TSA Part 2: The Revenge A HJB-POD approach for the control of nonlinear PDEs on a tree structure

Luca Saluzzi

joint work with A. Alla and M. Falcone

ICODE Workshop on Numerical Solution of HJB Equations

Paris, January 9, 2020

Outline

Extension to high-order

- High-order TSA
- Numerical test

2 Control of nonlinear PDEs by TSA

- Model Order Reduction Methods
- HJB-POD on a tree structure
- Numerical tests

Outline

Extension to high-order

- High-order TSA
- Numerical test

2 Control of nonlinear PDEs by TSA

- Model Order Reduction Methods
- HJB-POD on a tree structure
- Numerical tests

Extension to high-order (Falcone, Ferretti, '94)

We introduce a convergent one-step approximation

$$\begin{cases} y^{n+1} = y^n + \Delta t \, \Phi(y^n, \mathbf{U}_{\mathbf{n}}, t_n, \Delta t), \\ y^0 = x, \end{cases}$$

where the admissible control matrix $U_n \in U_{\Delta t} \subset U \times U \ldots \times U \in \mathbb{R}^{M \times (q+1)}$, with $U \subset \mathbb{R}^M$. We assume that the function Φ is consistent

$$\lim_{\Delta t\to 0} \Phi(x, \overline{\mathbf{u}}, t, \Delta t) = f(x, \overline{\mathbf{u}}, t),$$

where $\overline{\mathbf{u}} = (\overline{u}, \dots, \overline{u}) \in \mathbf{U}$ for $\overline{u} \in U$ and Lipschitz continuous:

$$|\Phi(\mathbf{x},\mathbf{U},t,\Delta t)-\Phi(\mathbf{y},\mathbf{U},t,\Delta t)|\leq L_{\Phi}|\mathbf{x}-\mathbf{y}|.$$

Under these assumptions the scheme is convergent.

L. Saluzzi (GSSI)

Extension to high-order schemes

Then, we consider the approximation of the cost functional

$$J_{x,t_n}^{\Delta t}(\{\mathbf{U}_{\mathbf{m}}\}) = \Delta t \sum_{m=n}^{N-1} \sum_{i=0}^{q} w_i L(y^{m+\tau_i}, u_i^m, t_m) + g(y^N),$$

where τ_i and w_i are the nodes and weights of the quadrature formula. Finally we define the numerical value function as

$$V(t,x) = \inf_{\{\mathbf{U}_{n}\}} J_{x,t}^{\Delta t}(\{\mathbf{U}_{n}\})$$

Proposition (Discrete DPP)

$$V(t,x) = \inf_{\{\mathbf{U}_{\mathbf{m}}\}} \left\{ \Delta t \sum_{i=0}^{q} w_i L(y^{n+\tau_i}, u_i^n, t_{n+\tau_i}) + V(t_{n+1}, y^{n+1}) \right\}$$

Pruning for high-order scheme

We can again define the pruned trajectory

 $\eta_i^{n+1} = \eta^n + \Delta t \,\Phi(\eta^n, \mathbf{U}_n, t_n, \Delta t) + \mathcal{E}_{\varepsilon_{\mathcal{T}}}(\eta^n + \Delta t \,\Phi(\eta^n, \mathbf{U}_n, t_n, \Delta t), \{\eta_i^{n+1}\}_i)$

Pruning for high-order scheme

We can again define the pruned trajectory

 $\eta_j^{n+1} = \eta^n + \Delta t \,\Phi(\eta^n, \mathbf{U}_n, t_n, \Delta t) + \mathcal{E}_{\varepsilon_{\mathcal{T}}}(\eta^n + \Delta t \,\Phi(\eta^n, \mathbf{U}_n, t_n, \Delta t), \{\eta_i^{n+1}\}_i)$

Proposition

Given a one-step approximation $\{y^n\}_n$ and its perturbation $\{\eta^n\}_n$, then

$$|\mathbf{y}^{n} - \eta^{n}| \leq \varepsilon_{\mathcal{T}} \frac{t_{n} - t}{\Delta t} e^{L_{\Phi}(t_{n} - t)}.$$

To guarantee **p**-th order convergence, the tolerance must be chosen such that

$$\varepsilon_{\mathcal{T}} \leq C(\Delta t)^{p+1}$$

Test 1: Bilinear control for Advection Equation

$$\begin{cases} y_t + cy_x = yu(t) & (x,t) \in \Omega \times [0,T], \\ y(x,t) = 0 & (x,t) \in \partial\Omega \times [0,T], \\ y(x,0) = y_0(x) & x \in \Omega. \end{cases}$$

$$J_{y_0,t}(u) = \int_t^T \left(\|y(s) - \tilde{y}(s)\|_2^2 dx + 0.01 |u(s)|^2 \right) ds + \|y(T) - \tilde{y}(T)\|_2^2.$$

Semi-discrete problem (System dimension $= 10^2$)

$$\dot{y}(t) = Ay(t) + y(t)u(t),$$

 $\Delta x = 0.01, \Omega = [0, 3] \text{ and } c = 1.5$

Case 1: $\tilde{y} = 0, U = [-4, 0]$

Figure: Top: Uncontrolled (left) and trapezoidal rule controlled solution (right). Bottom: cost functionals (left) and solutions at final time (right).

Case 2: $\tilde{y}(x, t) = y_0(x - ct)$, U = [0, 1]

Figure: Comparison of the cost functionals (left) and the solutions at final time (right).

Δt	Nodes	CPU	Error ₂	Order
0.1	506	0.11s	2.8e-2	
0.05	3311	0.7s	8e-3	1.84

Table: Trapezoidal rule with 2 × 2 discrete controls and $\varepsilon_T = \Delta t^3$

L. Saluzzi (GSSI)

How does the cardinality change?

Figure: Implicit Euler: $|\mathcal{T}| = O(N^2)$, Trapezoidal rule: $|\mathcal{T}| = O(N^3)$

Method	Δt	Controls	Nodes	CPU	Error
Implicit Euler	2.5e-3	2	80982	9s	9e-3
Trapezoidal	5e-2	2 imes 2	3311	0.7s	8e-3

Outline

Extension to high-order

- High-order TSA
- Numerical test

2 Control of nonlinear PDEs by TSA

- Model Order Reduction Methods
- HJB-POD on a tree structure
- Numerical tests

Semidiscretized PDE

$$M \dot{y}(t) = Ay(t) + f(t, y(t)), t \in (0, T],$$

 $y(0) = y_0,$

Assumptions

- $\mathbf{y_0} \in \mathbb{R}^n$ is a given initial data,
- $\mathbf{M}, \mathbf{A} \in \mathbb{R}^{n \times n}$ given matrices,
- f: [0, T] × ℝⁿ → ℝⁿ a continuous function in both arguments and locally Lipschitz-type with respect to the second variable

WARNING: High dimensional problems are computationally expensive.

Proper Orthogonal Decomposition and SVD

Given snapshots $(y(t_0), \ldots, y(t_n)) \in \mathbb{R}^m$

We look for an orthonormal basis $\{\psi_i\}_{i=1}^{\ell}$ in \mathbb{R}^m with $\ell \ll \min\{n, m\}$ s.t.

$$J(\psi_1,\ldots,\psi_\ell) = \sum_{j=1}^n \alpha_j \left\| \mathbf{y}_j - \sum_{i=1}^\ell \langle \mathbf{y}_j,\psi_i \rangle \psi_i \right\|^2 = \sum_{i=\ell+1}^d \sigma_i^2$$

reaches a minimum where $\{\alpha_j\}_{j=1}^n \in \mathbb{R}^+$.

$$\min J(\psi_1,\ldots,\psi_\ell) \quad s.t.\langle \psi_i,\psi_j\rangle = \delta_{ij}$$

Singular Value Decomposition: $Y = \Psi \Sigma V^T$.

For $\ell \in \{1, ..., d = rank(Y)\}$, $\{\psi_i\}_{i=1}^{\ell}$ are called **POD basis** of rank ℓ . **ERROR INDICATOR:** $\mathcal{E}(\ell) = \frac{\sum_{i=1}^{\ell} \sigma_i^2}{\sum_{i=1}^{d} \sigma_i^2}$ with σ_i singular values of the SVD.

Reduced Order Modelling Control Problem

MOR ansatz

$$y(t) \approx \Psi y^{\ell}(t) \quad \Psi^{T} \Psi = I, \qquad \Psi \in \mathbb{R}^{n \times \ell}$$

Compact Notations

$$\begin{aligned} x^{\ell} &:= \Psi^{\mathsf{T}} x, \quad y^{\ell}(t) := \Psi^{\mathsf{T}} y(t), \quad g^{\ell}(y^{\ell}(t)) := \Psi^{\mathsf{T}} g(\Psi y^{\ell}(t)), \\ f^{\ell}(y^{\ell}(t), u(t), t) &:= \Psi^{\mathsf{T}} f(\Psi y^{\ell}(t), u(t), t), L^{\ell}(y^{\ell}(t), u(t)) := L(\Psi y^{\ell}(t), u(t)). \end{aligned}$$

$$\begin{cases} \dot{\mathbf{y}}^{\ell}(t) = f^{\ell}(\mathbf{y}^{\ell}(t), u(t)), & t \in [0, T], \\ \mathbf{y}^{\ell}(0) = \mathbf{x}^{\ell} \in \mathbb{R}^{\ell}. \end{cases}$$

The cost functional is:

$$J_{x^\ell}^\ell(u) = \int_0^T L^\ell(y^\ell(t), u(t), t) e^{-\lambda t} dt + g^\ell(y^\ell(T))$$

Reduced Order Modelling Control Problem

Reduced Value Function

$$v^{\ell}(\boldsymbol{x}^{\ell},t) = \inf_{\boldsymbol{u}\in\mathcal{U}_{ad}} J^{\ell}_{\boldsymbol{x}^{\ell},t}(\boldsymbol{u})$$

Reduced HJB equation

$$-\frac{\partial \mathbf{v}^{\ell}(\mathbf{x}^{\ell},t)}{\partial t} + \lambda \mathbf{v}^{\ell}(\mathbf{x}^{\ell},t) + \sup_{u \in U} \{-\nabla_{\mathbf{x}^{\ell}} \mathbf{v}^{\ell}(\mathbf{x}^{\ell},t) \cdot f^{\ell}(\mathbf{x}^{\ell},u,t) - L^{\ell}(\mathbf{x}^{\ell},u,t)\} = 0$$

Feedback Control

$$u^{\ell,*}(x^{\ell},t) = \arg\min_{u \in U} \{ f^{\ell}(x^{\ell},u,t) \cdot \nabla_{x^{\ell}} v^{\ell}(x^{\ell},t) + L^{\ell}(x^{\ell},u,t) \}$$

HJB-POD on a tree structure

Computation of the snapshots

- POD for optimal control problems presents a major bottleneck: the choice of the control inputs to compute the snapshots.
- We store the tree in the snapshots matrix $Y = T = \bigcup_{n=0}^{N} T^n$ for a chosen Δt and discrete control set U.

Computation of the basis functions

We solve

$$\min_{\psi_1,\ldots,\psi_\ell\in\mathbb{R}^d}\sum_{j=1}^N\sum_{\underline{u}_j\subset U^j}\left|\boldsymbol{y}(\boldsymbol{t}_j,\underline{u}_j)-\sum_{i=1}^\ell\langle \boldsymbol{y}(\boldsymbol{t}_j,\underline{u}_j),\psi_i\rangle\psi_i\right|^2,\quad \langle\psi_i,\psi_j\rangle=\delta_{ij},$$

- No restrictions on the choice of the number of basis ℓ, since we will solve the HJB equation on a tree structure.
- We choose ℓ such that $\mathcal{E}(\ell) \approx 0.999$,

HJB-POD on a tree structure

Construction of the reduced tree

- Construction of a new (projected) tree T^ℓ with a smaller Δt and/or a finer control space with respect to the snapshots set.
- The **first level** of the tree is contains the projection of the initial condition, i.e. $T^{0,\ell} = \Psi^T x$.
- Again we have

$$\mathcal{T}^{n,\ell} = \{\zeta_i^{n-1,\ell} + \Delta t \, f^{\ell}(\zeta_i^{n-1,\ell}, u_j, t_{n-1})\}_{j=1}^M \quad i = 1, \dots, M^{n-1},$$

where the reduced nonlinear term f^{ℓ} can be done via POD or POD-DEIM.

• The procedure follows the full dimensional case, but with the projected dynamics.

Approximation of the reduced value function

The numerical reduced value function $V^{\ell}(x^{\ell}, t)$ will be computed on the tree nodes in space as

$$V^{\ell}(x^{\ell}, t_n) = V^{n,\ell}(x^{\ell}), \quad \forall x^{\ell} \in \mathcal{T}^{n,\ell}.$$

The computation of the reduced value function follows directly from the DPP:

$$\begin{cases} V^{n,\ell}(\zeta_i^{n,\ell}) = \min_{u \in U} \{ V^{n+1,\ell}(\zeta_i^{n,\ell} + \Delta t \, f^{\ell}(\zeta_i^{n,\ell}, u, t_n)) + \Delta t \, L^{\ell}(\zeta_i^{n,\ell}, u, t_n) \}, \\ \zeta_i^{n,\ell} \in \mathcal{T}^{n,\ell}, n = \overline{N} - 1, \dots, 0, \\ V^{\overline{N},\ell}(\zeta_i^{\overline{N},\ell}) = g^{\ell}(\zeta_i^{\overline{N},\ell}), \qquad \qquad \zeta_i^{\overline{N},\ell} \in \mathcal{T}^{\overline{N},\ell}. \end{cases}$$

Nonlinear dynamics

Since $\Psi^T f(\Psi y^{\ell}, t)$ is computationally expensive $(\Psi y^{\ell} \in \mathbb{R}^d)$, we apply Discrete Empirical Interpolation Method to obtain $f^{DEIM}(y^{DEIM}, t)$ which is independent of the original dimension. This method is based on a further SVD of the matrix $\{f(y(t_i), t_i)\}_i$.

Computation of the feedback control

- When we compute the reduced value function, we store the control indices corresponding to the argmin of the hamiltonian and then we follow the path of tree,
- We can consider a postprocessing procedures with a control set *Ũ* ⊃ *U*, involving interpolation on scattered data.
- If the dynamics is linear in *u* ∈ ℝ, we can consider 1D interpolation.

Theorem (Alla, S., 2019)

Let f, L and g be Lipschitz continuous, bounded. Moreover let L and g be semiconcave and $f \in C^1$, then there exists a constant C(T) such that

$$\sup_{\boldsymbol{s}\in[0,T]} |\boldsymbol{v}(\boldsymbol{x},\boldsymbol{s}) - \boldsymbol{V}^{\ell}(\boldsymbol{\Psi}^{T}\boldsymbol{x},\boldsymbol{s})| \leq \boldsymbol{C}(T) \left(\left(\sum_{i\geq l+1} \sigma_{i}^{2}\right)^{1/2} + \Delta t \right)$$

where $\{\sigma_i\}_i$ are the singular values of the snapshots matrix.

- We build the snapshots set upon all the trajectories that appear in the tree, avoiding the selection of a forecast for the control inputs which is always not trivial for model reduction.
- The application of POD also allows an efficient pruning since it reduces the dimension of the problem.
- We avoid to define the numerical domain for the projected problem, which is a difficult task since we lose the physical meaning of the reduced coordinates.
- We are not restricted to consider a very low dimensional reduced space.

Test 1: Heat equation

$$\begin{cases} \partial_t y(x,t) = \sigma y_{xx}(x,t) + y_0(x)u(t) & (x,t) \in \Omega \times [0,T], \\ y(x,t) = 0 & (x,t) \in \partial\Omega \times [0,T], \\ y(x,0) = y_0(x) & x \in \Omega, \end{cases}$$

$$U = [-1, 0], \sigma = 0.15, T = 1 \text{ and } \Omega = [0, 1].$$

OFFLINE

2 discrete controls and $\Delta t = 0.1$. We choose $\ell = 2$ basis with projection error Err = 7.e - 4.

Test 1: Heat equation

Δt	Nodes	Pruned/Full	CPU	Err ₂	Err_∞	Order ₂	\textit{Order}_∞
0.1	134	4.3e-10	0.1s	0.244	0.220		
0.05	825	1.0e-19	0.56s	0.102	9.4e-2	1.25	1.22
0.025	11524	2.1e-39	8.74s	3.1e-2	3.0e-2	1.73	1.67
0.0125	194426	7.8e-80	151s	1.0e-2	8.2e-3	1.60	1.85

Table: Test 1: Error analysis for TSA-POD method with $\varepsilon_T = \Delta t^2$, 11 discrete controls and 2 POD basis.

Δt	Nodes	Pruned/Full	CPU	Err ₂	Err_∞	Order ₂	Order_∞
0.1	134	4.7e-09	0.14s	0.279	0.241		
0.05	863	1.2e-18	0.65s	0.144	0.118	0.95	1.03
0.025	15453	3.1e-38	12.88s	5.5e-2	5.3e-2	1.40	1.17
0.0125	849717	3.8e-78	1.1e3s	1.6e-2	1.6e-2	1.77	1.42

Table: Test 1: Error analysis for TSA with $\varepsilon_T = \Delta t^2$ and 11 discrete controls.L. Saluzzi (GSSI)A HJB-POD approach for PDEs23 / 29

Test 1: Feedback reconstruction

- First, we apply TSA-POD with 2 basis e 3 discrete controls.
- Then, we consider the feedback law

$$\mathcal{U}^{n,\ell}_* := \operatorname*{arg\,min}_{u \in U} \left\{ V^{n+1,\ell}(\zeta^{n,\ell}_* + \Delta t\, f^\ell(\zeta^{n,\ell}_*, u, t_n)) + \Delta t\, \mathcal{L}^\ell(\zeta^{n,\ell}_*, u, t_n) \right\},$$

Scattered Interpolation

We fix \widetilde{U} with 100 controls and we apply scattered interpolation in dimension ℓ .

1D Interpolation

Since the dynamics is linear in $u \in \mathbb{R}$, the sons of a node lie on a segment and we consider 1D interpolation (*e.g.* quadratic).

Test 1: Feedback reconstruction

Figure: Test 1: Cost functional (top) and optimal control (bottom) with different techniques for the feedback reconstruction.

Test 2: 2D Reaction diffusion equation

$$\begin{cases} \partial_t y(x,t) = \sigma \Delta y(x,t) + \mu \left(y^2(x,t) - y^3(x,t) \right) + y_0(x) u(t) \\ \partial_n y(x,t) = 0 \\ y(x,0) = y_0(x) \end{cases}$$

$$J_{y_0,t}(u) = \int_t^T \left(\int_{\Omega} |y(x,s)|^2 dx + \frac{1}{100} |u(s)^2| \right) ds + \int_{\Omega} |y(x,T)|^2 dx$$

POD-DEIM resolution

T = 1, $\sigma = 0.1$, $\mu = 5$, and $N_x = 961$. 6 POD basis to obtain a projection ratio equal to 0.9999.

Test 2: 2D Reaction diffusion equation

Figure: Uncontrolled solution (top) and controlled solution with full tree (bottom) for time $t = \{0, 0.5, 1\}$

Test 2: 2D Reaction diffusion equation

Figure: Test 1: Optimal policy (left), cost functional (middle) and $J_{y_0,0}$ (right) for U_n with $n = \{2, 3, 4, 5\}$.

$$\begin{array}{c|ccccc} U_2 & U_3 & U_4 & U_5 \\ \hline \text{TSA-Full} & 6s & 241s & 3845s > 4 \ \text{days} \\ \text{TSA-POD} & 0.5s & 20s & 432s & 1e4s \\ \end{array}$$

Table: CPU time of the TSA and the TSA-POD with a different number of controls

- A. Alla, M. Falcone, L. Saluzzi, An efficient DP algorithm on a tree-structure for finite horizon optimal control problems, SISC, 2019
- A. Alla, M. Falcone, L. Saluzzi, High-order Approximation of the Finite Horizon Control Problem via a Tree Structure Algorithm, IFAC CPDE 2019
- A. Alla, L. Saluzzi, A HJB-POD approach for the control of nonlinear PDEs on a tree structure, APNUM, 2019
- M. Falcone, R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 1994
- L. Saluzzi, A. Alla, M. Falcone, Error estimates for a tree structure algorithm on dynamic programming equations, submitted, 2019