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Numerical Example: Monge-Kantorovich Depth
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— Representing family of probability measures by family of functions in L?(p).
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» Barycenter in Wasserstein space: i1, ..., 1, € Probs(RY), ay,...,ar > 0:
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Motivation 3: numerical analysis of optimal transport
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» Approximate u by a discrete measure, for instance
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(using a semi-discrete optimal transport solver).
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Elementary remarks
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5 +6

5, with g = (cos(f), sin(0)).

Take p = %LebB(OJ) on R?, and define 1y =

(

To (xglx) >0

Then T, (x) =
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Local %—Hélder continuity

Thm: Assume p € Prob®(X) and pu,v € Prob(Y) with X, Y C R? compact

If |T}, is L-Lipschitz|then ||T,, — T,||3 < C W1 (u,v) with C = 4L diam(X).
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11-6



Local %—Hélder continuity

Thm: Assume p € Prob®(X) and pu,v € Prob(Y) with X, Y C R? compact

If |T}, is L-Lipschitz|then ||T,, — T,||3 < C W1 (u,v) with C = 4L diam(X).

» ~ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

» No regularity assumption on v — consequences in statistics and numerical analysis.

» Let ¢, : X — R convexs.t. T, = Vo,.
Y, Y — R its Legendre transform: | 9, (y) = maxzex (z|y) — ou(x)

Prop: If T}, is L-Lipschitz, then || T, — T0 |72,y < —2L [(sby — ) d(p — v).

-~ fwl/ d(:u — V) — fwl/ d(ng“#p — qu,,#p) — f%/(v%) — %(V(bu) dp

11 -7



Local %—Hélder continuity

Thm: Assume p € Prob®(X) and pu,v € Prob(Y) with X, Y C R? compact

If |T}, is L-Lipschitz|then ||T,, — T,||3 < C W1 (u,v) with C = 4L diam(X).

» ~ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

» No regularity assumption on v — consequences in statistics and numerical analysis.

» Let ¢, : X — R convexs.t. T, = Vo,.
Y, Y — R its Legendre transform: | 9, (y) = maxzex (z|y) — ou(x)

Prop: If T}, is L-Lipschitz, then || T, — T0 |72,y < —2L [(sby — ) d(p — v).

u f% d(,u — V) — f% d(quu#p — qu,/#p) — f%(V%) — ¢V(v¢u) dp
(convexity: ¥, (y) — v (x) = (y — 2|V (x))) > [(Vpy — Vb |V, (Ve,)) dp

11 -8



Local %—Hélder continuity

Thm: Assume p € Prob®(X) and pu,v € Prob(Y) with X, Y C R? compact

If |T}, is L-Lipschitz|then ||T,, — T,||3 < C W1 (u,v) with C = 4L diam(X).

» ~ [Ambrosio,Gigli '09] with slightly better

upper bound. See also [Berman "18].

» No regularity assumption on v — consequences in statistics and numerical analysis.

» Let ¢, : X — R convexs.t. T, = Vo,.

Y, 1Y — R its Legendre transform:

Y, (y) = maxgex (z|ly) — du(2)

Prop: If T}, is L-Lipschitz, then || T, — T0 |72,y < —2L [(sby — ) d(p — v).

-~ fwl/ d(:u — V) — fwl/ d(ng“#p — qu,,#p) — f%/(v%) — %(V%) dp

(convexity: ¥, (y) — () > (y — x|V, (2)))

11-9

> [(Vi, — Vo, |V, (V) d p
= [{Vipy — Vib[id) d p




Local %—Hélder continuity

Thm: Assume p € Prob®(X) and pu,v € Prob(Y) with X, Y C R? compact

If |T}, is L-Lipschitz|then ||T,, — T,||3 < C W1 (u,v) with C = 4L diam(X).

» ~ [Ambrosio,Gigli '09] with slightly better

upper bound. See also [Berman "18].

» No regularity assumption on v — consequences in statistics and numerical analysis.

» Let ¢, : X — R convexs.t. T, = Vo,.

Y, 1Y — R its Legendre transform:

Y, (y) = maxgex (z|ly) — du(2)

Prop: If T}, is L-Lipschitz, then || T, — T0 |72,y < —2L [(sby — ) d(p — v).

-~ fwl/ d(:u — V) — fwl/ d(v¢u#0 — qu,,#p) — fwu(v¢,u) — %(V%) dp

(convexity: ¥, (y) — () > (y — x|V, (2)))

> [(Vi, — Vo, |V, (V) d p
= [{Vipy — Vib[id) d p

B [ Pud(v—p) = [(Vi, = Viulid)dp + 5[V = V|2,
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Global Holder continuity

Thm (Berman, '18): Let p € Prob®(X) and u,v € Prob(Y) with XY compact.
Then, [V, — Vi, |32y < CWi(p,v)* with a = 5
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Global Holder continuity

Thm (Berman, '18): Let p € Prob®(X) and u,v € Prob(Y) with XY compact.

Then, ||V, — V¢V||%2(Y) < CWiq(u,v)® with o = 2%1

Corollary: || T, — Tz/H%ﬂ(p) < CWi(p,v)* with a = 2d—1%d—|—2)

» [ he Holder exponent is terrible, but inequality holds without assumptions on p, /!

» Proof of Berman's theorem relies on techniques from complex geometry.

12 - 4



13

2. Global, dimension-independent,
Holder-continuity of p+— 1,.



Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with | X| =1 and
p = Lebx, and let Y be compact. Then, there exists C s.t. for all u,v € Prob(Y),

T, — T lL2(xy < C Wa(p,v)'/°.
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Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with | X| =1 and
p = Lebx, and let Y be compact. Then, there exists C s.t. for all u,v € Prob(Y),

T, — T lL2(xy < C Wa(p,v)'/°.

» First global and dimension-independent stability result for optimal transport maps.

» Gap between lower-bound and upper bound for Holder exponent: % < %

The exponent % Is certainly not optimal...

» The constant C' depend polynomially on diam(X), diam(Y").

» Proof relies on the semidiscrete setting, i.e. the bound is established in the case

o= Miby,, V=D, Viby,

and one concludes using a density argument.
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Semidiscrete OT for c(x,y) = —(x|y)

» Let p,v € Prob{°(R%) and I'(p, 1) = couplings between p, p,

T(p, p) = max,er(p ) f(zly) dy(z,y)
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» Let p,v € Prob{°(R%) and I'(p, 1) = couplings between p, p,

T(p, p) = max,er(p ) f(zly) dy(z,y)

/

= Millggy>(|) [ ¢dp+ [Pdp

Kantorovich duality

=miny [¢*dp+ [¢dpu

> Let pu= ZlgigN pi0y, and ; = P(y;).
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/
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» Economic interpretation: p = density of customers, {y; }1<;<ny = product types
— given prices ¢ € RY, a customer x maximizes (x|y;) — 1; over all products.
— Vi(¢) ={x | i € argmax,(z|y,;) — ¥;} = customers choosing product y;.

— p(V;) = amount of customers for product ;.

Optimal transport = finding prices satisfying capacity constraints p(V;(v)) = u;.

» Algorithm (Oliker—Prussner): coordinate-wise increment. Complexity: O(N?).
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Hessian on @ and Newton's Algorithm

(Recall that G;(v) = p(V;(0)) and V& = — (G4, ...,GN))

Proposition: » If p € C°(X) and (y;)1<i<n is generic, then ® € C?*(RY) and
Vi # 7, g—%’(w) — IIyiiyjll frij(w) p(x)dx where I';; = V() NV, ().

Vi, Foi(y) = =2, (W)
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Hessian on @ and Newton's Algorithm

(Recall that G;(v) = p(V;(0)) and V& = — (G4, ...,GN))

Vi 7 7,

Vi,

If p € C°(X) and (y;)1<i<n is generic, then ® € C?(RY) and
(¥) = e Jr,. gy P(x) dz where I'y; = V() N V;(¢)).
() = = %0 55 ()

Let £ = {¢ € RY | Vi, G;(v)) > 0}

» If Q= {p >0} is connected and ) € E, then KerD?®(¢)) = R(1,...,1).

Proposition: »

o
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» Consider the matrix L = DG(2)) and the graph H:
(Z,])EH@LZ] > 0

» If () is connected and ¥ € E, then H is connected

» L is the Laplacian of a connected graph = KerL = R - cst

Corollary: Global convergence of a damped Newton algorithm.




Numerical example

Source: p = uniform on [0, 1]?,

Target: p = % > 1<i<n Oy; With y; uniform i.i.d. in [0,
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Numerical example

Source: p = uniform on [0, 1]?,

Target: YU = % ZlSiSN (5% with Y; uniform 1.1.d. In [O, l]Q

¢1 — NGWt (wo)

NB: The points do not move.
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Numerical example

Source: p = uniform on [0, 1]?,

Target: p = % > 1<i<n Oy; With y; uniform i.i.d. in [0,
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?ﬁl — Newt (¢0)

NB: The points do not move.

?702 — Newt(wl)



Numerical example

Source: p = uniform on [0, 1]?,

Target: p = % > 1<i<n Oy; With y; uniform i.i.d. in [0, 5

?701 — NGWt (?ﬁo)

NB: The points do not move.

Convergence is very fast when spt(p) convex: 17 Newton iterations for N > 107 in 3D.
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Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with | X| =1 and
p = Lebx, and let Y be compact. Then, there exists C s.t. for all u,v € Prob(Y),
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S Wa(p®, 1t

» We lose a little in the exponent to control the difference between OT maps...
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Example: k-Means for MNIST digits

MNIST has M = 60000 images grayscale images (64 x 64 pixels) representing digits.
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Example: k-Means for MNIST digits

MNIST has M = 60000 images grayscale images (64 x 64 pixels) representing digits.

Each image of € Mg4(R) is transformed into a probability measure on [0, 1] via

,ugzz eZJOé o With z; = =

1,7 1J

T =T,. € L*([0, 1],R2) [OT map from p = Lebyg 1}z to p]

We run the K-Means method on the transport plans, with K = 20.
Each cluster X* C {0,..., M} yields an average transport plan S* = |Xk| D vex T*,

and S% P Is the "reconstructed measure”.

S%p
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Summary

Optimal transport can be used to embed of Prob(R%) into L?(p, R¢), with
possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot
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hank you for your attention!
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