kantorovich-Rubinstein, $\leq \operatorname{Lip}(\psi^1 - \psi^0) \operatorname{W}_1(\mu^0, \mu_1)$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X|=1 and $\rho=\mathrm{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu,\nu\in\mathrm{Prob}(Y)$, $\|T_\mu-T_\nu\|_{\mathrm{L}^2(X)}\leq C\,\mathrm{W}_2(\mu,\nu)^{1/5}.$

- ► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0,1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D} G(\psi^t) v | v \rangle \, \mathrm{d} \, t$
 - a) Control of the eigengap: $\langle \mathrm{D}G(\psi^t)v|v\rangle \leq -C(X)\|v\|_{\mathrm{L}^2(\mu_t)}^2$ if $\int v\,\mathrm{d}\,\mu_t=0$. with $\mu^t=G(\psi^t)\longrightarrow$ [Eymard, Gallouët, Herbin '00].
 - b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \geq (1-t)^d \mu^0$.

▶ We lose a little in the exponent to control the difference between OT maps...

A toy application

MNIST has $M=60\,000$ images grayscale images (64×64 pixels) representing digits.

MNIST has $M=60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^\ell\in\mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{x_i,x_j}$$
, with $x_i = \frac{i}{63}$

MNIST has $M=60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^\ell\in\mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{x_i,x_j}, \quad \text{with } x_i = \frac{i}{63}$$

$$T^{\ell} = T_{\mu^{\ell}} \in L^2([0,1], \mathbb{R}^2) \quad \text{[OT map from } \rho = \text{Leb}_{[0,1]^2} \text{ to } \mu^{\ell} \text{]}$$

MNIST has $M=60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell}\in\mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{x_i,x_j}, \quad \text{with } x_i = \frac{i}{63}$$

$$T^{\ell} = T_{\mu^{\ell}} \in L^2([0,1], \mathbb{R}^2) \quad \text{[OT map from } \rho = \text{Leb}_{[0,1]^2} \text{ to } \mu^{\ell} \text{]}$$

We run the K-Means method on the transport plans, with K=20.

Each cluster $X^k \subseteq \{0,\ldots,M\}$ yields an average transport plan $S^k = \frac{1}{|X^k|} \sum_{\ell \in X} T^\ell$,

MNIST has $M=60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^\ell\in\mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{x_i,x_j}, \quad \text{with } x_i = \frac{i}{63}$$

$$T^{\ell} = T_{\mu^{\ell}} \in L^2([0,1], \mathbb{R}^2) \quad \text{[OT map from } \rho = \text{Leb}_{[0,1]^2} \text{ to } \mu^{\ell} \text{]}$$

We run the K-Means method on the transport plans, with K=20.

Each cluster $X^k \subseteq \{0,\dots,M\}$ yields an average transport plan $S^k = \frac{1}{|X^k|} \sum_{\ell \in X} T^\ell$, and $S^k_\# \rho$ is the "reconstructed measure".

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $L^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $L^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_2 , which has many open questions.

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $L^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_2 , which has many open questions.

Thank you for your attention!