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Extension to high-order (Falcone, Ferretti, ’94)

We introduce a convergent one-step approximation

yr =y 4 Atd(y", Un, ty, Ab),
yO = x,

where the admissible control matrix
Uoc Upsc Ux U...x UeRMx(@+1) with U c RM.
We assume that the function ¢ is consistent

lim &(x,u. t, At)=f(x,u
Ago (x,u,t,At) (x,u,t),

whereu = (u,...,u) € Ufor u € U and Lipschitz continuous:

[o(x,U. 1, At) — &(y, U, t, At)| < Lo|x — yI.
Under these assumptions the scheme is convergent.
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Extension to high-order schemes

Then, we consider the approximation of the cost functional

N-1 q
xtn {Um} At ZW/L(merTivulmv tm)_'_g(yN), J

m=n j=0

where 7; and w; are the nodes and weights of the quadrature formula.
Finally we define the numerical value function as

V(t x)= {lnf J ({Un})

Proposition (Discrete DPP)

m}

q
V(t,x) = inf {N > wil(y™T Ul thir) + V(tn+1,y”+‘)}
i=0
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Pruning for high-order scheme

We can again define the pruned trajectory

Nt = 0"+ AtO(n", Up, th, At)+E- (0 + At &(n", Up, tn, At), {77,’-7+1}i)J
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Pruning for high-order scheme
We can again define the pruned trajectory

77](7+1 ="+ Atd(n", Up, th, At)+ & (0" + At (1", Up, th, Al), {7],’-7+1 1)

Proposition

Given a one-step approximation {y"}, and its perturbation {n"}, , then

th—t
n_  n < n L¢(tnft)‘
' =" < er—xre

To guarantee p-th order convergence, the tolerance must be chosen
such that

er < C(At)p+1.
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Test 1: Bilinear control for Advection Equation

yi+ceyx=yu(t) (x,t)eQx|0,T],
y(x,t)=0 (x,t) € 92 x [0, T],
y(x,0) =yo(x) xeQ.

)
Jyo () = /t (Ilv(s) = 7(s)IB ax +0.01u(s)?) ds + |y (T) = #(T) 3.

Semi-discrete problem

y(t) = Ay(t) + y(t)u(t),
Ax =0.01,Q2=[0,3]andc=1.5
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Casel1: y=0, U =[-4,0]

0.14 1
Uncontrolled Implicit Euler
—— Implicit Euler
T evortal Uncontrolled Trapezoidal
0.12 P Controlled Implicit Euler
08 Controlled Trapezoidal
06
04
0.2
o S5l R
0 05 1 15 2 25 3

Figure: Top: Uncontrolled (left) and trapezoidal rule controlled solution (right).
Bottom: cost functionals (left) and solutions at final time (right).
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Case 2: _;/(X, t) = y0(X - Ct)! U= [07 1]

——Uncontrolled Implicit Euler
~——Uncontrolled Trapezoidal | //°

Controlled Implicit Euler | //
—— Controlled Trapezoidal

Figure: Comparison of the cost functionals (left) and the solutions at final time
(right).

At Nodes CPU Error, Order

0.1 506 0.11s 2.8e-2
0.05 3311 0.7s 8e-3 1.84

Table: Trapezoidal rule with 2 x 2 discrete controls and e = A3
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How does the cardinality change?

Euler method Trapezoidal method

100 500

400
2 2

'T;u § 300
5 0 S

5 5 200
(§] O

100

0 0

0 50 100 0 5 10 15 20
Time level Time level

Figure: Implicit Euler: | 7| = O(N?), Trapezoidal rule: [T| = O(N®)

Method At Controls Nodes CPU Error

Implicit Euler 2.5e-3 2 80982 9s 9e-3
Trapezoidal 5e-2 2x2 3311 0.7s 8e-3
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Problem Setting

Semidiscretized PDE

{ My(t) = Ay(t) + (1, y(t)), te(0,T],

y(0) = Yo,

@ yp € R” is a given initial data,
@ M. A € R"™" given matrices,

@ f: [0, T] x R” — R" a continuous function in both arguments and
locally Lipschitz-type with respect to the second variable

WARNING: High dimensional problems are computationally expensive.J
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Proper Orthogonal Decomposition and SVD
Given snapshots (y(t), ..., y(t1)) € R™

We look for an orthonormal basis {¢;}¢_; in R™ with ¢ < min{n, m} s.t.

l
¢17--~7¢Z Zaj Zyjawl Zol
i=1

i=4+1
reaches a minimum where {a;}7; € R*.
minJ(v1,..., %) S.t(Yj 1)) = b
Singular Value Decomposition' Y=vxVT,
Forte {1,...,d=rank(Y)}, {w, _, are called POD basis of rank /.
Z o
ERROR INDICATOR: £(¢) = '? with o; singular values of the SVD.
> of
i=1
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Reduced Order Modelling Control Problem

MOR ansatz
y(O) =~ wylt) wiw=J  weR™

| N\

Compact Notations
XC=wTx, YA =Ty, g (Vi(E) = VT g(Wy (1)),
), u(t), £) = WTH(WYE(t), u(t), 1), L (v (8), u(t)) == LWy (1), u(t)).

v

y4(0) = x* € R%

The cost functional is:

{ yi(8) = Ay (), u(1), telo,T],

Jy(u) = /Lf (1), u(t), e M dt + g (y“(T))

A
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Reduced Order Modelling Control Problem

Reduced Value Function

Ciol §y ¢
vi(xt,t) = ulerl]/}cad Jye 1(U)

Reduced HJB equation

ACS))

V(X D) +sup{ =V, vi(XE, - F (X5 u, ) - LS (X5, u, 1)} = 0
ot uel

| \

Feedback Control

u* (x5, 1) = argmin{f(x*, u, 1) - Ve v (x5, t) + L“(x*, u, 1)}
uel

A\
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HJB-POD on a tree structure

Computation of the snapshots

@ POD for optimal control problems presents a major bottleneck: the
choice of the control inputs to compute the snapshots.

@ We store the tree in the snapshots matrix Y =7 = UN_ 7" for a
chosen At and discrete control set U.

Computation of the basis functions

@ We solve
, 2
min Z D ) =D v up) il L (i) = 6,
¢1,...,¢e€Rdl 1QCUI =1

@ No restrictions on the choice of the number of basis ¢, since we
will solve the HJB equation on a tree structure.

@ We choose ¢ such that £(¢) ~ 0.999,
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HJB-POD on a tree structure

Construction of the reduced tree

@ Construction of a new (projected) tree 7 with a smaller At and/or
a finer control space with respect to the snapshots set.

@ The first level of the tree is contains the projection of the initial
condition, i.e. 79%¢ = wTx.

@ Again we have

Tn’g = {CIn_LZ + Atfz(cln_17z, U], tn—1)}j/\i1 I = 17 crey Mni“?

where the reduced nonlinear term f¢ can be done via POD or
POD-DEIM.

@ The procedure follows the full dimensional case, but with the
projected dynamics.
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HJB-POD on a tree structure

Approximation of the reduced value function

The numerical reduced value function V*(x, t) will be computed on
the tree nodes in space as

VEXE th) = VME(xE),  wxte T

The computation of the reduced value function follows directly from the
DPP:

VIGH) = minf VPTG + AL, U ) + ALLAGH, U 1),
MteTt n=N-1,...,0,
VUG = g, G e T
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HJB-POD on a tree structure

Nonlinear dynamics

Since WTf(Wyt, t) is computationally expensive (Vy¢ € RY), we apply
Discrete Empirical Interpolation Method to obtain fPEM(yDEIM ) which
is independent of the original dimension.

This method is based on a further SVD of the matrix {f(y(t), t;)}.

Computation of the feedback control

@ When we compute the reduced value function, we store the
control indices corresponding to the argmin of the hamiltonian and
then we follow the path of tree,

@ We can consider a postprocessing procedures with a control set
U D U, involving interpolation on scattered data.

@ If the dynamics is linear in u € R, we can consider 1D
interpolation.
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HJB-POD on a tree structure

Theorem (Alla, S., 2019)

Let f, L and g be Lipschitz continuous, bounded. Moreover let L and g
be semiconcave and f € C', then there exists a constant C(T) such
that

1/2
sup_[v(x,8) - V/(WTx,8)| < C(T) (Z a,?) +at |,

s€[0,T] P>t

where {o;}; are the singular values of the snapshots matrix.
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Pros about TSA-POD

@ We build the snapshots set upon all the trajectories that appear in
the tree, avoiding the selection of a forecast for the control inputs
which is always not trivial for model reduction.

@ The application of POD also allows an efficient pruning since it
reduces the dimension of the problem.

@ We avoid to define the numerical domain for the projected
problem, which is a difficult task since we lose the physical
meaning of the reduced coordinates.

@ We are not restricted to consider a very low dimensional reduced
space.
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Test 1: Heat equation

ory(x,t) = oyxx(Xx, 1) + Yo(x)u(t) (x,t) € Q x [0, T],

y(x,t)=0 (x,t) € 02 x [0, T,
¥(x,0) = yo(x) x € Q,
U=1[-1,0],0 =015, T=1and Q = [0,1]. J

2 discrete controls and At = 0.1.
We choose ¢ = 2 basis with projection error Err = 7.e — 4.
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Test 1: Heat equation

At Nodes Pruned/Full CPU Em>

0.1 134 4.3e-10
0.05 825 1.0e-19
0.025 11524 2.1e-39
0.0125 194426 7.8e-80

Erro. Order, Order,,
0.1s 0.244 0.220

0.56s 0.102 9.4e-2 1.25 1.22
8.74s 3.1e-2 3.0e-2 1.73 1.67
151s 1.0e-2 8.2e-3 1.60 1.85

Table: Test 1: Error analysis for TSA-POD method with e = At?, 11 discrete
controls and 2 POD basis.

At  Nodes Pruned/Full CPU

0.1 134 4.7e-09
0.05 863 1.2e-18

Err>  Errs, Order, Order
0.14s 0.279 0.241

0.65s 0.144 0.118 0.95 1.03
0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 140 1.17
0.0125 849717 3.8e-78 1.1e3s 1.6e-2 1.6e-2 1.77 142

Table: Test 1: Error analysis for TSA with e = At? and 11 discrete controls.
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Test 1: Feedback reconstruction

@ First, we apply TSA-POD with 2 basis e 3 discrete controls.
@ Then, we consider the feedback law

Ut = argmm{v"+1 A(CM + ALFCM, U, 1)) + AtLEC™, u, t,,)}
uel

Scattered Interpolation

We fix U with 100 controls and we apply scattered interpolation in
dimension /.

1D Interpolation

Since the dynamics is linear in u € R, the sons of a node lie on a
segment and we consider 1D interpolation (e.g. quadratic).

A,

L. Saluzzi (GSSI) A HJB-POD approach for PDEs 24/29



Test 1: Feedback reconstruction

0.01 0
— Without reconstrunction
0.009 0.1
Quadratic reconstruction
0.008 Reconstruction by comparioson -0.2
——LQR
0.007 0.3
0.006 0.4
0.005 05
v
0.004 0.6 /—‘
0.003 0.7 f
— Without reconstrunction
0.002 0.8 f Quadratic reconstruction
Reconstruction by comparioson
0.001 0.9
—LQR
0 1
0 0 02 04 06 08 1

Figure: Test 1: Cost functional (top) and optimal control (bottom) with different
techniques for the feedback reconstruction.
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Test 2: 2D Reaction diffusion equation

aty(X’ t) = JAy(X, t) +p (yZ(X, t) - yS(Xv t)) + yO(X)u(t)
ony(x,t) =0

y(x,0) = yo(x)

i) = [ ([ IvoxoPn-+ 35luts) as-+ [ lvix Difon

POD-DEIM resolution

T=1,0=0.1,u=5,and Ny = 961.
6 POD basis to obtain a projection ratio equal to 0.9999.
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Test 2: 2D Reaction diffusion equation

05 s 05 g

0o 0o

Figure: Uncontrolled solution (top) and controlled solution with full tree
(bottom) for time f = {0,0.5,1}
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Test 2: 2D Reaction diffusion equation

Control Policy with POD-DEIM Cost Functional

04 06 08 10 02 04 06 08 1 2 3 4 5

Figure: Test 1: Optimal policy (left), cost functional (middle) and J,, o (right)
for U, with n = {2,3,4,5}.

U Us Uy Us
TSA-Full 6s 241s 3845s > 4 days
TSA-POD 0.5s 20s 432s 1e4s

Table: CPU time of the TSA and the TSA-POD with a different number of
controls
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Thank you for your attention
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