Linearization of the Wasserstein space & quantitative stability of optimal transport maps

> Quentin Mérigot Université Paris-Sud 11

Based on joint work with F. Chazal and A. Delalande

Statistique et Informatique pour la Science des Données, Janvier 2020, IHÉS

1

1. Motivations

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with ρ = Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with $\rho = \text{Lebesgue}$ measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

• T_{μ} is the inverse cdf, also called *quantile function*.

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with ρ = Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

• T_{μ} is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting ?

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with ρ = Lebesgue measure on [0,1].

NB:
$$T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$

 $\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$

• T_{μ} is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with ρ = Lebesgue measure on [0,1].

$$\mathsf{NB:} \ T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$
$$\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$$

• T_{μ} is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with $\rho = \text{Lebesgue}$ measure on [0,1].

$$\mathsf{NB:} \ T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$
$$\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$$

• T_{μ} is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

► Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]

• T_{μ} is unique ρ -a.e. but the convex function ϕ_{μ} is not necessarily unique.

• Given $\mu \in \operatorname{Prob}(\mathbb{R})$, there exists a unique nondecreasing $T_{\mu} \in L^{1}([0,1])$ satisfying $T_{\mu \#} \rho = \mu$, with ρ = Lebesgue measure on [0,1].

$$\mathsf{NB:} \ T_{\mu\#}\lambda = \mu \iff \forall B \subseteq \mathbb{R}, \ \lambda(T_{\mu}^{-1}(B)) = \mu(B)$$
$$\iff \forall x \in \mathbb{R}, \ \lambda([0, T_{\mu}^{-1}(x)]) = \mu((-\infty, x])$$

• T_{μ} is the inverse cdf, also called *quantile function*.

How to extend this notion to a multivariate setting ?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

► Monge-Kantorovich quantile := T_{μ} . Need of a reference probability density ρ . [Cherzonukov, Galichon, Hallin, Henry, '15]

> T_{μ} is unique ρ -a.e. but the convex function ϕ_{μ} is not necessarily unique.

 $T_{\mu} : \operatorname{spt}(\rho) \to \mathbb{R}^d \text{ is monotone: } \langle T_{\mu}(x) - T_{\mu}(y) | x - y \rangle \ge 0.$

Numerical Example: Monge-Kantorovich Depth

Source: $\rho =$ uniform probability density on $B(0,1) \subseteq \mathbb{R}^2$

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with $N = 10^4$ points

"Monge-Kantorovich depth of y_i " $\simeq ||T_{\mu}^{-1}(y_i)||$.

[Cherzonukov, Galichon, Hallin, Henry]

Numerical Example: Monge-Kantorovich Depth

Source: $\rho =$ uniform probability density on $B(0,1) \subseteq \mathbb{R}^2$

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with $N = 10^4$ points

"Monge-Kantorovich depth of y_i " $\simeq ||T_{\mu}^{-1}(y_i)||$.

[Cherzonukov, Galichon, Hallin, Henry]

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \, \mathrm{d} \, \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \operatorname{d} \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

• On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu.$

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \operatorname{d} \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

• On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu.$

• On $\operatorname{Prob}(\mathbb{R})$, any *monotone* coupling γ between μ, ν is optimal in the def of W_p .

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \operatorname{d} \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu.$
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho$ with $\rho = \text{Lebesgue on } [0, 1]$ is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p \,\mathrm{d}\,t\right) = \|T_\mu - T_\nu\|_{\mathrm{L}^p([0,1])}$$

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \, \mathrm{d} \, \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu.$
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho$ with $\rho = \text{Lebesgue}$ on [0, 1] is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p \,\mathrm{d}\,t \right) = \|T_\mu - T_\nu\|_{\mathrm{L}^p([0,1])}$$

In particular, $(\operatorname{Prob}_p(\mathbb{R}), W_p)$ embeds isometrically in $L^p([0, 1])$!

• Let $\operatorname{Prob}_p(\mathbb{R}^d) = \{\mu \in \operatorname{Prob}(\mathbb{R}^d) \mid \int ||x||^p \, \mathrm{d}\, \mu < +\infty\}.$

p-Wasserstein distance between $\mu, \nu \in \operatorname{Prob}_p(\mathbb{R}^d)$: $W_p(\mu, \nu) = \left(\min_{\gamma \in \Gamma(\mu, \nu)} \|x - y\|^p \operatorname{d} \gamma(x, y)\right)^{1/p}.$ where $\Gamma(\mu, \nu) = \text{couplings between } \mu \text{ and } \nu \subseteq \operatorname{Prob}(\mathbb{R}^d \times \mathbb{R}^d).$

- On $\operatorname{Prob}(X)$, with $X \subseteq \mathbb{R}^d$ compact, W_p metrizes narrow convergence i.e. $\lim_{n \to +\infty} W_p(\mu_n, \mu) = 0 \iff \forall \phi \in \mathcal{C}^0(X), \lim_{n \to +\infty} \int \phi \, \mathrm{d} \, \mu_n = \int \phi \, \mathrm{d} \, \mu.$
- On $\operatorname{Prob}(\mathbb{R})$, any monotone coupling γ between μ, ν is optimal in the def of W_p . For instance $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho$ with $\rho = \text{Lebesgue}$ on [0, 1] is monotone, implying

$$W_p(\mu,\nu) = \left(\int_{[0,1]} \|T_\mu(t) - T_\nu(t)\|^p \,\mathrm{d}\,t \right) = \|T_\mu - T_\nu\|_{\mathrm{L}^p([0,1])}$$

In particular, $(\operatorname{Prob}_p(\mathbb{R}), W_p)$ embeds isometrically in $L^p([0, 1])$!

The previous embedding is false in higher dimension: $(Prob_p, W_p)$ is *curved*.

Motivation 2: "Linearization" of W_2

Motivation 2: "Linearization" of W_2

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_{μ} as the unique map satisfying (i) $T_{\mu} = \nabla \phi_{\mu}$ a.e. for some convex function $\phi_{\mu} : X \to \mathbb{R}$ and (ii) $T_{\mu \#} \rho = \mu$.

Motivation 2: "Linearization" of W_2

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_μ as the unique map satisfying (i) $T_\mu = \nabla \phi_\mu$ a.e. for some convex function $\phi_\mu : X \to \mathbb{R}$ and (ii) $T_{\mu \#} \rho = \mu$.

► The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.

Motivation 2: "Linearization" of $W_{\rm 2}$

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_μ as the unique map satisfying (i) $T_\mu = \nabla \phi_\mu$ a.e. for some convex function $\phi_\mu : X \to \mathbb{R}$ and (ii) $T_{\mu \#} \rho = \mu$.

The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.

$\bullet W_{2,\rho}(\mu,\nu) := \ T_{\mu} - T_{\nu}\ _{L^{2}(\rho)} -$	\rightarrow [Ambrosio,	Gigli,	Savaré	'04]
--	--------------------------	--------	--------	------

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$\mathrm{d}_g(x,y)$	${ m W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\operatorname{T}_{\rho}\operatorname{Prob}_{2}(\mathbb{R}^{d}) \subseteq \operatorname{L}^{2}(\rho, X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in \mathcal{T}_{\rho}M$	$T_{\mu} \in \mathcal{T}_{\rho} \operatorname{Prob}_2(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

Motivation 2: "Linearization" of $W_{\rm 2}$

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_μ as the unique map satisfying (i) $T_\mu = \nabla \phi_\mu$ a.e. for some convex function $\phi_\mu : X \to \mathbb{R}$ and (ii) $T_{\mu \#} \rho = \mu$.

► The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.

$ W_{2,\rho}(\mu,\nu) := \ T_{\mu} - T_{\nu}\ _{L^{2}(\rho)} $	\longrightarrow [Ambrosio, Gi	igli, Savaré '04]
--	---------------------------------	-------------------

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$\mathrm{d}_g(x,y)$	${ m W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\mathrm{T}_{\rho}\mathrm{Prob}_2(\mathbb{R}^d) \subseteq \mathrm{L}^2(\rho, X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in \mathcal{T}_{\rho}M$	$T_{\mu} \in \mathcal{T}_{\rho} \operatorname{Prob}_2(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

Used in image analysis \rightarrow [Wang, Slepcev, Basu, Ozolek, Rohde '13]

Motivation 2: "Linearization" of $W_{\rm 2}$

▶ We fix a reference measure, $\rho = \text{Leb}_X$ with $X \subseteq \mathbb{R}^d$ convex compact with |X| = 1.

Given $\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$, we define T_μ as the unique map satisfying (i) $T_\mu = \nabla \phi_\mu$ a.e. for some convex function $\phi_\mu : X \to \mathbb{R}$ and (ii) $T_{\mu \#} \rho = \mu$.

- ► The map $\mu \in \operatorname{Prob}_2(\mathbb{R}^d) \to T_\mu \in L^2(X)$ is an injective map, with image the space of (square-integrable) gradients of convex functions on X.
 - $\blacksquare W_{2,\rho}(\mu,\nu) := \|T_{\mu} T_{\nu}\|_{L^{2}(\rho)} \longrightarrow [Ambrosio, Gigli, Savaré '04]$

	Riemannian geometry	Optimal transport
point	$x \in M$	$\mu \in \operatorname{Prob}_2(\mathbb{R}^d)$
geodesic distance	$\mathrm{d}_g(x,y)$	${ m W}_2(\mu, u)$
tangent space	$\mathrm{T}_{ ho}M$	$\operatorname{T}_{\rho}\operatorname{Prob}_{2}(\mathbb{R}^{d}) \subseteq \operatorname{L}^{2}(\rho, X)$
inverse exponential map	$\exp_{\rho}^{-1}(x) \in \mathcal{T}_{\rho}M$	$T_{\mu} \in \mathcal{T}_{\rho} \operatorname{Prob}_2(X)$
distance in tangent space	$\ \exp_{\rho}^{-1}(x) - \exp_{\rho}^{-1}(y)\ _{g(x_0)}$	$ T_{\mu} - T_{\nu} _{\mathrm{L}^{2}(\rho)}$

Used in image analysis \longrightarrow [Wang, Slepcev, Basu, Ozolek, Rohde '13]

 \to Embedding family of probability measures by family of functions in $L^2(\rho)$. (nice feature: the image of the embedding, $\{T_{\mu} \mid \mu \in \operatorname{Prob}_2(\mathbb{R}^d)\}$, is convex!)

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i).$

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 < i < k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i).$

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

coeff = [0.2, 0.8]

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

 $\operatorname{spt}(\mu_0)$ $\operatorname{spt}(\mu_1)$

coeff = [0.4, 0.6]

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients α_i are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho$.

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

► Barycenter in Wasserstein space: $\mu_1, \ldots, \mu_k \in \operatorname{Prob}_2(\mathbb{R}^d)$, $\alpha_1, \ldots, \alpha_k \ge 0$: $\mu := \arg \min_{1 \le i \le k} \sum_{1 \le i \le k} \alpha_i \operatorname{W}_2^2(\mu, \mu_i)$.

 \longrightarrow Need to solve an optimisation problem every time the coefficients $lpha_i$ are changed.

► "Linearized" Wasserstein barycenters: $\mu := \left(\frac{1}{\sum_i \alpha_i} \sum_i \alpha_i T_{\mu_i}\right)_{\#} \rho.$

 \longrightarrow Simple expression once the transport maps $T_{\mu_i}: \rho \to \mu_i$ have been computed.

What amount of the Wasserstein geometry is preserved by the embedding $\mu \mapsto T_{\mu}$?

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

• Approximate μ by a discrete measure, for instance

 $\mu_{k} = \sum_{i_{1} \leq \dots \leq i_{k}} \mu(B_{i_{1},\dots,i_{k}}) \delta_{(i_{1}/k,\dots,i_{k}/k)}$

where $B_{i_1,...,i_k}$ is the cube $[(i_1 - 1)/k, i_1/k] \times ... [(i_d - 1)/k, i_d/k]$

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

• Approximate μ by a discrete measure, for instance

 $\mu_{k} = \sum_{i_{1} \leq \dots \leq i_{k}} \mu(B_{i_{1},\dots,i_{k}}) \delta_{(i_{1}/k,\dots,i_{k}/k)}$

where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k, i_1/k] \times ... [(i_d-1)/k, i_d/k]$ (Then, $W_p(\mu_k, \mu) \lesssim \frac{1}{k}$.)

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

• Approximate μ by a discrete measure, for instance

 $\mu_{k} = \sum_{i_{1} \leq \dots \leq i_{k}} \mu(B_{i_{1},\dots,i_{k}}) \delta_{(i_{1}/k,\dots,i_{k}/k)}$

where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k, i_1/k] \times ... [(i_d-1)/k, i_d/k]$ (Then, $W_p(\mu_k, \mu) \lesssim \frac{1}{k}$.)

Compute *exactly* the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

Theorem (Brenier, McCann) Given $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}(\mathbb{R}^d)$, $\exists ! \rho \text{-a.e. } T_{\mu} : \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\mu \#} \rho = \mu$ and $T_{\mu} = \nabla \phi$ with ϕ convex.

To solve numerically an OT problem between $\rho \in \operatorname{Prob}^{\operatorname{ac}}(\mathbb{R}^d)$ and $\mu \in \operatorname{Prob}([0,1]^d)$:

> Approximate μ by a discrete measure, for instance

 $\mu_{k} = \sum_{i_{1} \leq \dots \leq i_{k}} \mu(B_{i_{1},\dots,i_{k}}) \delta_{(i_{1}/k,\dots,i_{k}/k)}$

where $B_{i_1,...,i_k}$ is the cube $[(i_1-1)/k, i_1/k] \times ... [(i_d-1)/k, i_d/k]$ (Then, $W_p(\mu_k, \mu) \lesssim \frac{1}{k}$.)

Compute *exactly* the optimal transport plan T_{μ_k} between ρ and μ_k , (using a **semi-discrete** optimal transport solver).

It is know that T_{μ_k} converges to T_{μ} but convergence rates are unknown in general...

2. Continuity of $\mu \mapsto T_{\mu}$.
► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \ge W_{2}(\mu, \nu)$.

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$.

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \leq \int ||x - y||^2 d\gamma(x, y) = \int ||T_{\mu}(x) - T_{\nu}(x)||^2 d\rho(x)$.

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \leq \int ||x - y||^2 d\gamma(x, y) = \int ||T_{\mu}(x) - T_{\nu}(x)||^2 d\rho(x)$.

▶ The map $\mu \mapsto T_{\mu}$ is continuous.

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \leq \int ||x - y||^2 d\gamma(x, y) = \int ||T_{\mu}(x) - T_{\nu}(x)||^2 d\rho(x)$.

▶ The map $\mu \mapsto T_{\mu}$ is continuous.

▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder.

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \geq W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \leq \int ||x - y||^2 d\gamma(x, y) = \int ||T_{\mu}(x) - T_{\nu}(x)||^2 d\rho(x)$.

▶ The map $\mu \mapsto T_{\mu}$ is continuous.

▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder. Take $\rho = \frac{1}{\pi} \text{Leb}_{B(0,1)}$ on \mathbb{R}^2 , and define $\mu_{\theta} = \frac{\delta_{x_{\theta}} + \delta_{x_{\theta}+\pi}}{2}$, with $x_{\theta} = (\cos(\theta), \sin(\theta))$. Then $T_{\mu_{\theta}}(x) = \begin{cases} x_{\theta} & \langle x_{\theta} | x \rangle \ge 0 \\ x_{\theta+\pi} & \text{if not} \end{cases}$, $x_{\theta+\pi}$ 10 - 6

► The map $\mu \mapsto T_{\mu}$ is reverse-Lipschitz, i.e. $||T_{\mu} - T_{\nu}||_{L^{2}(\rho)} \ge W_{2}(\mu, \nu)$.

Indeed: since $T_{\mu\#}\rho = \mu$ and $T_{\nu\#}\rho = \nu$, one has $\gamma := (T_{\mu}, T_{\nu})_{\#}\rho \in \Gamma(\mu, \nu)$. Thus, $W_2^2(\mu, \nu) \leq \int ||x - y||^2 d\gamma(x, y) = \int ||T_{\mu}(x) - T_{\nu}(x)||^2 d\rho(x)$.

► The map $\mu \mapsto T_{\mu}$ is continuous.

▶ The map $\mu \mapsto T_{\mu}$ is not better than $\frac{1}{2}$ -Hölder. Take $\rho = \frac{1}{\pi} \text{Leb}_{B(0,1)}$ on \mathbb{R}^2 , and define $\mu_{\theta} = \frac{\delta_{x_{\theta}} + \delta_{x_{\theta}+\pi}}{2}$, with $x_{\theta} = (\cos(\theta), \sin(\theta))$. Then $T_{\mu_{\theta}}(x) = \begin{cases} x_{\theta} & \langle x_{\theta} | x \rangle \ge 0 \\ x_{\theta+\pi} & \text{if not} \end{cases}$, so that $\|T_{\mu_{\theta}} - T_{\mu_{\theta+\delta}}\|_{\mathrm{L}^{2}(\rho)}^{2} \ge C\delta$ Since on the other hand, $W_2(\mu_{\theta}, \mu_{\theta+\delta}) \leq C\delta$, x_{θ} $\|T_{\mu_{\theta}} - T_{\mu_{\theta+\delta}}\|_{\mathrm{L}^{2}(\rho)} \geq C \operatorname{W}_{2}(\mu_{\theta}, \mu_{\theta+\delta})^{1/2}$ $x_{\theta+\pi}$ 10 - 7

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

 $ightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on $\nu \longrightarrow$ applicable in statistics and numerical analysis.

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

 $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].

 \blacktriangleright No regularity assumption on $\nu\longrightarrow$ applicable in statistics and numerical analysis.

Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)$

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on ν \longrightarrow applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform:

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on $\nu\longrightarrow$ applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform:

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

▶ **Prop** ⇒ **Thm:** Follows from Kantorovich-Rubinstein duality, $\int f d(\mu - \nu) \leq \operatorname{Lip}(f) \operatorname{W}_1(\mu, \nu).$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on ν \longrightarrow applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform: ψ

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

$$\int \psi_{\nu} d(\mu - \nu) = \int \psi_{\nu} d(\nabla \phi_{\mu \#} \rho - \nabla \phi_{\nu \#} \rho) = \int \psi_{\nu} (\nabla \phi_{\mu}) - \psi_{\nu} (\nabla \phi_{\nu}) d\rho$$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on ν \longrightarrow applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(g)$

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

$$\int \psi_{\nu} d(\mu - \nu) = \int \psi_{\nu} d(\nabla \phi_{\mu \#} \rho - \nabla \phi_{\nu \#} \rho) = \int \psi_{\nu} (\nabla \phi_{\mu}) - \psi_{\nu} (\nabla \phi_{\nu}) d\rho$$

(convexity: $\psi_{\nu}(y) - \psi_{\nu}(x) \ge \langle y - x | \nabla \psi_{\nu}(x) \rangle$) $\ge \int \langle \nabla \psi_{\mu} - \nabla \psi_{\nu} | \nabla \psi_{\nu}(\nabla \phi_{\nu}) \rangle d\rho$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $ightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on ν \longrightarrow applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)$

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

$$\int \psi_{\nu} d(\mu - \nu) = \int \psi_{\nu} d(\nabla \phi_{\mu \#} \rho - \nabla \phi_{\nu \#} \rho) = \int \psi_{\nu} (\nabla \phi_{\mu}) - \psi_{\nu} (\nabla \phi_{\nu}) d\rho$$
convexity: $\psi_{\nu}(y) - \psi_{\nu}(x) \ge \langle y - x | \nabla \psi_{\nu}(x) \rangle) \ge \int \langle \nabla \psi_{\mu} - \nabla \psi_{\nu} | \nabla \psi_{\nu} (\nabla \phi_{\nu}) \rangle d\rho$

$$= \int \langle \nabla \psi_{\mu} - \nabla \psi_{\nu} | id \rangle d\rho$$

Thm: Assume $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with $X, Y \subseteq \mathbb{R}^d$ compact If T_{μ} is *L*-Lipschitz, then $\|T_{\mu} - T_{\nu}\|_2^2 \leq C \operatorname{W}_1(\mu, \nu)$ with $C = 4L \operatorname{diam}(X)$.

- $hightarrow \simeq$ [Ambrosio,Gigli '09] with slightly better upper bound. See also [Berman '18].
- \blacktriangleright No regularity assumption on ν \longrightarrow applicable in statistics and numerical analysis.
- Let $\phi_{\mu} : X \to \mathbb{R}$ convex s.t. $T_{\mu} = \nabla \phi_{\mu}$. $\psi_{\mu} : Y \to \mathbb{R}$ its Legendre transform: $\psi_{\mu}(y)$

$$\psi_{\mu}(y) = \max_{x \in X} \langle x | y \rangle - \phi_{\mu}(x)$$

Prop: If
$$T_{\mu}$$
 is *L*-Lipschitz, then $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq -2L \int (\psi_{\mu} - \psi_{\nu}) d(\mu - \nu).$

$$\int \psi_{\nu} d(\mu - \nu) = \int \psi_{\nu} d(\nabla \phi_{\mu \#} \rho - \nabla \phi_{\nu \#} \rho) = \int \psi_{\nu} (\nabla \phi_{\mu}) - \psi_{\nu} (\nabla \phi_{\nu}) d\rho$$

(convexity:
$$\psi_{\nu}(y) - \psi_{\nu}(x) \ge \langle y - x | \nabla \psi_{\nu}(x) \rangle$$
) $\ge \int \langle \nabla \psi_{\mu} - \nabla \psi_{\nu} | \nabla \psi_{\nu}(\nabla \phi_{\nu}) \rangle d\rho$
= $\int \langle \nabla \psi_{\mu} - \nabla \psi_{\nu} | id \rangle d\rho$

$$\int \psi_{\mu} d(\nu - \mu) \geq \int \langle \nabla \psi_{\nu} - \nabla \psi_{\mu} | \mathrm{id} \rangle d\rho + \frac{L}{2} \| \nabla \phi_{\mu} - \nabla \phi_{\nu} \|_{L^{2}(\rho)}$$

($T_{\mu} = \nabla \phi_{\mu} L$ -Lipschitz $\iff \psi_{\mu} = \phi_{\mu}^{*}$ is L-strongly convex)

11 - 10

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary: $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq C W_1(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}(d+2)}$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary: $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq C W_1(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}(d+2)}$

- The Hölder exponent is terrible, but inequality holds without assumptions on $\mu, \nu!$

Thm (Berman, '18): Let $\rho \in \operatorname{Prob}^{\operatorname{ac}}(X)$ and $\mu, \nu \in \operatorname{Prob}(Y)$ with X, Y compact. Then, $\|\nabla \psi_{\mu} - \nabla \psi_{\nu}\|_{\operatorname{L}^{2}(Y)}^{2} \leq C \operatorname{W}_{1}(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}}$

Corollary: $||T_{\mu} - T_{\nu}||^2_{L^2(\rho)} \leq C W_1(\mu, \nu)^{\alpha}$ with $\alpha = \frac{1}{2^{d-1}(d+2)}$

- The Hölder exponent is terrible, but inequality holds without assumptions on $\mu, \nu!$

Proof of Berman's theorem relies on techniques from complex geometry.

2. Global, dimension-independent, Hölder-continuity of $\mu \mapsto T_{\mu}$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$, $\|T_{\mu} - T_{\nu}\|_{L^2(X)} \leq C \operatorname{W}_2(\mu, \nu)^{1/5}$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$, $\|T_{\mu} - T_{\nu}\|_{L^2(X)} \leq C \operatorname{W}_2(\mu, \nu)^{1/5}.$

First global and dimension-independent stability result for optimal transport maps.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$, $\|T_{\mu} - T_{\nu}\|_{\operatorname{L}^2(X)} \leq C \operatorname{W}_2(\mu, \nu)^{1/5}.$

First global and dimension-independent stability result for optimal transport maps.

► Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$, $\|T_{\mu} - T_{\nu}\|_{\operatorname{L}^2(X)} \leq C \operatorname{W}_2(\mu, \nu)^{1/5}.$

First global and dimension-independent stability result for optimal transport maps.

► Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...

▶ The constant $C(X, Y) \leq \operatorname{diam}(X)^{d+1} \operatorname{diam}(Y)$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, there exists C s.t. for all $\mu, \nu \in \operatorname{Prob}(Y)$, $\|T_{\mu} - T_{\nu}\|_{\operatorname{L}^2(X)} \leq C \operatorname{W}_2(\mu, \nu)^{1/5}.$

First global and dimension-independent stability result for optimal transport maps.

- ► Gap between lower-bound and upper bound for Hölder exponent: $\frac{1}{5} < \frac{1}{2}$. The exponent $\frac{1}{5}$ is certainly not optimal...
- ▶ The constant $C(X, Y) \leq \operatorname{diam}(X)^{d+1} \operatorname{diam}(Y)$.

► Proof relies on the semidiscrete setting, i.e. the bound is established in the case $\mu = \sum_{i} \mu_i \delta_{y_i}, \ \nu = \sum_{i} \nu_i \delta_{y_i}.$

and one concludes using a density argument.

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

 $\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x | y \rangle \,\mathrm{d}\,\gamma(x,y)$

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

 $\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x,y)$ Kantorovich duality $= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x,y)$$

Kantorovich duality
$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$\psi^*(x) = \max_y \langle x | y \rangle - \psi(y)$$

• Let $\rho, \nu \in \operatorname{Prob}_{1}^{\operatorname{ac}}(\mathbb{R}^{d})$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x|y \rangle \,\mathrm{d}\,\gamma(x,y)$$

Kantorovich duality
$$= \min_{\phi \oplus \psi \ge \langle \cdot| \cdot \rangle} \int \phi \,\mathrm{d}\,\rho + \int \psi \,\mathrm{d}\,\mu$$

$$= \min_{\psi} \int \psi^* \,\mathrm{d}\,\rho + \int \psi \,\mathrm{d}\,\mu$$

$$\psi^*(x) = \max_y \langle x|y \rangle - \psi(y)$$

• Let
$$\mu = \sum_{1 \le i \le N} \mu_i \delta_{y_i}$$
 and $\psi_i = \psi(y_i)$.

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x,y)$$
Kantorovich duality
$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$= \min_{\psi} \int \psi^* \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$\psi^*(x) = \max_y \langle x | y \rangle - \psi(y)$$

• Let $\mu = \sum_{1 \le i \le N} \mu_i \delta_{y_i}$ and $\psi_i = \psi(y_i)$. Then, $\psi^*|_{V_i(\psi)} := \langle \cdot | y_i \rangle - \psi_i$ where $V_i(\psi) = \{x \mid \forall j, \ \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j\}$

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x|y \rangle \,\mathrm{d}\,\gamma(x,y)$$

Kantorovich duality
$$= \min_{\phi \oplus \psi \ge \langle \cdot| \cdot \rangle} \int \phi \,\mathrm{d}\,\rho + \int \psi \,\mathrm{d}\,\mu$$

$$= \min_{\psi} \int \psi^* \,\mathrm{d}\,\rho + \int \psi \,\mathrm{d}\,\mu$$

$$\psi^*(x) = \max_y \langle x|y \rangle - \psi(y)$$

• Let $\mu = \sum_{1 \le i \le N} \mu_i \delta_{y_i}$ and $\psi_i = \psi(y_i)$. Then, $\psi^*|_{V_i(\psi)} := \langle \cdot | y_i \rangle - \psi_i$ where $V_i(\psi) = \{x \mid \forall j, \ \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j\}$

15 - 6 Thus, $\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \sum_i \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x) + \sum_i \mu_i \psi_i$

Optimality condition and economic interpretation

 $\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

Optimality condition and economic interpretation

 $\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

Optimality condition and economic interpretation

 $\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^N$ minimizes $\Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$
$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^N$ minimizes $\Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$

 $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$

$$\mathcal{T}(
ho,\mu)=\min_{\psi\in\mathbb{R}^N}\Phi(\psi)+\langle\mu|\psi
angle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^N$ minimizes $\Phi + \langle \mu | \cdot \rangle \Longleftrightarrow \nabla \Phi(\psi) = -\mu$

$$\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$$
$$\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$$

$$\mathcal{T}(
ho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^N \text{ minimizes } \Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

• Economic interpretation: ρ = density of customers, $\{y_i\}_{1 \le i \le N}$ = product types

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} \mathrm{d} \rho$.

 $\psi \in \mathbb{R}^{N} \text{ minimizes } \Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$ $\iff G(\psi) = \mu \text{ with } G = (G_{1}, \dots, G_{N}), \ \mu \in \mathbb{R}^{N}$ $\iff T = \nabla \psi^{*} \text{ transports } \rho \text{ onto } \sum_{i} \mu_{i} \delta_{y_{i}}$

• Economic interpretation: $\rho = \text{density of customers, } \{y_i\}_{1 \le i \le N} = \text{product types}$ \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x | y_i \rangle - \psi_i$ over all products.

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^N \text{ minimizes } \Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$ $\iff G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N$ $\iff T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i}$

• Economic interpretation: $\rho = \text{density of customers}, \{y_i\}_{1 \le i \le N} = \text{product types}$ \longrightarrow given prices $\psi \in \mathbb{R}^N$, a customer x maximizes $\langle x|y_i \rangle - \psi_i$ over all products. $\longrightarrow V_i(\psi) = \{x \mid i \in \arg \max_j \langle x|y_j \rangle - \psi_j\} = \text{customers choosing product } y_i.$

$$\mathcal{T}(\rho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^{N} \text{ minimizes } \Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$ $\iff G(\psi) = \mu \text{ with } G = (G_{1}, \dots, G_{N}), \ \mu \in \mathbb{R}^{N}$ $\iff T = \nabla \psi^{*} \text{ transports } \rho \text{ onto } \sum_{i} \mu_{i} \delta_{y_{i}}$

Economic interpretation: ρ = density of customers, {y_i}_{1≤i≤N} = product types
 → given prices ψ ∈ ℝ^N, a customer x maximizes ⟨x|y_i⟩ - ψ_i over all products.
 → V_i(ψ) = {x | i ∈ arg max_j⟨x|y_j⟩ - ψ_j} = customers choosing product y_i.
 → G_i(ψ) = ∫_{V_i(ψ)} d ρ = amount of customers for product y_i.

$$\mathcal{T}(
ho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} d\rho$.

 $\psi \in \mathbb{R}^{N} \text{ minimizes } \Phi + \langle \mu | \cdot \rangle \iff \nabla \Phi(\psi) = -\mu$ $\iff G(\psi) = \mu \text{ with } G = (G_{1}, \dots, G_{N}), \ \mu \in \mathbb{R}^{N}$ $\iff T = \nabla \psi^{*} \text{ transports } \rho \text{ onto } \sum_{i} \mu_{i} \delta_{y_{i}}$

Economic interpretation: ρ = density of customers, {y_i}_{1≤i≤N} = product types

 → given prices ψ ∈ ℝ^N, a customer x maximizes ⟨x|y_i⟩ - ψ_i over all products.
 → V_i(ψ) = {x | i ∈ arg max_j⟨x|y_j⟩ - ψ_j} = customers choosing product y_i.
 → G_i(ψ) = ∫_{V_i(ψ)} d ρ = amount of customers for product y_i.

 Optimal transport = finding prices satisfying capacity constraints G_i(ψ) = μ_i.

$$\mathcal{T}(
ho,\mu) = \min_{\psi \in \mathbb{R}^N} \Phi(\psi) + \langle \mu | \psi \rangle$$
, where:

$$\Phi(\psi) := \sum_{i} \int_{V_i(\psi)} \langle x | y_i \rangle - \psi_i \, \mathrm{d} \, \rho(x)$$

• Gradient: $\nabla \Phi(\psi) = -(G_i(\psi))_{1 \le i \le N}$ where $G_i(\psi) = \int_{V_i(\psi)} \mathrm{d} \rho$.

$$\begin{split} \psi \in \mathbb{R}^N \text{ minimizes } \Phi + \langle \mu | \cdot \rangle & \Longleftrightarrow \nabla \Phi(\psi) = -\mu \\ & \Longleftrightarrow G(\psi) = \mu \text{ with } G = (G_1, \dots, G_N), \ \mu \in \mathbb{R}^N \\ & \Longleftrightarrow T = \nabla \psi^* \text{ transports } \rho \text{ onto } \sum_i \mu_i \delta_{y_i} \end{split}$$

Economic interpretation: ρ = density of customers, {y_i}_{1≤i≤N} = product types

 → given prices ψ ∈ ℝ^N, a customer x maximizes ⟨x|y_i⟩ - ψ_i over all products.
 → V_i(ψ) = {x | i ∈ arg max_j⟨x|y_j⟩ - ψ_j} = customers choosing product y_i.
 → G_i(ψ) = ∫_{Vi(ψ)} d ρ = amount of customers for product y_i.

 Optimal transport = finding prices satisfying capacity constraints G_i(ψ) = μ_i.

Hölder-stability of optimal transport maps \simeq strong concavity of Φ .

16 - 11

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\operatorname{D} G(\psi)) = \mathbb{R}(1, \ldots, 1)$.

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\mathrm{D}G(\psi)) = \mathbb{R}(1, \ldots, 1)$.

(Recall that $G_i(\psi) = \int_{V_i(\psi)} d\rho$, $\nabla \Phi = -(G_1, \dots, G_N)$, $DG = -D^2 \Phi$)

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\mathrm{D}G(\psi)) = \mathbb{R}(1, \ldots, 1)$.

NB: if
$$V_i(\psi) = \emptyset$$
, then $\mathbf{1}_{\{y_i\}} \in \text{Ker}(D^2\Phi(\psi))$

Proof:

• Consider the matrix $L = DG(\psi)$ and the graph H:

$$(i,j) \in \mathbf{H} \iff L_{ij} > 0$$

(Recall that $G_i(\psi) = \int_{V_i(\psi)} d\rho$, $\nabla \Phi = -(G_1, \dots, G_N)$, $DG = -D^2 \Phi$)

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\operatorname{D} G(\psi)) = \mathbb{R}(1, \dots, 1)$.

NB: if
$$V_i(\psi) = \emptyset$$
, then $\mathbf{1}_{\{y_i\}} \in \text{Ker}(D^2\Phi(\psi))$

Proof:

• Consider the matrix $L = DG(\psi)$ and the graph H: $(i,j) \in H \iff L_{ij} > 0$

▶ If Ω is connected and $\psi \in E$, then H is connected

(Recall that $G_i(\psi) = \int_{V_i(\psi)} d\rho$, $\nabla \Phi = -(G_1, \dots, G_N)$, $DG = -D^2 \Phi$)

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\operatorname{D} G(\psi)) = \mathbb{R}(1, \ldots, 1)$.

NB: if
$$V_i(\psi) = \emptyset$$
, then $\mathbf{1}_{\{y_i\}} \in \text{Ker}(D^2\Phi(\psi))$

Proof:

- Consider the matrix $L = DG(\psi)$ and the graph H: $(i, j) \in H \iff L_{ij} > 0$
- ▶ If Ω is connected and $\psi \in E$, then H is connected
- L is the Laplacian of a connected graph $\Longrightarrow \operatorname{Ker} L = \mathbb{R} \cdot \operatorname{cst}$

Proposition: If
$$\rho \in C^0(X)$$
 and $(y_i)_{1 \le i \le N}$ is generic, then $\Phi \in C^2(\mathbb{R}^N)$ and
 $\forall i \ne j, \quad \frac{\partial G_i}{\partial \psi_j}(\psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \, \mathrm{d} x$ where $\Gamma_{ij} = V_i(\psi) \cap V_j(\psi)$.
 $\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\psi) = -\sum_{j \ne i} \frac{\partial G_i}{\partial \psi_j}(\psi)$
If $\Omega = \{\rho > 0\}$ is connected and $\forall i, G_i(\psi) > 0$, then $\operatorname{Ker}(\mathrm{D}G(\psi)) = \mathbb{R}(1, \dots, 1)$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \text{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \text{Prob}(Y)$,

 $||T_{\mu_1} - T_{\mu_0}||_{\mathrm{L}^2(X)} \le C \,\mathrm{W}_2(\mu_1, \mu_0)^{1/5}.$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{L^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

• Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then,

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

a) Control of the eigengap: $\langle DG(\psi^t)v|v\rangle \leq -C(X)\|v\|_{L^2(\mu_t)}^2$ if $\int v d\mu_t = 0$. with $\mu^t = G(\psi^t) \longrightarrow$ [Eymard, Gallouët, Herbin '00].

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

- a) Control of the eigengap: $\langle DG(\psi^t)v|v\rangle \leq -C(X)\|v\|_{L^2(\mu_t)}^2$ if $\int v d\mu_t = 0$. with $\mu^t = G(\psi^t) \longrightarrow$ [Eymard, Gallouët, Herbin '00].
- b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \ge (1-t)^d \mu^0$.

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

a) Control of the eigengap: $\langle DG(\psi^t)v|v\rangle \leq -C(X)\|v\|_{L^2(\mu_t)}^2$ if $\int v d\mu_t = 0$. with $\mu^t = G(\psi^t) \longrightarrow$ [Eymard, Gallouët, Herbin '00].

b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \ge (1-t)^d \mu^0$.

Combining a) and b) we get $\|\psi^1 - \psi^0\|_{L^2(\mu^0)}^2 \lesssim |\langle \mu^1 - \mu^0 | \psi^1 - \psi^0 \rangle|$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

a) Control of the eigengap: $\langle DG(\psi^t)v|v\rangle \leq -C(X)\|v\|_{L^2(\mu_t)}^2$ if $\int v d\mu_t = 0$. with $\mu^t = G(\psi^t) \longrightarrow$ [Eymard, Gallouët, Herbin '00].

b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \ge (1-t)^d \mu^0$. Combining a) and b) we get $\|\psi^1 - \psi^0\|_{L^2(\mu^0)}^2 \le |\langle \mu^1 - \mu^0 | \psi^1 - \psi^0 \rangle|$ Then, by Kantorovich-Rubinstein, $\le \operatorname{Lip}(\psi^1 - \psi^0) \operatorname{W}_1(\mu^0, \mu_1)$

Thm (M., Delalande, Chazal '19): Let X convex compact with |X| = 1 and $\rho = \operatorname{Leb}_X$, and let Y be compact. Then, $\exists C$ s.t. for all $\mu^0, \mu^1 \in \operatorname{Prob}(Y)$, $\|T_{\mu_1} - T_{\mu_0}\|_{\mathrm{L}^2(X)} \leq C \operatorname{W}_2(\mu_1, \mu_0)^{1/5}.$

► Strategy of proof: let $\mu^k = \sum_i \mu_i^k \delta_{y_i}$ for $k \in \{0, 1\}$, assume all $\mu_i^k > 0$. Consider $\psi^k \in \mathbb{R}^Y$ s.t. $G(\psi^k) = \mu^k$, and $\psi^t = \psi^0 + tv$ with $v = \psi^1 - \psi^0$. Then, $\langle \mu^1 - \mu^0 | v \rangle = \langle G(\psi^1) - G(\psi^0) | v \rangle = \int_0^1 \langle \mathrm{D}G(\psi^t) v | v \rangle \,\mathrm{d}\,t$

a) Control of the eigengap: $\langle DG(\psi^t)v|v\rangle \leq -C(X)\|v\|_{L^2(\mu_t)}^2$ if $\int v d\mu_t = 0$. with $\mu^t = G(\psi^t) \longrightarrow$ [Eymard, Gallouët, Herbin '00].

b) Control of μ_t : Brunn-Minkowski's inequality implies $\mu^t \ge (1-t)^d \mu^0$. Combining a) and b) we get $\|\psi^1 - \psi^0\|_{L^2(\mu^0)}^2 \le |\langle \mu^1 - \mu^0 | \psi^1 - \psi^0 \rangle|$ Then, by Kantorovich-Rubinstein, $\le \operatorname{Lip}(\psi^1 - \psi^0) \operatorname{W}_1(\mu^0, \mu_1)$ $\lesssim \operatorname{W}_2(\mu^0, \mu^1)$

► We lose a little in the exponent to control the difference between OT maps... 18 - 9

A toy application

MNIST has $M = 60\,000$ images grayscale images (64×64 pixels) representing digits.

MNIST has $M = 60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0, 1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{(x_i,x_j)}, \quad \text{with } x_i = \frac{i}{63}$$

MNIST has $M = 60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0, 1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{(x_i,x_j)}, \quad \text{with } x_i = \frac{i}{63}$$

 $T^{\ell} = T_{\mu^{\ell}} \in \mathrm{L}^2([0,1],\mathbb{R}^2) \quad \text{[OT map from } \rho = \mathrm{Leb}_{[0,1]^2} \text{ to } \mu^{\ell}\text{]}$

MNIST has $M = 60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0, 1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{(x_i,x_j)}, \quad \text{with } x_i = \frac{i}{63}$$
$$T^{\ell} = T_{\mu^{\ell}} \in L^2([0,1], \mathbb{R}^2) \quad \text{[OT map from } \rho = \text{Leb}_{[0,1]^2} \text{ to } \mu^{\ell}]$$

We run the K-Means method on the transport plans, with K = 20. Each cluster $X^k \subseteq \{0, \dots, M\}$ yields an *average transport plan* $S^k = \frac{1}{|X^k|} \sum_{\ell \in X} T^\ell$,

MNIST has $M = 60\,000$ images grayscale images (64×64 pixels) representing digits. Each image $\alpha^{\ell} \in \mathcal{M}_{64}(\mathbb{R})$ is transformed into a probability measure on $[0, 1]^2$ via

$$\mu^{\ell} = \frac{1}{\sum_{i,j} \alpha_{ij}^{\ell}} \sum_{i,j} \alpha_{i,j}^{\ell} \delta_{(x_i,x_j)}, \quad \text{with } x_i = \frac{i}{63}$$
$$T^{\ell} = T_{\mu^{\ell}} \in L^2([0,1], \mathbb{R}^2) \quad \text{[OT map from } \rho = \text{Leb}_{[0,1]^2} \text{ to } \mu^{\ell}]$$

We run the K-Means method on the transport plans, with K = 20. Each cluster $X^k \subseteq \{0, \ldots, M\}$ yields an *average transport plan* $S^k = \frac{1}{|X^k|} \sum_{\ell \in X} T^\ell$, and $S^k_{\#}\rho$ is the "reconstructed measure".

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $\operatorname{L}^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $\operatorname{L}^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_2 , which has many open questions.

Summary

Optimal transport can be used to embed of $\operatorname{Prob}(\mathbb{R}^d)$ into $\operatorname{L}^2(\rho, \mathbb{R}^d)$, with possible applications in data analysis. Computations can be easily performed using

https://github.com/sd-ot

The analysis of this approach relies on the stability theory for $\mu \mapsto T_{\mu}$, both with respect to W_2 , which has many open questions.

Thank you for your attention!

Numerical example

Source: $\rho =$ uniform on $[0, 1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

$$\psi_0 = \frac{1}{2} \| \cdot \|^2$$

Numerical example

Source: $\rho =$ uniform on $[0, 1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

22 - 2

Numerical example

Source: $\rho =$ uniform on $[0, 1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

Numerical example

Source: $\rho =$ uniform on $[0, 1]^2$,

Target: $\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, \frac{1}{3}]^2$

Convergence is very fast when $spt(\rho)$ convex: 17 Newton iterations for $N \ge 10^7$ in 3D.

22 - 4

Kantorovich duality

• Let $\rho, \nu \in \operatorname{Prob}_1^{\operatorname{ac}}(\mathbb{R}^d)$ and $\Gamma(\rho, \mu) = \operatorname{couplings}$ between ρ, μ ,

$$\mathcal{T}(\rho,\mu) = \max_{\gamma \in \Gamma(\rho,\mu)} \int \langle x | y \rangle \, \mathrm{d} \, \gamma(x,y)$$

$$= \min_{\phi \oplus \psi \ge \langle \cdot | \cdot \rangle} \int \phi \, \mathrm{d} \, \rho + \int \psi \, \mathrm{d} \, \mu$$

$$= \min_{\psi} \mathcal{K}(\psi) + \langle \psi | \mu \rangle$$

$$\psi^*(x) = \max_y \langle x | y \rangle - \psi(y)$$
where $\mathcal{K}(\psi) = \int \psi^* \, \mathrm{d} \, \rho$.

Relation to the Brenier map.

Lemma: $\nabla \mathcal{K}(\psi) = \mu[\psi]$ where $\mu[\psi] = \nabla \psi^*|_{\#} \rho$. I.e. ψ minimizes $\mathcal{K}(\cdot) + \langle \cdot | \mu \rangle \iff \mu[\psi] = \mu$ $\iff T = \nabla \psi^*$ is the Brenier map between ρ and μ .

The quantitative continuity $\mu \mapsto \arg \min_{\psi} \mathcal{K}(\psi) + \langle \mu | \psi \rangle$ is related to the strong convexity of \mathcal{K} .