Linearization of the Wasserstein space

 \& quantitative stability of optimal transport mapsQuentin Mérigot
Université Paris-Sud 11

Based on joint work with F. Chazal and A. Delalande

Statistique et Informatique pour la Science des Données, Janvier 2020, IHÉS

1. Motivations

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

NB: $T_{\mu \# \lambda}=\mu \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B)$ $\Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])$

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

NB: $T_{\mu \# \lambda}=\mu \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B)$ $\Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])$

- T_{μ} is the inverse cdf, also called quantile function.

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

$$
\text { NB: } \begin{aligned}
T_{\mu \#} \lambda=\mu & \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B) \\
& \Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])
\end{aligned}
$$

- T_{μ} is the inverse cdf, also called quantile function.

How to extend this notion to a multivariate setting ?

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

$$
\text { NB: } \begin{aligned}
T_{\mu \#} \lambda=\mu & \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B) \\
& \Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])
\end{aligned}
$$

- T_{μ} is the inverse cdf, also called quantile function.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$,
$\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

$$
\text { NB: } \begin{aligned}
T_{\mu \#} \lambda=\mu & \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B) \\
& \Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])
\end{aligned}
$$

- T_{μ} is the inverse cdf, also called quantile function.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$,
$\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

- Monge-Kantorovich quantile $:=T_{\mu}$. Need of a reference probability density ρ. [Cherzonukov, Galichon, Hallin, Henry, '15]

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

$$
\text { NB: } \begin{aligned}
T_{\mu \#} \lambda=\mu & \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B) \\
& \Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])
\end{aligned}
$$

- T_{μ} is the inverse cdf, also called quantile function.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$, \exists ! ρ-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

- Monge-Kantorovich quantile $:=T_{\mu}$. Need of a reference probability density ρ. [Cherzonukov, Galichon, Hallin, Henry, '15]
- T_{μ} is unique ρ-a.e. but the convex function ϕ_{μ} is not necessarily unique.

Motivation 1: Monge-Kantorovich Quantiles

- Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in \mathrm{L}^{1}([0,1])$ satisfying $T_{\mu \#} \rho=\mu$, with $\rho=$ Lebesgue measure on $[0,1]$.

$$
\text { NB: } \begin{aligned}
T_{\mu \#} \lambda=\mu & \Longleftrightarrow \forall B \subseteq \mathbb{R}, \lambda\left(T_{\mu}^{-1}(B)\right)=\mu(B) \\
& \Longleftrightarrow \forall x \in \mathbb{R}, \lambda\left(\left[0, T_{\mu}^{-1}(x)\right]\right)=\mu((-\infty, x])
\end{aligned}
$$

- T_{μ} is the inverse cdf, also called quantile function.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$, \exists ! ρ-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

- Monge-Kantorovich quantile $:=T_{\mu}$. Need of a reference probability density ρ. [Cherzonukov, Galichon, Hallin, Henry, '15]
- T_{μ} is unique ρ-a.e. but the convex function ϕ_{μ} is not necessarily unique.
- $T_{\mu}: \operatorname{spt}(\rho) \rightarrow \mathbb{R}^{d}$ is monotone: $\left\langle T_{\mu}(x)-T_{\mu}(y) \mid x-y\right\rangle \geq 0$.

Numerical Example: Monge-Kantorovich Depth

Source: $\rho=$ uniform probability density on $B(0,1) \subseteq \mathbb{R}^{2}$
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with $N=10^{4}$ points

"Monge-Kantorovich depth of $y_{i}{ }^{\prime \prime} \simeq\left\|T_{\mu}^{-1}\left(y_{i}\right)\right\|$.
[Cherzonukov, Galichon, Hallin, Henry]

Numerical Example: Monge-Kantorovich Depth

Source: $\rho=$ uniform probability density on $B(0,1) \subseteq \mathbb{R}^{2}$
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with $N=10^{4}$ points

[Cherzonukov, Galichon, Hallin, Henry]

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^{d}$ compact, W_{p} metrizes narrow convergence i.e. $\lim _{n \rightarrow+\infty} \mathrm{W}_{p}\left(\mu_{n}, \mu\right)=0 \Longleftrightarrow \forall \phi \in \mathcal{C}^{0}(X), \lim _{n \rightarrow+\infty} \int \phi \mathrm{d} \mu_{n}=\int \phi \mathrm{d} \mu$.

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^{d}$ compact, W_{p} metrizes narrow convergence i.e. $\lim _{n \rightarrow+\infty} \mathrm{W}_{p}\left(\mu_{n}, \mu\right)=0 \Longleftrightarrow \forall \phi \in \mathcal{C}^{0}(X), \lim _{n \rightarrow+\infty} \int \phi \mathrm{d} \mu_{n}=\int \phi \mathrm{d} \mu$.
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_{p}.

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p} .
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^{d}$ compact, W_{p} metrizes narrow convergence i.e. $\lim _{n \rightarrow+\infty} \mathrm{W}_{p}\left(\mu_{n}, \mu\right)=0 \Longleftrightarrow \forall \phi \in \mathcal{C}^{0}(X), \lim _{n \rightarrow+\infty} \int \phi \mathrm{d} \mu_{n}=\int \phi \mathrm{d} \mu$.
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_{p}. For instance $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\#} \rho$ with $\rho=$ Lebesgue on $[0,1]$ is monotone, implying

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\int_{[0,1]}\left\|T_{\mu}(t)-T_{\nu}(t)\right\|^{p} \mathrm{~d} t\right)=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{p}([0,1])}
$$

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p} .
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^{d}$ compact, W_{p} metrizes narrow convergence i.e. $\lim _{n \rightarrow+\infty} \mathrm{W}_{p}\left(\mu_{n}, \mu\right)=0 \Longleftrightarrow \forall \phi \in \mathcal{C}^{0}(X), \lim _{n \rightarrow+\infty} \int \phi \mathrm{d} \mu_{n}=\int \phi \mathrm{d} \mu$.
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_{p}. For instance $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\#} \rho$ with $\rho=$ Lebesgue on $[0,1]$ is monotone, implying

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\int_{[0,1]}\left\|T_{\mu}(t)-T_{\nu}(t)\right\|^{p} \mathrm{~d} t\right)=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{p}([0,1])}
$$

In particular, $\left(\operatorname{Prob}_{p}(\mathbb{R}), \mathrm{W}_{p}\right)$ embeds isometrically in $\mathrm{L}^{p}([0,1])$!

Wasserstein space

- Let $\operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)=\left\{\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right) \mid \int\|x\|^{p} \mathrm{~d} \mu<+\infty\right\}$.
p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_{p}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\min _{\gamma \in \Gamma(\mu, \nu)}\|x-y\|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p} .
$$

where $\Gamma(\mu, \nu)=$ couplings between μ and $\nu \subseteq \operatorname{Prob}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^{d}$ compact, W_{p} metrizes narrow convergence i.e. $\lim _{n \rightarrow+\infty} \mathrm{W}_{p}\left(\mu_{n}, \mu\right)=0 \Longleftrightarrow \forall \phi \in \mathcal{C}^{0}(X), \lim _{n \rightarrow+\infty} \int \phi \mathrm{d} \mu_{n}=\int \phi \mathrm{d} \mu$.
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_{p}. For instance $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\#} \rho$ with $\rho=$ Lebesgue on $[0,1]$ is monotone, implying

$$
\mathrm{W}_{p}(\mu, \nu)=\left(\int_{[0,1]}\left\|T_{\mu}(t)-T_{\nu}(t)\right\|^{p} \mathrm{~d} t\right)=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{p}([0,1])}
$$

In particular, $\left(\operatorname{Prob}_{p}(\mathbb{R}), \mathrm{W}_{p}\right)$ embeds isometrically in $\mathrm{L}^{p}([0,1])$!

The previous embedding is false in higher dimension: $\left(\operatorname{Prob}_{p}, \mathrm{~W}_{p}\right)$ is curved.

Motivation 2: "Linearization" of W_{2}

Motivation 2: "Linearization" of W_{2}

- We fix a reference measure, $\rho=\operatorname{Leb}_{X}$ with $X \subseteq \mathbb{R}^{d}$ convex compact with $|X|=1$.

Given $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$, we define T_{μ} as the unique map satisfying
(i) $T_{\mu}=\nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \rightarrow \mathbb{R}$ and
(ii) $T_{\mu \#} \rho=\mu$.

Motivation 2: "Linearization" of W_{2}

- We fix a reference measure, $\rho=\operatorname{Leb}_{X}$ with $X \subseteq \mathbb{R}^{d}$ convex compact with $|X|=1$.

Given $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$, we define T_{μ} as the unique map satisfying
(i) $T_{\mu}=\nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \rightarrow \mathbb{R}$ and
(ii) $T_{\mu \#} \rho=\mu$.

- The map $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \rightarrow T_{\mu} \in \mathrm{L}^{2}(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.

Motivation 2: "Linearization" of W_{2}

- We fix a reference measure, $\rho=\operatorname{Leb}_{X}$ with $X \subseteq \mathbb{R}^{d}$ convex compact with $|X|=1$.

Given $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$, we define T_{μ} as the unique map satisfying
(i) $T_{\mu}=\nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \rightarrow \mathbb{R}$ and
(ii) $T_{\mu \#} \rho=\mu$.

- The map $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \rightarrow T_{\mu} \in \mathrm{L}^{2}(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
$■ \mathrm{~W}_{2, \rho}(\mu, \nu):=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \longrightarrow[$ Ambrosio, Gigli, Savaré '04]

	Riemannian geometry	Optimal transport				
point	$x \in M$	$\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$				
geodesic distance	$\mathrm{d}_{g}(x, y)$	$\mathrm{W}_{2}(\mu, \nu)$				
tangent space	$\mathrm{T}_{\rho} M$	$\mathrm{~T}_{\rho} \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \subseteq \mathrm{L}^{2}(\rho, X)$				
inverse exponential map	$\exp _{\rho}^{-1}(x) \in \mathrm{T}_{\rho} M$	$T_{\mu} \in \mathrm{T}_{\rho} \operatorname{Prob}_{2}(X)$				
distance in tangent space	$\left\\|\exp _{\rho}^{-1}(x)-\exp _{\rho}^{-1}(y)\right\\|_{g\left(x_{0}\right)}$	$\left\\|T_{\mu}-T_{\nu}\right\\|_{\mathrm{L}^{2}(\rho)}$				

Motivation 2: "Linearization" of W_{2}

- We fix a reference measure, $\rho=\operatorname{Leb}_{X}$ with $X \subseteq \mathbb{R}^{d}$ convex compact with $|X|=1$.

Given $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$, we define T_{μ} as the unique map satisfying
(i) $T_{\mu}=\nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \rightarrow \mathbb{R}$ and
(ii) $T_{\mu \#} \rho=\mu$.

- The map $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \rightarrow T_{\mu} \in \mathrm{L}^{2}(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
$■ \mathrm{~W}_{2, \rho}(\mu, \nu):=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \longrightarrow[$ Ambrosio, Gigli, Savaré '04]

	Riemannian geometry	Optimal transport				
point	$x \in M$	$\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$				
geodesic distance	$\mathrm{d}_{g}(x, y)$	$\mathrm{W}_{2}(\mu, \nu)$				
tangent space	$\mathrm{T}_{\rho} M$	$\mathrm{~T}_{\rho} \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \subseteq \mathrm{L}^{2}(\rho, X)$				
inverse exponential map	$\exp _{\rho}^{-1}(x) \in \mathrm{T}_{\rho} M$	$T_{\mu} \in \mathrm{T}_{\rho} \operatorname{Prob}_{2}(X)$				
distance in tangent space	$\left\\|\exp _{\rho}^{-1}(x)-\exp _{\rho}^{-1}(y)\right\\|_{g\left(x_{0}\right)}$	$\left\\|T_{\mu}-T_{\nu}\right\\|_{\mathrm{L}^{2}(\rho)}$				

■ Used in image analysis \longrightarrow [Wang, Slepcev, Basu, Ozolek, Rohde '13]

Motivation 2: "Linearization" of W_{2}

- We fix a reference measure, $\rho=\operatorname{Leb}_{X}$ with $X \subseteq \mathbb{R}^{d}$ convex compact with $|X|=1$.

Given $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$, we define T_{μ} as the unique map satisfying
(i) $T_{\mu}=\nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu}: X \rightarrow \mathbb{R}$ and
(ii) $T_{\mu \#} \rho=\mu$.

- The map $\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \rightarrow T_{\mu} \in \mathrm{L}^{2}(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
■ $\mathrm{W}_{2, \rho}(\mu, \nu):=\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \longrightarrow[$ Ambrosio, Gigli, Savaré '04]

	Riemannian geometry	Optimal transport				
point	$x \in M$	$\mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)$				
geodesic distance	$\mathrm{d}_{g}(x, y)$	$\mathrm{W}_{2}(\mu, \nu)$				
tangent space	$\mathrm{T}_{\rho} M$	$\mathrm{~T}_{\rho} \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right) \subseteq \mathrm{L}^{2}(\rho, X)$				
inverse exponential map	$\exp _{\rho}^{-1}(x) \in \mathrm{T}_{\rho} M$	$T_{\mu} \in \mathrm{T}_{\rho} \operatorname{Prob}_{2}(X)$				
distance in tangent space	$\left\\|\exp _{\rho}^{-1}(x)-\exp _{\rho}^{-1}(y)\right\\|_{g\left(x_{0}\right)}$	$\left\\|T_{\mu}-T_{\nu}\right\\|_{\mathrm{L}^{2}(\rho)}$				

■ Used in image analysis \longrightarrow [Wang, Slepcev, Basu, Ozolek, Rohde '13]
\longrightarrow Embedding family of probability measures by family of functions in $\mathrm{L}^{2}(\rho)$. (nice feature: the image of the embedding, $\left\{T_{\mu} \mid \mu \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right)\right\}$, is convex!)

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.0,1.0]$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.2,0.8]$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.4,0.6]$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.6,0.4]$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.8,0.2]$

Example: barycenter computation

- Barycenter in Wasserstein space: $\mu_{1}, \ldots, \mu_{k} \in \operatorname{Prob}_{2}\left(\mathbb{R}^{d}\right), \alpha_{1}, \ldots, \alpha_{k} \geq 0$:

$$
\mu:=\arg \min _{1 \leq i \leq k} \sum_{1 \leq i \leq k} \alpha_{i} \mathrm{~W}_{2}^{2}\left(\mu, \mu_{i}\right) .
$$

\longrightarrow Need to solve an optimisation problem every time the coefficients α_{i} are changed.

- "Linearized" Wasserstein barycenters: $\mu:=\left(\frac{1}{\sum_{i} \alpha_{i}} \sum_{i} \alpha_{i} T_{\mu_{i}}\right)_{\#} \rho$.
\longrightarrow Simple expression once the transport maps $T_{\mu_{i}}: \rho \rightarrow \mu_{i}$ have been computed.
coeff $=[0.8,0.2]$

What amount of the Wasserstein geometry is preserved by the embedding $\mu \mapsto T_{\mu}$?

Motivation 3: numerical analysis of optimal transport

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$, $\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left([0,1]^{d}\right)$:

- Approximate μ by a discrete measure, for instance

$$
\mu_{k}=\sum_{i_{1} \leq \ldots \leq i_{k}} \mu\left(B_{i_{1}, \ldots, i_{k}}\right) \delta_{\left(i_{1} / k, \ldots, i_{k} / k\right)}
$$

where $B_{i_{1}, \ldots, i_{k}}$ is the cube $\left[\left(i_{1}-1\right) / k, i_{1} / k\right] \times \ldots\left[\left(i_{d}-1\right) / k, i_{d} / k\right]$

Motivation 3: numerical analysis of optimal transport

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$, $\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left([0,1]^{d}\right)$:

- Approximate μ by a discrete measure, for instance

$$
\mu_{k}=\sum_{i_{1} \leq \ldots \leq i_{k}} \mu\left(B_{i_{1}, \ldots, i_{k}}\right) \delta_{\left(i_{1} / k, \ldots, i_{k} / k\right)}
$$

where $B_{i_{1}, \ldots, i_{k}}$ is the cube $\left[\left(i_{1}-1\right) / k, i_{1} / k\right] \times \ldots\left[\left(i_{d}-1\right) / k, i_{d} / k\right]$
(Then, $\mathrm{W}_{p}\left(\mu_{k}, \mu\right) \lesssim \frac{1}{k}$.)

Motivation 3: numerical analysis of optimal transport

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}{ }^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$,
$\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left([0,1]^{d}\right)$:

- Approximate μ by a discrete measure, for instance

$$
\mu_{k}=\sum_{i_{1} \leq \ldots \leq i_{k}} \mu\left(B_{i_{1}, \ldots, i_{k}}\right) \delta_{\left(i_{1} / k, \ldots, i_{k} / k\right)}
$$

where $B_{i_{1}, \ldots, i_{k}}$ is the cube $\left[\left(i_{1}-1\right) / k, i_{1} / k\right] \times \ldots\left[\left(i_{d}-1\right) / k, i_{d} / k\right]$
(Then, $\mathrm{W}_{p}\left(\mu_{k}, \mu\right) \lesssim \frac{1}{k}$.)

- Compute exactly the optimal transport plan $T_{\mu_{k}}$ between ρ and μ_{k}, (using a semi-discrete optimal transport solver).

Motivation 3: numerical analysis of optimal transport

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}{ }^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left(\mathbb{R}^{d}\right)$, $\exists!\rho$-a.e. $T_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\mu \#} \rho=\mu$ and $T_{\mu}=\nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\mu \in \operatorname{Prob}\left([0,1]^{d}\right)$:

- Approximate μ by a discrete measure, for instance

$$
\mu_{k}=\sum_{i_{1} \leq \ldots \leq i_{k}} \mu\left(B_{i_{1}, \ldots, i_{k}}\right) \delta_{\left(i_{1} / k, \ldots, i_{k} / k\right)}
$$

where $B_{i_{1}, \ldots, i_{k}}$ is the cube $\left[\left(i_{1}-1\right) / k, i_{1} / k\right] \times \ldots\left[\left(i_{d}-1\right) / k, i_{d} / k\right]$
(Then, $\mathrm{W}_{p}\left(\mu_{k}, \mu\right) \lesssim \frac{1}{k}$.)

- Compute exactly the optimal transport plan $T_{\mu_{k}}$ between ρ and μ_{k}, (using a semi-discrete optimal transport solver).

It is know that $T_{\mu_{k}}$ converges to T_{μ} but convergence rates are unknown in general...

2. Continuity of $\mu \mapsto T_{\mu}$.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\# \rho} \in \Gamma(\mu, \nu)$.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\#} \rho \in \Gamma(\mu, \nu)$. Thus, $\mathrm{W}_{2}^{2}(\mu, \nu) \leq \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y)=\int\left\|T_{\mu}(x)-T_{\nu}(x)\right\|^{2} \mathrm{~d} \rho(x)$.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\# \rho} \in \Gamma(\mu, \nu)$.
Thus, $\mathrm{W}_{2}^{2}(\mu, \nu) \leq \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y)=\int\left\|T_{\mu}(x)-T_{\nu}(x)\right\|^{2} \mathrm{~d} \rho(x)$.

- The map $\mu \mapsto T_{\mu}$ is continuous.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\# \rho} \in \Gamma(\mu, \nu)$.
Thus, $\mathrm{W}_{2}^{2}(\mu, \nu) \leq \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y)=\int\left\|T_{\mu}(x)-T_{\nu}(x)\right\|^{2} \mathrm{~d} \rho(x)$.

- The map $\mu \mapsto T_{\mu}$ is continuous.
- The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$-Hölder.

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\#} \rho \in \Gamma(\mu, \nu)$.

$$
\text { Thus, } \mathrm{W}_{2}^{2}(\mu, \nu) \leq \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y)=\int\left\|T_{\mu}(x)-T_{\nu}(x)\right\|^{2} \mathrm{~d} \rho(x) \text {. }
$$

- The map $\mu \mapsto T_{\mu}$ is continuous.
- The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$-Hölder.

Take $\rho=\frac{1}{\pi} \operatorname{Leb}_{\mathrm{B}(0,1)}$ on \mathbb{R}^{2}, and define $\mu_{\theta}=\frac{\delta_{x_{\theta}}+\delta_{x_{\theta+\pi}}}{2}$, with $x_{\theta}=(\cos (\theta), \sin (\theta))$.
Then $T_{\mu_{\theta}}(x)=\left\{\begin{array}{ll}x_{\theta} & \left\langle x_{\theta} \mid x\right\rangle \geq 0 \\ x_{\theta+\pi} & \text { if not }\end{array}\right.$,

Elementary remarks

- The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)} \geq \mathrm{W}_{2}(\mu, \nu)$.

Indeed: since $T_{\mu \#} \rho=\mu$ and $T_{\nu \#} \rho=\nu$, one has $\gamma:=\left(T_{\mu}, T_{\nu}\right)_{\# \rho} \in \Gamma(\mu, \nu)$.
Thus, $\mathrm{W}_{2}^{2}(\mu, \nu) \leq \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y)=\int\left\|T_{\mu}(x)-T_{\nu}(x)\right\|^{2} \mathrm{~d} \rho(x)$.

- The map $\mu \mapsto T_{\mu}$ is continuous.
- The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$-Hölder.

Take $\rho=\frac{1}{\pi} \operatorname{Leb}_{\mathrm{B}(0,1)}$ on \mathbb{R}^{2}, and define $\mu_{\theta}=\frac{\delta_{x_{\theta}}+\delta_{x_{\theta+\pi}}}{2}$, with $x_{\theta}=(\cos (\theta), \sin (\theta))$.
Then $T_{\mu_{\theta}}(x)=\left\{\begin{array}{ll}x_{\theta} & \left\langle x_{\theta} \mid x\right\rangle \geq 0 \\ x_{\theta+\pi} & \text { if not }\end{array}, \quad\right.$ so that $\left\|T_{\mu_{\theta}}-T_{\mu_{\theta+\delta}}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \geq C \delta$

Since on the other hand, $\mathrm{W}_{2}\left(\mu_{\theta}, \mu_{\theta+\delta}\right) \leq C \delta$,

$$
\left\|T_{\mu_{\theta}}-T_{\mu_{\theta+\delta}}\right\|_{\mathrm{L}^{2}(\rho)} \geq C \mathrm{~W}_{2}\left(\mu_{\theta}, \mu_{\theta+\delta}\right)^{1 / 2}
$$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\text {ac }}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\text {ac }}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.

$$
\psi_{\mu}: Y \rightarrow \mathbb{R} \text { its Legendre transform: } \quad \psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)
$$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)$
Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)$
Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.
- Prop \Longrightarrow Thm: Follows from Kantorovich-Rubinstein duality,

$$
\int f \mathrm{~d}(\mu-\nu) \leq \operatorname{Lip}(f) \mathrm{W}_{1}(\mu, \nu) .
$$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)$
Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.
■ $\int \psi_{\nu} \mathrm{d}(\mu-\nu)=\int \psi_{\nu} \mathrm{d}\left(\nabla \phi_{\mu \#} \rho-\nabla \phi_{\nu \#} \rho\right)=\int \psi_{\nu}\left(\nabla \phi_{\mu}\right)-\psi_{\nu}\left(\nabla \phi_{\nu}\right) \mathrm{d} \rho$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform:

$$
\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)
$$

Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.
■ $\int \psi_{\nu} \mathrm{d}(\mu-\nu)=\int \psi_{\nu} \mathrm{d}\left(\nabla \phi_{\mu \#} \rho-\nabla \phi_{\nu \#} \rho\right)=\int \psi_{\nu}\left(\nabla \phi_{\mu}\right)-\psi_{\nu}\left(\nabla \phi_{\nu}\right) \mathrm{d} \rho$
(convexity: $\left.\psi_{\nu}(y)-\psi_{\nu}(x) \geq\left\langle y-x \mid \nabla \psi_{\nu}(x)\right\rangle\right) \quad \geq \int\left\langle\nabla \psi_{\mu}-\nabla \psi_{\nu} \mid \nabla \psi_{\nu}\left(\nabla \phi_{\nu}\right)\right\rangle \mathrm{d} \rho$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform:

$$
\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)
$$

Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.
■ $\int \psi_{\nu} \mathrm{d}(\mu-\nu)=\int \psi_{\nu} \mathrm{d}\left(\nabla \phi_{\mu \#} \rho-\nabla \phi_{\nu \#} \rho\right)=\int \psi_{\nu}\left(\nabla \phi_{\mu}\right)-\psi_{\nu}\left(\nabla \phi_{\nu}\right) \mathrm{d} \rho$
(convexity: $\left.\psi_{\nu}(y)-\psi_{\nu}(x) \geq\left\langle y-x \mid \nabla \psi_{\nu}(x)\right\rangle\right) \quad \geq \int\left\langle\nabla \psi_{\mu}-\nabla \psi_{\nu} \mid \nabla \psi_{\nu}\left(\nabla \phi_{\nu}\right)\right\rangle \mathrm{d} \rho$ $=\int\left\langle\nabla \psi_{\mu}-\nabla \psi_{\nu} \mid \mathrm{id}\right\rangle \mathrm{d} \rho$

Local $\frac{1}{2}$-Hölder continuity

Thm: Assume $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^{d}$ compact If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{2}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)$ with $C=4 L \operatorname{diam}(X)$.
$-\simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

- No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu}: X \rightarrow \mathbb{R}$ convex s.t. $T_{\mu}=\nabla \phi_{\mu}$.
$\psi_{\mu}: Y \rightarrow \mathbb{R}$ its Legendre transform:

$$
\psi_{\mu}(y)=\max _{x \in X}\langle x \mid y\rangle-\phi_{\mu}(x)
$$

Prop: If T_{μ} is L-Lipschitz, then $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq-2 L \int\left(\psi_{\mu}-\psi_{\nu}\right) \mathrm{d}(\mu-\nu)$.
■ $\int \psi_{\nu} \mathrm{d}(\mu-\nu)=\int \psi_{\nu} \mathrm{d}\left(\nabla \phi_{\mu \#} \rho-\nabla \phi_{\nu \#} \rho\right)=\int \psi_{\nu}\left(\nabla \phi_{\mu}\right)-\psi_{\nu}\left(\nabla \phi_{\nu}\right) \mathrm{d} \rho$
(convexity: $\left.\psi_{\nu}(y)-\psi_{\nu}(x) \geq\left\langle y-x \mid \nabla \psi_{\nu}(x)\right\rangle\right) \quad \geq \int\left\langle\nabla \psi_{\mu}-\nabla \psi_{\nu} \mid \nabla \psi_{\nu}\left(\nabla \phi_{\nu}\right)\right\rangle \mathrm{d} \rho$

$$
=\int\left\langle\nabla \psi_{\mu}-\nabla \psi_{\nu} \mid \mathrm{id}\right\rangle \mathrm{d} \rho
$$

■ $\int \psi_{\mu} \mathrm{d}(\nu-\mu) \geq \int\left\langle\nabla \psi_{\nu}-\nabla \psi_{\mu} \mid \mathrm{id}\right\rangle \mathrm{d} \rho+\frac{L}{2}\left\|\nabla \phi_{\mu}-\nabla \phi_{\nu}\right\|_{L^{2}(\rho)}$

$$
\left(T_{\mu}=\nabla \phi_{\mu} L \text {-Lipschitz } \Longleftrightarrow \psi_{\mu}=\phi_{\mu}^{*} \text { is } L \text {-strongly convex }\right)
$$

Global Hölder continuity

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact.
Then, $\left\\|\nabla \psi_{\mu}-\nabla \psi_{\nu}\right\\|_{\mathrm{L}^{2}(Y)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha=\frac{1}{2^{d-1}}$

$12-1$

Global Hölder continuity

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact.
Then, $\left\\|\nabla \psi_{\mu}-\nabla \psi_{\nu}\right\\|_{\mathrm{L}^{2}(Y)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha=\frac{1}{2^{d-1}}$

Corollary: $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha=\frac{1}{2^{d-1}(d+2)}$

Global Hölder continuity

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\left\|\nabla \psi_{\mu}-\nabla \psi_{\nu}\right\|_{\mathrm{L}^{2}(Y)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha=\frac{1}{2^{d-1}}$

Corollary: $\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha=\frac{1}{2^{d-1}(d+2)}$

- The Hölder exponent is terrible, but inequality holds without assumptions on μ, ν !

Global Hölder continuity

```
Thm (Berman, '18): Let \(\rho \in \operatorname{Prob}^{\mathrm{ac}}(X)\) and \(\mu, \nu \in \operatorname{Prob}(Y)\) with \(X, Y\) compact. Then, \(\left\|\nabla \psi_{\mu}-\nabla \psi_{\nu}\right\|_{\mathrm{L}^{2}(Y)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha}\) with \(\alpha=\frac{1}{2^{d-1}}\)
```

$$
\text { Corollary: }\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(\rho)}^{2} \leq C \mathrm{~W}_{1}(\mu, \nu)^{\alpha} \text { with } \alpha=\frac{1}{2^{d-1}(d+2)}
$$

- The Hölder exponent is terrible, but inequality holds without assumptions on μ, ν !
- Proof of Berman's theorem relies on techniques from complex geometry.

2. Global, dimension-independent, Hölder-continuity of $\mu \mapsto T_{\mu}$.

Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}(\mu, \nu)^{1 / 5} .
$$

Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}(\mu, \nu)^{1 / 5} .
$$

- First global and dimension-independent stability result for optimal transport maps.

Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}(\mu, \nu)^{1 / 5}
$$

- First global and dimension-independent stability result for optimal transport maps.
- Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5}<\frac{1}{2}$.

The exponent $\frac{1}{5}$ is certainly not optimal...

Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}(\mu, \nu)^{1 / 5} .
$$

- First global and dimension-independent stability result for optimal transport maps.
- Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5}<\frac{1}{2}$.

The exponent $\frac{1}{5}$ is certainly not optimal...

- The constant $C(X, Y) \lesssim \operatorname{diam}(X)^{d+1} \operatorname{diam}(Y)$.

Main theorem

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu}-T_{\nu}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}(\mu, \nu)^{1 / 5} .
$$

- First global and dimension-independent stability result for optimal transport maps.
- Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5}<\frac{1}{2}$.

The exponent $\frac{1}{5}$ is certainly not optimal...

- The constant $C(X, Y) \lesssim \operatorname{diam}(X)^{d+1} \operatorname{diam}(Y)$.
- Proof relies on the semidiscrete setting, i.e. the bound is established in the case

$$
\mu=\sum_{i} \mu_{i} \delta_{y_{i}}, \nu=\sum_{i} \nu_{i} \delta_{y_{i}} .
$$

and one concludes using a density argument.

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\mathcal{T}(\rho, \mu)=\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y)
$$

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{aligned}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid \cdot\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu
\end{aligned}
$$

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{array}{rlrl}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) & & \text { Kantorovich duality } \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu & & \text { Legendre-Fenchel transform: } \\
& =\min _{\psi} \int \psi^{*} \mathrm{~d} \rho+\int \psi \mathrm{d} \mu & \psi^{*}(x)=\max _{y}\langle x \mid y\rangle-\psi(y)
\end{array}
$$

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{aligned}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid \cdot\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu
\end{aligned}
$$

Legendre-Fenchel transform:

$$
=\min _{\psi} \int \psi^{*} \mathrm{~d} \rho+\int \psi \mathrm{d} \mu
$$

$$
\psi^{*}(x)=\max _{y}\langle x \mid y\rangle-\psi(y)
$$

- Let $\mu=\sum_{1 \leq i \leq N} \mu_{i} \delta_{y_{i}}$ and $\psi_{i}=\psi\left(y_{i}\right)$.
$\dot{g}_{2} \quad \dot{g}_{1}$
${ }_{6}^{1}$

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{array}{rlr}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) & \text { Kantorovich duality } \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu & \\
& =\min _{\psi} \int \psi^{*} \mathrm{~d} \rho+\int \psi \mathrm{d} \mu & \text { Legendre-Fenchel transform: } \\
\psi^{*}(x)=\max _{y}\langle x \mid y\rangle-\psi(y)
\end{array}
$$

- Let $\mu=\sum_{1 \leq i \leq N} \mu_{i} \delta_{y_{i}}$ and $\psi_{i}=\psi\left(y_{i}\right)$. Then, $\left.\psi^{*}\right|_{V_{i}(\psi)}:=\left\langle\cdot \mid y_{i}\right\rangle-\psi_{i}$ where

$$
V_{i}(\psi)=\left\{x \mid \forall j,\left\langle x \mid y_{i}\right\rangle-\psi_{i} \geq\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}
$$

Semidiscrete OT for $c(x, y)=-\langle x \mid y\rangle$

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\text {ac }}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{aligned}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid \cdot\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu \\
& =\min _{\psi} \int \psi^{*} \mathrm{~d} \rho+\int \psi \mathrm{d} \mu
\end{aligned}
$$

$$
\psi^{*}(x)=\max _{y}\langle x \mid y\rangle-\psi(y)
$$

Legendre-Fenchel transform:

- Let $\mu=\sum_{1 \leq i \leq N} \mu_{i} \delta_{y_{i}}$ and $\psi_{i}=\psi\left(y_{i}\right)$. Then, $\left.\psi^{*}\right|_{V_{i}(\psi)}:=\left\langle\cdot \mid y_{i}\right\rangle-\psi_{i}$ where

$$
V_{i}(\psi)=\left\{x \mid \forall j,\left\langle x \mid y_{i}\right\rangle-\psi_{i} \geq\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}
$$

Kantorovich duality

Thus, $\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)+\sum_{i} \mu_{i} \psi_{i}$

Optimality condition and economic interpretation

$$
\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle, \text { where: } \quad \Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

Optimality condition and economic interpretation

$$
\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle, \text { where: } \quad \Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where: $\quad \Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N}
$$

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types \longrightarrow given prices $\psi \in \mathbb{R}^{N}$, a customer x maximizes $\left\langle x \mid y_{i}\right\rangle-\psi_{i}$ over all products.

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$.
$\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types \longrightarrow given prices $\psi \in \mathbb{R}^{N}$, a customer x maximizes $\left\langle x \mid y_{i}\right\rangle-\psi_{i}$ over all products. $\longrightarrow V_{i}(\psi)=\left\{x \mid i \in \arg \max _{j}\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}=$ customers choosing product y_{i}.

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$. $\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types \longrightarrow given prices $\psi \in \mathbb{R}^{N}$, a customer x maximizes $\left\langle x \mid y_{i}\right\rangle-\psi_{i}$ over all products. $\longrightarrow V_{i}(\psi)=\left\{x \mid i \in \arg \max _{j}\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}=$ customers choosing product y_{i}. $\longrightarrow G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho=$ amount of customers for product y_{i}.

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$. $\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types \longrightarrow given prices $\psi \in \mathbb{R}^{N}$, a customer x maximizes $\left\langle x \mid y_{i}\right\rangle-\psi_{i}$ over all products. $\longrightarrow V_{i}(\psi)=\left\{x \mid i \in \arg \max _{j}\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}=$ customers choosing product y_{i}. $\longrightarrow G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho=$ amount of customers for product y_{i}.
Optimal transport $=$ finding prices satisfying capacity constraints $G_{i}(\psi)=\mu_{i}$.

Optimality condition and economic interpretation

$\mathcal{T}(\rho, \mu)=\min _{\psi \in \mathbb{R}^{N}} \Phi(\psi)+\langle\mu \mid \psi\rangle$, where:

$$
\Phi(\psi):=\sum_{i} \int_{V_{i}(\psi)}\left\langle x \mid y_{i}\right\rangle-\psi_{i} \mathrm{~d} \rho(x)
$$

- Gradient: $\nabla \Phi(\psi)=-\left(G_{i}(\psi)\right)_{1 \leq i \leq N}$ where $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho$. $\psi \in \mathbb{R}^{N}$ minimizes $\Phi+\langle\mu \mid \cdot\rangle \Longleftrightarrow \nabla \Phi(\psi)=-\mu$

$$
\begin{aligned}
& \Longleftrightarrow G(\psi)=\mu \text { with } G=\left(G_{1}, \ldots, G_{N}\right), \mu \in \mathbb{R}^{N} \\
& \Longleftrightarrow T=\nabla \psi^{*} \text { transports } \rho \text { onto } \sum_{i} \mu_{i} \delta_{y_{i}}
\end{aligned}
$$

- Economic interpretation: $\rho=$ density of customers, $\left\{y_{i}\right\}_{1 \leq i \leq N}=$ product types \longrightarrow given prices $\psi \in \mathbb{R}^{N}$, a customer x maximizes $\left\langle x \mid y_{i}\right\rangle-\psi_{i}$ over all products. $\longrightarrow V_{i}(\psi)=\left\{x \mid i \in \arg \max _{j}\left\langle x \mid y_{j}\right\rangle-\psi_{j}\right\}=$ customers choosing product y_{i}. $\longrightarrow G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho=$ amount of customers for product y_{i}.
Optimal transport $=$ finding prices satisfying capacity constraints $G_{i}(\psi)=\mu_{i}$.
- Hölder-stability of optimal transport maps \simeq strong concavity of Φ.

Hessian of Φ and strong convexity

(Recall that $\left.G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi\right)$
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{aligned}
\forall i \neq j, & \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)=\frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
\forall i, & \frac{\partial G_{i}}{\partial \psi_{i}}(\psi)=-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)
\end{aligned}
$$

$17-1$

Hessian of Φ and strong convexity

(Recall that $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi$)
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{aligned}
& \forall i \neq j, \quad \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)=\frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
& \forall i, \quad \frac{\partial G_{i}}{\partial \psi_{i}}(\psi)=-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)
\end{aligned}
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

$17-2$

Hessian of Φ and strong convexity

(Recall that $G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi$)
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\left.\begin{array}{rl}
\forall i \neq j, & \frac{\partial G_{i}}{\partial \psi_{j}}(\psi) \\
\forall i, & \frac{1}{\left\|G_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \partial(\psi)
\end{array}\right)=-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) .
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

NB: if $V_{i}(\psi)=\emptyset$, then $\mathbf{1}_{\left\{y_{i}\right\}} \in \operatorname{Ker}\left(\mathrm{D}^{2} \Phi(\psi)\right)$
$17-3$

Hessian of Φ and strong convexity

(Recall that $\left.G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi\right)$
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{aligned}
& \forall i \neq j, \quad \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)=\frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
& \forall i, \quad \frac{\partial G_{i}}{\partial \psi_{i}}(\psi)=-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)
\end{aligned}
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

NB: if $V_{i}(\psi)=\emptyset$, then $\mathbf{1}_{\left\{y_{i}\right\}} \in \operatorname{Ker}\left(\mathrm{D}^{2} \Phi(\psi)\right)$
Proof:

- Consider the matrix $L=D G(\psi)$ and the graph H :

$$
(i, j) \in H \Longleftrightarrow L_{i j}>0
$$

17-4

Hessian of Φ and strong convexity

(Recall that $\left.G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi\right)$
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{aligned}
\forall i \neq j, & \frac{\partial G_{i}}{\partial \psi_{j}}(\psi) \\
\forall i, & \frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
\partial \psi_{i} & =-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)
\end{aligned}
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

NB: if $V_{i}(\psi)=\emptyset$, then $\mathbf{1}_{\left\{y_{i}\right\}} \in \operatorname{Ker}\left(\mathrm{D}^{2} \Phi(\psi)\right)$

Proof:

- Consider the matrix $L=D G(\psi)$ and the graph H :

$$
(i, j) \in H \Longleftrightarrow L_{i j}>0
$$

- If Ω is connected and $\psi \in E$, then H is connected

Hessian of Φ and strong convexity

(Recall that $\left.G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi\right)$
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\left.\begin{array}{rl}
\forall i \neq j, & \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)=\frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
\forall i, & \frac{\partial G_{i}}{\partial \psi_{i}}(\psi)
\end{array}\right)-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi) \text {. }
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

NB: if $V_{i}(\psi)=\emptyset$, then $\mathbf{1}_{\left\{y_{i}\right\}} \in \operatorname{Ker}\left(\mathrm{D}^{2} \Phi(\psi)\right)$

Proof:

- Consider the matrix $L=D G(\psi)$ and the graph H :

$$
(i, j) \in H \Longleftrightarrow L_{i j}>0
$$

- If Ω is connected and $\psi \in E$, then H is connected
- L is the Laplacian of a connected graph $\Longrightarrow \operatorname{Ker} L=\mathbb{R} \cdot \mathrm{cst}$
$17-6$

Hessian of Φ and strong convexity

(Recall that $\left.G_{i}(\psi)=\int_{V_{i}(\psi)} \mathrm{d} \rho, \nabla \Phi=-\left(G_{1}, \ldots, G_{N}\right), \mathrm{D} G=-\mathrm{D}^{2} \Phi\right)$
Proposition: If $\rho \in \mathcal{C}^{0}(X)$ and $\left(y_{i}\right)_{1 \leq i \leq N}$ is generic, then $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{N}\right)$ and

$$
\left.\begin{array}{rl}
\forall i \neq j, & \frac{\partial G_{i}}{\partial \psi_{j}}(\psi)=\frac{1}{\left\|y_{i}-y_{j}\right\|} \int_{\Gamma_{i j}(\psi)} \rho(x) \mathrm{d} x \text { where } \Gamma_{i j}=V_{i}(\psi) \cap V_{j}(\psi) . \\
\forall i, & \frac{\partial G_{i}}{\partial \psi_{i}}(\psi)
\end{array}\right)-\sum_{j \neq i} \frac{\partial G_{i}}{\partial \psi_{j}}(\psi) \text {. }
$$

- If $\Omega=\{\rho>0\}$ is connected and $\forall i, G_{i}(\psi)>0$, then $\operatorname{Ker}(\mathrm{D} G(\psi))=\mathbb{R}(1, \ldots, 1)$.

NB: if $V_{i}(\psi)=\emptyset$, then $\mathbf{1}_{\left\{y_{i}\right\}} \in \operatorname{Ker}\left(\mathrm{D}^{2} \Phi(\psi)\right)$

Proof:

- Consider the matrix $L=D G(\psi)$ and the graph H :

$$
(i, j) \in H \Longleftrightarrow L_{i j}>0
$$

- If Ω is connected and $\psi \in E$, then H is connected
- L is the Laplacian of a connected graph $\Longrightarrow \operatorname{Ker} L=\mathbb{R} \cdot$ cst

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$. Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

a) Control of the eigengap: $\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \leq-C(X)\|v\|_{\mathrm{L}^{2}\left(\mu_{t}\right)}^{2}$ if $\int v \mathrm{~d} \mu_{t}=0$. with $\mu^{t}=G\left(\psi^{t}\right) \longrightarrow[$ Eymard, Gallouët, Herbin '00].

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

a) Control of the eigengap: $\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \leq-C(X)\|v\|_{\mathrm{L}^{2}\left(\mu_{t}\right)}^{2}$ if $\int v \mathrm{~d} \mu_{t}=0$. with $\mu^{t}=G\left(\psi^{t}\right) \longrightarrow$ [Eymard, Gallouët, Herbin '00].
b) Control of μ_{t} : Brunn-Minkowski's inequality implies $\mu^{t} \geq(1-t)^{d} \mu^{0}$.

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

a) Control of the eigengap: $\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \leq-C(X)\|v\|_{\mathrm{L}^{2}\left(\mu_{t}\right)}^{2}$ if $\int v \mathrm{~d} \mu_{t}=0$. with $\mu^{t}=G\left(\psi^{t}\right) \longrightarrow$ [Eymard, Gallouët, Herbin '00].
b) Control of μ_{t} : Brunn-Minkowski's inequality implies $\mu^{t} \geq(1-t)^{d} \mu^{0}$.

Combining a) and b) we get $\left\|\psi^{1}-\psi^{0}\right\|_{\mathrm{L}^{2}\left(\mu^{0}\right)}^{2} \lesssim\left|\left\langle\mu^{1}-\mu^{0} \mid \psi^{1}-\psi^{0}\right\rangle\right|$

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

a) Control of the eigengap: $\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \leq-C(X)\|v\|_{\mathrm{L}^{2}\left(\mu_{t}\right)}^{2}$ if $\int v \mathrm{~d} \mu_{t}=0$. with $\mu^{t}=G\left(\psi^{t}\right) \longrightarrow$ [Eymard, Gallouët, Herbin '00].
b) Control of μ_{t} : Brunn-Minkowski's inequality implies $\mu^{t} \geq(1-t)^{d} \mu^{0}$.

Combining a) and b) we get $\left\|\psi^{1}-\psi^{0}\right\|_{\mathrm{L}^{2}\left(\mu^{0}\right)}^{2} \lesssim\left|\left\langle\mu^{1}-\mu^{0} \mid \psi^{1}-\psi^{0}\right\rangle\right|$
Then, by Kantorovich-Rubinstein, $\leq \operatorname{Lip}\left(\psi^{1}-\psi^{0}\right) \mathrm{W}_{1}\left(\mu^{0}, \mu_{1}\right)$

Proof ingredients

Thm (M., Delalande, Chazal '19): Let X convex compact with $|X|=1$ and $\rho=\operatorname{Leb}_{X}$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^{0}, \mu^{1} \in \operatorname{Prob}(Y)$,

$$
\left\|T_{\mu_{1}}-T_{\mu_{0}}\right\|_{\mathrm{L}^{2}(X)} \leq C \mathrm{~W}_{2}\left(\mu_{1}, \mu_{0}\right)^{1 / 5} .
$$

- Strategy of proof: let $\mu^{k}=\sum_{i} \mu_{i}^{k} \delta_{y_{i}}$ for $k \in\{0,1\}$, assume all $\mu_{i}^{k}>0$.

Consider $\psi^{k} \in \mathbb{R}^{Y}$ s.t. $G\left(\psi^{k}\right)=\mu^{k}$, and $\psi^{t}=\psi^{0}+t v$ with $v=\psi^{1}-\psi^{0}$. Then,

$$
\left\langle\mu^{1}-\mu^{0} \mid v\right\rangle=\left\langle G\left(\psi^{1}\right)-G\left(\psi^{0}\right) \mid v\right\rangle=\int_{0}^{1}\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \mathrm{d} t
$$

a) Control of the eigengap: $\left\langle\mathrm{D} G\left(\psi^{t}\right) v \mid v\right\rangle \leq-C(X)\|v\|_{\mathrm{L}^{2}\left(\mu_{t}\right)}^{2}$ if $\int v \mathrm{~d} \mu_{t}=0$. with $\mu^{t}=G\left(\psi^{t}\right) \longrightarrow$ [Eymard, Gallouët, Herbin '00].
b) Control of μ_{t} : Brunn-Minkowski's inequality implies $\mu^{t} \geq(1-t)^{d} \mu^{0}$.

Combining a) and b) we get $\left\|\psi^{1}-\psi^{0}\right\|_{\mathrm{L}^{2}\left(\mu^{0}\right)}^{2} \lesssim\left|\left\langle\mu^{1}-\mu^{0} \mid \psi^{1}-\psi^{0}\right\rangle\right|$
Then, by Kantorovich-Rubinstein,

$$
\begin{aligned}
& \leq \operatorname{Lip}\left(\psi^{1}-\psi^{0}\right) \mathrm{W}_{1}\left(\mu^{0}, \mu_{1}\right) \\
& \lesssim \mathrm{W}_{2}\left(\mu^{0}, \mu^{1}\right)
\end{aligned}
$$

- We lose a little in the exponent to control the difference between OT maps...

A toy application

Example: k-Means for MNIST digits

MNIST has $M=60000$ images grayscale images (64×64 pixels) representing digits.

Example: k-Means for MNIST digits

MNIST has $M=60000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^{2}$ via

$$
\mu^{\ell}=\frac{1}{\sum_{i, j} \alpha_{i j}^{\ell}} \sum_{i, j} \alpha_{i, j}^{\ell} \delta_{\left(x_{i}, x_{j}\right)}, \quad \text { with } x_{i}=\frac{i}{63}
$$

Example: k-Means for MNIST digits

MNIST has $M=60000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^{2}$ via

$$
\begin{aligned}
\mu^{\ell} & =\frac{1}{\sum_{i, j} \alpha_{i j}^{\ell}} \sum_{i, j} \alpha_{i, j}^{\ell} \delta_{\left(x_{i}, x_{j}\right)}, \quad \text { with } x_{i}=\frac{i}{63} \\
T^{\ell} & =T_{\mu^{\ell}} \in \mathrm{L}^{2}\left([0,1], \mathbb{R}^{2}\right) \quad\left[\text { OT map from } \rho=\operatorname{Leb}_{[0,1]^{2}} \text { to } \mu^{\ell}\right]
\end{aligned}
$$

Example: k-Means for MNIST digits

MNIST has $M=60000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^{2}$ via

$$
\begin{aligned}
\mu^{\ell} & =\frac{1}{\sum_{i, j} \alpha_{i j}^{\ell}} \sum_{i, j} \alpha_{i, j}^{\ell} \delta_{\left(x_{i}, x_{j}\right)}, \quad \text { with } x_{i}=\frac{i}{63} \\
T^{\ell} & =T_{\mu^{\ell}} \in \mathrm{L}^{2}\left([0,1], \mathbb{R}^{2}\right) \quad\left[\text { OT map from } \rho=\operatorname{Leb}_{[0,1]^{2}} \text { to } \mu^{\ell}\right]
\end{aligned}
$$

We run the K-Means method on the transport plans, with $K=20$.
Each cluster $X^{k} \subseteq\{0, \ldots, M\}$ yields an average transport plan $S^{k}=\frac{1}{\left|X^{k}\right|} \sum_{\ell \in X} T^{\ell}$,

Example: k-Means for MNIST digits

MNIST has $M=60000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0,1]^{2}$ via

$$
\begin{aligned}
\mu^{\ell} & =\frac{1}{\sum_{i, j} \alpha_{i j}^{\ell}} \sum_{i, j} \alpha_{i, j}^{\ell} \delta_{\left(x_{i}, x_{j}\right)}, \quad \text { with } x_{i}=\frac{i}{63} \\
T^{\ell} & =T_{\mu^{\ell}} \in \mathrm{L}^{2}\left([0,1], \mathbb{R}^{2}\right) \quad\left[\text { OT map from } \rho=\operatorname{Leb}_{[0,1]^{2}} \text { to } \mu^{\ell}\right]
\end{aligned}
$$

We run the K-Means method on the transport plans, with $K=20$.
Each cluster $X^{k} \subseteq\{0, \ldots, M\}$ yields an average transport plan $S^{k}=\frac{1}{\left|X^{k}\right|} \sum_{\ell \in X} T^{\ell}$, and $S_{\#}^{k} \rho$ is the "reconstructed measure".

Summary

Optimal transport can be used to embed of $\operatorname{Prob}\left(\mathbb{R}^{d}\right)$ into $L^{2}\left(\rho, \mathbb{R}^{d}\right)$, with possible applications in data analysis. Computations can be easily performed using
https://github.com/sd-ot

Summary

Optimal transport can be used to embed of $\operatorname{Prob}\left(\mathbb{R}^{d}\right)$ into $\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)$, with possible applications in data analysis. Computations can be easily performed using
https://github.com/sd-ot

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_{2}, which has many open questions.

Summary

Optimal transport can be used to embed of $\operatorname{Prob}\left(\mathbb{R}^{d}\right)$ into $\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)$, with possible applications in data analysis. Computations can be easily performed using

```
https://github.com/sd-ot
```

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_{2}, which has many open questions.

Thank you for your attention!

Numerical example

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

$$
\psi_{0}=\frac{1}{2}\|\cdot\|^{2}
$$

Numerical example

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

NB: The points do not move.

Numerical example

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

Numerical example

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\mu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

$\psi_{0}=\frac{1}{2}\|\cdot\|^{2}$

$\psi_{1}=\operatorname{Newt}\left(\psi_{0}\right)$

$\psi_{2}=\operatorname{Newt}\left(\psi_{1}\right)$

NB: The points do not move.

Convergence is very fast when $\operatorname{spt}(\rho)$ convex: 17 Newton iterations for $N \geq 10^{7}$ in 3D.

Kantorovich duality

- Let $\rho, \nu \in \operatorname{Prob}_{1}^{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ and $\Gamma(\rho, \mu)=$ couplings between ρ, μ,

$$
\begin{array}{rlr}
\mathcal{T}(\rho, \mu) & =\max _{\gamma \in \Gamma(\rho, \mu)} \int\langle x \mid y\rangle \mathrm{d} \gamma(x, y) \\
& =\min _{\phi \oplus \psi \geq\langle\cdot \mid \cdot\rangle} \int \phi \mathrm{d} \rho+\int \psi \mathrm{d} \mu & \text { Kantorovich duality } \\
\end{array}
$$

Legendre-Fenchel transform:

$$
=\min _{\psi} \mathcal{K}(\psi)+\langle\psi \mid \mu\rangle
$$

$$
\psi^{*}(x)=\max _{y}\langle x \mid y\rangle-\psi(y)
$$

where $\mathcal{K}(\psi)=\int \psi^{*} \mathrm{~d} \rho$.

- Relation to the Brenier map.

Lemma: $\nabla \mathcal{K}(\psi)=\mu[\psi]$ where $\mu[\psi]=\left.\nabla \psi^{*}\right|_{\#} \rho$.
I.e. ψ minimizes $\mathcal{K}(\cdot)+\langle\cdot \mid \mu\rangle \Longleftrightarrow \mu[\psi]=\mu$
$\Longleftrightarrow T=\nabla \psi^{*}$ is the Brenier map between ρ and μ.

The quantitative continuity $\mu \mapsto \arg \min _{\psi} \mathcal{K}(\psi)+\langle\mu \mid \psi\rangle$ is related to the strong convexity of \mathcal{K}.

