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Setting and problem formulation



Setup

Consider abstract control systems

ẏ(t) = f(y(t), u(t)), y(0) = y0

with y(t) ∈ X, u(t) ∈ U , X, U suitable spaces

Problem: infinite horizon optimal control

Optimality criterion: for a running cost ` : X ×U → R solve

minimize
u(·)

J∞(y0, u) =

∫ ∞
0

`(y(t), u(t))dt

subject to state/control constraints y(t) ∈ Y, u(t) ∈ U
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 4/40



Setup

Consider abstract control systems
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Receding horizon control

minimize
u(·)

J∞(y0, u) =

∫ ∞
0

`(y(t), u(t))dt

Direct solution of the problem is numerically hard

Alternative method: receding horizon or model predictive control
(MPC)

Idea: replace the infinite horizon problem by the iterative
solution of finite horizon problems

minimize
u(·)

JT (y0, u) =

∫ T

0

`(y(t), u(t))dt

with fixed T > 0 and y(t) ∈ Y, u(t) ∈ U

We obtain a feedback control by a receding horizon technique
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MPC from the trajectory point of view
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red = MPC closed loop yMPC(t, y0)
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Why use MPC?
What is the advantage of MPC over other methods of solving
optimal control problems?

significantly reduced computational complexity
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Why use MPC?
What is the advantage of MPC over other methods of solving
optimal control problems?

significantly reduced computational complexity

 real time capability

StrobeMediaPlayback.swf

ability to react to perturbations

applicability to real-world industrial applications
applicability to problems in which data becomes available
online

But: The trajectory delivered by MPC can be far from optimal!

 Key questions in this talk:

When does MPC yield closed loop trajectories with
approximately optimal performance?

How can we implement MPC efficiently for PDEs?
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 7/40



Why use MPC?
What is the advantage of MPC over other methods of solving
optimal control problems?

significantly reduced computational complexity

 real time capability
ability to react to perturbations
applicability to real-world industrial applications
applicability to problems in which data becomes available
online

But: The trajectory delivered by MPC can be far from optimal!

 Key questions in this talk:

When does MPC yield closed loop trajectories with
approximately optimal performance?

How can we implement MPC efficiently for PDEs?
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What makes model predictive control work?



The turnpike property

The turnpike property demands that there exists a particular
trajectory — the turnpike —, such that all optimal trajectories
(regardless of initial condition and optimization horizon) stay
near this trajectory most of the time [von Neumann ’45,

Dorfman/Samuelson/Solow ’57, McKenzie ’83]
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In the simplest case, this particular trajectory is an equilibrium
(but extensions to periodic orbits or more general time varying
trajectories exist)

In this talk we stick to the equilibrium setting

We illustrate it by a simple discrete time example
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Example: a macroeconomic model
Consider a classical 1d macroeconomic model

[Brock/Mirman ’72]

Minimize the finite horizon objective
∑N−1

k=0 `(y(k), u(k)) with

`(y, u) = − ln(Ayα − u), A = 5, α = 0.34

and dynamics y(k + 1) = u(k) on Y = U = [0, 10]

y = invested capital; u = investment in next time step

Ayα = capital after one time step

Ayα − u = consumed capital; ln(·) = utility function

On infinite horizon, it is optimal to stay at the equilibrium

ye ≈ 2.2344 with `(ye, ue) ≈ 1.4673
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Illustration of the Turnpike Property
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Optimal trajectory for N = 5

The turnpike property makes MPC work...
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MPC and the turnpike property
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 12/40



MPC and the turnpike property

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 12/40



MPC and the turnpike property

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)
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Approximation properties of MPC
In order to formalize how good MPC approximates the infinite
horizon problem, we define

yMPC(t, y0) = solution generated by MPC starting in y0
uMPC(t) = control function generated by MPC

JMPC
S (y0) =

∫ S

0

`(yMPC(t, y0), uMPC(t))dt

Furthermore, we define

KL :=

{
β : R2

≥0 → R≥0
∣∣∣∣ continuous, β(r, t)↗∞ as r →∞
β(0, t) = 0, β(r, t)↘ 0 as t→∞

}
β(       )r*, t

r t(0, 0) (0, 0)

r, t*β(       )
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Approximation properties of MPC
Theorem: If the turnpike property at an optimal equilibrium
(ye, ue) and suitable controllability and regularity conditions
hold, then there exist ε1(T ), ε2(S)→ 0 as T →∞ and
S →∞, such that the following properties hold

(1) Approximate average optimality:

lim sup
S→∞

1

S
JMPC
S (y0) ≤ `(ye, ue) + ε1(T )

(2) Practical asymptotic stability: there is β ∈ KL:

‖yMPC(t, y0)− ye‖ ≤ β(‖y0 − ye‖, t) + ε1(T ) for all k ∈ N

(3) Approximate transient optimality: for all S ∈ N:

JMPC
S (y0) ≤ JS(y0,u) + Sε1(T ) + ε2(S)

for all admissible u with ‖y(S, y0,u)− ye‖ ≤ β(‖y0 − ye‖, S) + ε1(T )
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Illustration of (2) and (3)

ey

y

t

(2): yMPC(t) converges to the ε1(T )-ball around ye

(3): cost of all other trajectories reaching the ball at time K is
(3): higher than that of yMPC(t) up to the error Sε1(T ) + ε2(S)
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When does the turnpike property hold?
[Carlson et al. ’91, Gr. ’13, Gr./Stieler/Pirkelmann ’18]: strict

dissipativity implies turnpike property for many system classes

[Gr./Müller ’16]: in discrete time the turnpike property is
equivalent to strict dissipativity for controllable systems

[Gr./Guglielmi ’18f]: the turnpike property is equivalent to
detectability-like characterizations for stabilizable finite
dimensional linear quadratic problems

[Höger/Gr. ’19]: Input-output-to-state stability (IOSS)
implies strict dissipativity and hence the turnpike property

[Trélat/Zhang/Zuazua ’18, Breiten/Pfeiffer ’18f, Gr./Schaller/

[ Schiela ’19f]: turnpike property is implied by stabilizability and
detectability for PDE governed linear quadratic problems

[Porretta/Zuazua ’13, Gugat/Trélat/Zuazua ’16, Zuazua ’18,

[ Gugat/Hante ’18]: turnpike property for various hyperbolic PDEs
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Efficient numerical realization for PDEs



Idea of efficient numerical approach

t = T

t = 0 exact solution
numerical solution

τ

Implemented in MPC-loop

Idea: use a fine discretization local discretization error
for small t and a coarse  ε(t) is small for small t
discretization for large t and large for large t

What about the global numerical error?
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Sensitivity w.r.t. numerical errors

At a first glance, one might conjecture that if the local
discretization error ε(t) is large only for t ≈ T , then this
should not affect the solution at times t ≈ 0

At the second glance, there is a problem: solving the optimal
control problem involves the adjoint equation which is solved
backwards

ẏ(t) = Hλ(y(t), u(t), λ(t))

+ ε1(t)

y(0) = y0

λ̇(t) = −Hy(y(t), u(t), λ(t))

+ ε2(t)

λ(T ) = 0

 large εi(t) for t ≈ T can propagate backwards to t ≈ 0

Is there a structural property that can save this idea?
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ẏ(t) = Hλ(y(t), u(t), λ(t)) + ε1(t), y(0) = y0

λ̇(t) = −Hy(y(t), u(t), λ(t)) + ε2(t), λ(T ) = 0

 large εi(t) for t ≈ T can propagate backwards to t ≈ 0

Is there a structural property that can save this idea?
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A sensitivity result for

general linear evolution equations



Setting
We consider general linear evolution equations

d

dt
y = Ay +Bu+ f, y(0) = y0

A : D(A) ⊂ X → X generates a C0-semigroup T (t)

X Hilbert space; f ∈ L1(0, T ;X) source term

and the optimization objective

min
u

1

2

∫ T

0

‖C(y(t)− yd)‖2Y + ‖R(u(t)− ud)‖2Udt

U , Y Hilbert spaces; R ∈ L(U,U) elliptic
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Optimal control problem

Optimality condition: Pontryagin’s Maximum Principle yields
C∗C − d

dt
− A∗

0 ET
d
dt
− A −BQ−1B∗
E0 0


︸ ︷︷ ︸

=: M

(
y
λ

)
=


C∗Cyd

0
Bud + f

y0

 ,+


ε1
0
ε2
0



where E0y := y(0) and ETλ := λ(T )

Define δy = ỹ − y, δλ = λ̃− λ

Idea: Use ‖δy‖+ ‖δλ‖ ≤ ‖M−1‖‖(ε1, 0, ε2, 0)‖
plus exponential weighting
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ỹ

λ̃

)
=


C∗Cyd

0
Bud + f

y0

+


ε1
0
ε2
0

,

where E0y := y(0) and ETλ := λ(T )
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ỹ

λ̃

)
=


C∗Cyd

0
Bud + f

y0

+


ε1
0
ε2
0

,

where E0y := y(0) and ETλ := λ(T )
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Sensitivity result
Theorem: Define ρ := ‖e−µtε1(t)‖Lp(X) + ‖e−µtε2(t)‖Lp(X)

for p = 1 or p = 2 and assume the norms

‖M−1‖(L1(X)×X)2→C(X)2 ‖M−1‖(L2(X)×X)2→C(X)2

‖M−1‖(L1(X)×X)2→L2(X)2 ‖M−1‖(L2(X)×X)2→L2(X)2

are bounded independently of T

. Then there are µ, c > 0 with

‖e−µtδy‖L2(X) + ‖e−µtδλ‖L2(X) + ‖e−µtδu‖L2(U) ≤ cρ

‖e−µtδy‖C(X) + ‖e−µtδλ‖C(X) ≤ cρ

If B is bounded then in addition ‖e−µtδu‖L∞(U) ≤ cρ holds

For p = 1 and ‖ · ‖C(X)-norms this implies

‖y(t)− ỹ(t)‖ ≤
∫ T

0

ceµ(t−s)(‖ε1(s)‖+ ‖ε2(s)‖)ds

 Large errors for s ≈ T are exponentially damped at t ≈ 0
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‖y(t)− ỹ(t)‖ ≤
∫ T

0

ceµ(t−s)(‖ε1(s)‖+ ‖ε2(s)‖)ds

 Large errors for s ≈ T are exponentially damped at t ≈ 0
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Boundedness of ‖M−1‖
How do we get a T -independent bound for the norms

‖M−1‖(L1(X)×X)2→C(X)2 ‖M−1‖(L2(X)×X)2→C(X)2

‖M−1‖(L1(X)×X)2→L2(X)2 ‖M−1‖(L2(X)×X)2→L2(X)2
?

Definition: (i) We say that (A,B) is exponentially stabilizable,
if there is K ∈ L(X,U) such that the semigroup generated by
A+BK is exponentially stable

(ii) We say that (A,C) is exponentially detectable if (A∗, C∗)
is exponentially stabilizable

Theorem: If the control system is exponentially stabilizable
and detectable, then the above norms are bounded
independently of T

This is the hard part of the analysis

For details: manuel.schaller@uni-bayreuth.de
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Discussion

Under the same condition we obtain a turnpike result that
generalizes many of the mentioned results in the
literature, as we require neither boundedness of B and C
nor that A generates an analytic semigroup

Particularly, our results apply to hyperbolic PDEs and
boundary control and observations

Recall: for PDE governed linear quadratic problems, the
turnpike property is implied by stabilizability and
detectability [Trélat/Zhang/Zuazua ’18, Breiten/Pfeiffer ’18f]

 The same mechanism that generates the turnpike
 behaviour damps out errors in backward time

Extension to certain PDEs with nonlinearities (semilinear,
quasilinear) possible — work in progress
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 25/40



Discussion

Under the same condition we obtain a turnpike result that
generalizes many of the mentioned results in the
literature, as we require neither boundedness of B and C
nor that A generates an analytic semigroup

Particularly, our results apply to hyperbolic PDEs and
boundary control and observations

Recall: for PDE governed linear quadratic problems, the
turnpike property is implied by stabilizability and
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 25/40



Discussion

Under the same condition we obtain a turnpike result that
generalizes many of the mentioned results in the
literature, as we require neither boundedness of B and C
nor that A generates an analytic semigroup

Particularly, our results apply to hyperbolic PDEs and
boundary control and observations

Recall: for PDE governed linear quadratic problems, the
turnpike property is implied by stabilizability and
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Numerical examples



What do we expect to see?

We expect to see the following effect:

Fine grid
for small t

Residual ε small
for small t

Absolute error
‖u − ũ‖ small

for small t

exponential

sensitivity

However, we do not want to select the grids manually

 goal-oriented estimation [Meidner ’08, Meidner/Vexler ’07ff]
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Goal oriented error estimation
In goal-oriented error estimation the error of a particular
quantity of interest is estimated

We use

JT (y, u) :=

∫ T

0
`(y(t), u(t)) dt and Jτ (y, u) :=

∫ τ

0
`(y(t), u(t)) dt

with time interval τ = 0.5

For the discontinuous Galerkin discretization in time we can
prove:

Theorem: Let (A,B), (A∗, C∗) be exponentially stabilizable.
Then the error indicators ητ for Jτ satisfy

‖ητ (t)‖ ∼ c(τ)e−µt

with c(τ), µ > 0 independent of T
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Test problem

min
(y,u)

1

2
‖y − yd‖2L2([0,30]×[0,1]2) +

α

2
‖u‖2L2([0,30]×[0,1]2)

d

dt
y = −d∆y + µy + u, y(0) = 0, yd =
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Optimal solution
Open loop optimal solution

t = 0.0
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Open loop optimal solution
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Optimal solution
Open loop optimal solution

t = 3.0
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Adaptive grid in time
Standard error estimator for JT

Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 31/40



Adaptive grid in time
Standard error estimator for JT
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Adaptive grid in time
Goal-oriented error estimator for Jτ , focusing on [0, τ ]
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Lars Grüne, Sensitivity and turnpike results for optimal control of PDEs and MPC, p. 32/40



Adaptive grid in time
Goal-oriented error estimator for Jτ , focusing on [0, τ ]
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Adaptive grid in time
Comparison to standard error estimator
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Adaptive grid in time
Stability of MPC closed-loop solutions

0

2

4

6

8 time points

0
1
2
3
4

11 time points

0 0.5 1 1.5 2
0
1
2
3
4

time t

21 time points
refined for Jτ
refined for JT
reference

0 0.5 1 1.5 2
0
0.5
1
1.5
2

time t

41 time points
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Adaptive grid in time
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Adaptive grid in space

Goal oriented (bottom) vs. standard error estimator (top)
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Adaptive grid in space
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Adaptive grid in space and time

5 8 11 21

0.1

0.2

0.3

0.4

number of time points

C
os

t
fu

nc
ti

on
al

va
lu

eCost of MPC closed-loop solutions (5000 total space DOFs)

refined for Jτ
refined for JT
reference
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Summary and outlook
Model Predictive Control can be seen as a method for
splitting up an infinite horizon optimal control problem
into the iterative solution of finite horizon problems

(“Model reduction in time”)

The existence of the turnpike property is the key
structural property to make this approach work

Exponential controllability and detectability imply this
property for linear quadratic PDE problems

The same mechanism that leads to the turnpike property
also causes an exponential damping of numerical errors in
backward time

This can be exploited by adaptive discretization strategies
via goal oriented error estimators
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