Journée statistique et informatique pour la science des données IHES, January 2020

The pre-image problem

from a topological perspective

Steve Oudot

Preimage problem in data Sciences

Data

Features

bag of words, word2vec shape contexts, heat kernels node2vec, Laplacian fact., rand. walks dim. reduction, auto-encoders, etc.

Preimage problem in data Sciences

Data

Features

Can the feature map be inverted?

- Right inverse (\exists preimage): interpretable AI bag of words, word2vec shape contexts, heat kernels
- Left inverse (\exists ! preimage): reliable interpretation

Scenarios: feature interpretation, deep learning, inverse problems, etc.

Topological Data Analysis (TDA) pipeline

Data

Invariants

Features

Topological Data Analysis (TDA) pipeline

Invariants

Features

Mathematical framework:

Topological Data Analysis (TDA) pipeline

Features

Mathematical framework:

Topological Data Analysis (TDA) pipeline

Mathematical framework:

Topological Persistence (in a nutshell)

X topological space $f: X \rightarrow \mathbb{R}$ (filter)
∇

signature: persistence diagram encodes the topological structure of the pair (X, f)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)
- Finite set of intervals (barcode) encodes births/deaths of topological features

Topological Persistence (in a nutshell)

Inside the black box:

- Nested family (filtration) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)
- Finite set of intervals (barcode) encodes births/deaths of topological features
- Equivalent representation as a discrete measure in the plane (pers. diagram).

Topological Persistence (in a nutshell)

Theorem (Stability):

For any tame functions $f, g: X \rightarrow \mathbb{R}, \mathrm{~d}_{\mathrm{b}}^{\infty}(\operatorname{Dgm} f, \operatorname{Dgm} g) \leq\|f-g\|_{\infty}$.

Example: distance function

$$
\begin{array}{ll}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{array}
$$

Example: distance function

$$
\begin{aligned}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$

Example: distance function

$$
\begin{aligned}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$

Example: distance function

$$
\begin{aligned}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{aligned}
$$

Example: distance function

$f: \quad X=\mathbb{R}^{d} \rightarrow \mathbb{R}$ $x \mapsto \min _{p \in P}\|x-p\|_{2}$

Example: distance function

$f: \quad X=\mathbb{R}^{d} \rightarrow \mathbb{R}$ $x \mapsto \min _{p \in P}\|x-p\|_{2}$

Example: distance function

$$
\begin{array}{ll}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{array}
$$

Example: distance function

$$
\begin{array}{ll}
f: & X=\mathbb{R}^{d} \rightarrow \mathbb{R} \\
& x \mapsto \min _{p \in P}\|x-p\|_{2}
\end{array}
$$

Vanilla pipeline

Vanilla pipeline

metric space $(P, \mathrm{~d})$

Union of balls / Rips complex

$X=2^{P} \backslash\{\emptyset\}$
$f: \sigma=\left\{p_{0}, \cdots, p_{k}\right\} \mapsto \max _{1 \leq i<j \leq k} \mathrm{~d}\left(p_{i}, p_{j}\right)$
Rips filtration $\mathcal{R}(P): R_{t}(P):=f^{-1}((-\infty, t])$

Many variants (filters, topological constructions, approximations)

density estimators

- non-linear projections
- curvature measures
- PDE solutions (heat, wave)
- etc.

projections

others:

Software

in Higher Dimensions

```
http://gudhi.inria.fr/
```

- reference library in TDA (encompasses all aspects)
- 60 k downloads in the last 12 months
- developers community, editorial board
- competitors (specialized on specific aspects of the TDA pipeline):

Dionysus, PHAT, DIPHA, Ripser, Eirene

The problem

compact metric space
persistence barcode/diagram

right inverse: realize barcode as the PH of some isom. class
left inverse: characterize isometry class uniquely

Right inverses for Topological Persistence

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as the (reduced) homology of some topological space.

bouquets of spheres

Right inverses for Topological Persistence

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as the (reduced) homology of some topological space.

Thm: Any locally finite point cloud in \mathbb{R}^{2} can be realized as the (extended) persistence diagram of some function on a topological space.

bouquets of spheres

handlebody theory

Local right inverses

Local right inverses

ordered point clouds with n points in \mathbb{R}^{d}
ordered barcodes
with m bounded and
n unbounded intervals
(\nexists smooth structure on Bar)

Local right inverses

Thm: [Gameiro, Hiraoka, Obayashi '16]
(i) Generic point cloud $\Rightarrow \exists U \ni P$ in $\mathbb{R}^{n d}$ over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \rightarrow \mathbb{R}^{2 m+n}$ computing ordered barcodes.
(ii) For U small enough, \tilde{B} is of class C^{∞}.

Observation: order of distances is constant in small enough U.

Local right inverses

Local lift:

$$
\begin{aligned}
& \exists \tilde{B} \quad \downarrow^{\mathbb{R}^{2 m+n}} \\
& \mathcal{M} \xrightarrow[F]{\longrightarrow \cdots \cdots \cdots} \operatorname{Filter}\left(K=2^{\{1, \cdots, n\} \backslash\{\emptyset\}}\right) \xrightarrow[\text { Dgm }]{ } \text { Bar } \\
& \text { || } \\
& \mathbb{R}^{n d}
\end{aligned}
$$

Thm: [Gameiro, Hiraoka, Obayashi '16]
(i) Generic point cloud $\Rightarrow \exists U \ni P$ in $\mathbb{R}^{n d}$ over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \rightarrow \mathbb{R}^{2 m+n}$ computing ordered barcodes.
(ii) For U small enough, \tilde{B} is of class C^{∞}.

Observation: order of distances is constant in small enough U.

Local right inverses

$$
(\text { smooth }) \exists \tilde{B}
$$

Local lift:

$$
\mathcal{M} \xrightarrow[F]{\stackrel{\cdots \cdots \cdots}{\longrightarrow}} \operatorname{Filter}\left(K=2^{\{1, \cdots, n\} \backslash\{\emptyset\}}\right)
$$

Thm: [Gameiro, Hiraoka, Obayashi '16]
(i) Generic point cloud $\Rightarrow \exists U \ni P$ in $\mathbb{R}^{n d}$ over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \rightarrow \mathbb{R}^{2 m+n}$ computing ordered barcodes.
(ii) For U small enough, \tilde{B} is of class C^{∞}.

Observation: order of distances is constant in small enough U.

Local right inverses

$$
\begin{equation*}
(\text { smooth }) \exists \tilde{B} \tag{Lip.}
\end{equation*}
$$

Local lift:

$$
\mathcal{M} \xrightarrow[F]{\stackrel{\cdots \cdots}{\longrightarrow}} \operatorname{Filter}\left(K=2^{\{1, \cdots, n\} \backslash\{\emptyset\}}\right)
$$

Diffeology theory: push smooth struct. on $\mathbb{R}^{2 m+n}$ down to Bar

Thm: [Gameiro, Hiraoka, Obayashi '16]
(i) Generic point cloud $\Rightarrow \exists U \ni P$ in $\mathbb{R}^{\text {nd }}$ over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \rightarrow \mathbb{R}^{2 m+n}$ computing ordered barcodes.
(ii) For U small enough, \tilde{B} is of class C^{∞}.

Observation: order of distances is constant in small enough U.

Local right inverses

Thm: [Leygonie, O., Tillmann '19]
If F is C^{r} on some generic subset of \mathcal{M}, then so is $\operatorname{Dgm} \circ F$.

Prop: [Chain Rule]
If $\operatorname{Dgm} \circ F$ and V are r-differentiable, then $V \circ \operatorname{Dgm} \circ F$ is C^{r} and $d_{\theta}(V \circ \operatorname{Dgm} \circ F)=d_{\tilde{B}(\theta)}\left(V \circ Q_{m, n}\right) \circ d_{\theta} \tilde{B}$ is independent of lift

Local right inverses

Applications:

Optimization / ML: (gradient back-propagation)

Local right inverses

Applications:

Optimization / ML: (gradient back-propagation)

Continuation / inverse problems: (Newton-Raphson)

[Nakamura et al. '15]

Left inverses?

- distance functions

$\operatorname{Dgm} \mathcal{R}(P)=\{(0,+\infty)\} \sqcup\{(0,1)\} \sqcup\{(0,1)\}$
\Rightarrow diagrams for different values of α are indistinguishable

Left inverses?

- distance functions

Prop: For any metric tree $(P, \mathrm{~d})$:

$$
\operatorname{Dgm} \mathcal{R}(P)=\{(0,+\infty)\}
$$

\Rightarrow no information on the metric
X is 0-hyperbolic
\Rightarrow metric balls are convex
\Rightarrow geodesic triangles are tripods

Left inverses?

- distance functions

Prop: For any metric tree $(P, \mathrm{~d})$:

$$
\operatorname{Dgm} \mathcal{R}(P)=\{(0,+\infty)\}
$$

\Rightarrow no information on the metric

- real-valued functions

Prop: For any $f: X \rightarrow \mathbb{R}$ and $h: Y \rightarrow X$ homeomorphism:

$$
\operatorname{Dgm} f \circ h=\operatorname{Dgm} f
$$

\Rightarrow Invariance under homeomorphisms, not just isometries

Persistent Homology Transform (PHT)

PHT for compact subanalytic sets in \mathbb{R}^{d}

Focus: compact subanalytic sets in \mathbb{R}^{d}

PHT: $\mathcal{F}=\left\{f_{w}\right\}_{w \in \mathbb{S}^{d-1}}$ where $f_{w}=\langle\cdot, w\rangle$

Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018] [Ghrist, Levanger, Mai 2018]

With $\mathcal{F}=\{\langle\cdot, w\rangle\}_{w \in \mathbb{S}^{d-1}}$, PHT is injective on the class of compact subanalytic sets in \mathbb{R}^{d}.

Still true for a finite $\left(O\left(2^{d}\right)\right)$ set of directions if we restrict to geometric simplicial complexes.

PHT for compact subanalytic sets in \mathbb{R}^{d}

Formalism:

$M \subset \mathbb{R}^{d}$
compact
subanalytic

\leadsto
$\mathbb{1}_{M}: \mathbb{R}^{d} \rightarrow \mathbb{Z}$
constructible

PHT for compact subanalytic sets in \mathbb{R}^{d}

$\operatorname{ECT}\left(\mathbb{1}_{M}\right): \left\lvert\, \begin{aligned} & \mathbb{S}^{d-1} \rightarrow \mathrm{CF}(\mathbb{R}) \\ & v \longmapsto\left(t \mapsto \int \mathbb{1}_{M} \mathbb{1}_{x \cdot v \leq t} \mathrm{~d} \chi=\chi\left(M \cap\left\{x \in \mathbb{R}^{d} \mid x \cdot v \leq t\right\}\right)\right)\end{aligned}\right.$

PHT for compact subanalytic sets in \mathbb{R}^{d}

PHT for compact subanalytic sets in \mathbb{R}^{d}

$\operatorname{ECT}\left(\mathbb{1}_{M}\right): \mid \mathbb{S}^{d-1} \rightarrow \mathrm{CF}(\mathbb{R})$

$$
v \longmapsto\left(t \mapsto \int \mathbb{1}_{M} \mathbb{1}_{x \cdot v \leq t} \mathrm{~d} \chi=\chi\left(M \cap\left\{x \in \mathbb{R}^{d} \mid x \cdot v \leq t\right\}\right)\right)
$$

Thm: For $\mathbb{1}_{M}, \mathbb{1}_{N} \in \operatorname{CF}\left(\mathbb{R}^{d}\right): \operatorname{ECT}\left(\mathbb{1}_{M}\right)=\mathrm{ECT}\left(\mathbb{1}_{N}\right) \Rightarrow \mathbb{1}_{M}=\mathbb{1}_{N}$

PHT for compact subanalytic sets in \mathbb{R}^{d}

Formalism: $\begin{array}{ll} & M \subset \mathbb{R}^{d} \\ & \begin{array}{l}\text { compact } \\ \text { subanalytic }\end{array}\end{array}$

Thm: For $\mathbb{1}_{M}, \mathbb{1}_{N} \in \operatorname{CF}\left(\mathbb{R}^{d}\right): \operatorname{ECT}\left(\mathbb{1}_{M}\right)=\mathrm{ECT}\left(\mathbb{1}_{N}\right) \Rightarrow \mathbb{1}_{M}=\mathbb{1}_{N}$

NHWMy

PHT for metric graphs

Focus: compact metric graphs (1-dimensional stratified length spaces)
PHT: $\mathcal{F}=\left\{\mathrm{d}_{X}(\cdot, x)\right\}_{x \in X}$

Thm (stability): [Dey, Shi, Wang 2015]
For any compact metric graphs X, Y,
$\mathrm{d}_{\mathrm{H}}(\operatorname{PHT}(X), \operatorname{PHT}(Y)) \leq 18 \mathrm{~d}_{\mathrm{GH}}(X, Y)$.

Thm (density): [Gromov]
Compact metric graphs are GH-dense among the compact length spaces.

Q: injectivity of PHT on metric graphs?

PHT for metric graphs

Bad news: PHT is not injective on all compact metric graphs

$\operatorname{PHT}(X)=\operatorname{PHT}(Y)$ while $X \not 千 Y$

PHT for metric graphs

Bad news: PHT is not injective on all compact metric graphs

$\operatorname{PHT}(X)=\operatorname{PHT}(Y)$ while $X \not 千 Y$

Note: $\operatorname{Aut}(X)$ is non-trivial, hence $\Psi_{X}: x \mapsto \operatorname{Dgmd}(\cdot, x)$ is not injective

PHT for metric graphs

Let $\operatorname{Inj}_{\Psi}=\left\{X\right.$ compact metric graph s.t. Ψ_{X} is injective $\}$

Thm: (injectivity) [O., Solomon '18]

- PHT is GH-locally injective on compact metric graphs.
- PHT is injective on $\operatorname{Inj}{ }_{\Psi}$.
- $\ln _{\Psi}{ }_{\Psi}$ is generic among the compact metric graphs.

PHT is injective on a dense subset of the compact length spaces

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space
Distance kernel operator:

$$
\begin{aligned}
D^{X}: & L^{2}(X) \rightarrow L^{2}(X) \\
& \left(D^{X} f\right)(x):=\int_{X} f(y) \mathrm{d}(x, y) d \mu(y)
\end{aligned}
$$

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space
Distance kernel operator:

$$
\begin{aligned}
D^{X}: & L^{2}(X) \rightarrow L^{2}(X) \\
& \left(D^{X} f\right)(x):=\int_{X} f(y) \mathrm{d}(x, y) d \mu(y)
\end{aligned}
$$

Hilbert-Schmidt op. \Rightarrow eigenvalues $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$, assumed simple wlog
Choose unit eigenfunctions $\phi_{1}, \phi_{2}, \cdots$, such that $\left\langle\phi_{i},\right| \phi_{i}| \rangle>0$

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space

Distance kernel operator:

$$
\begin{aligned}
D^{X}: & L^{2}(X) \rightarrow L^{2}(X) \\
& \left(D^{X} f\right)(x):=\int_{X} f(y) \mathrm{d}(x, y) d \mu(y)
\end{aligned}
$$

Hilbert-Schmidt op. \Rightarrow eigenvalues $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$, assumed simple wlog
Choose unit eigenfunctions $\phi_{1}, \phi_{2}, \cdots$, such that $\left\langle\phi_{i},\right| \phi_{i}| \rangle>0$

Mapping: $\Phi^{X}: X \rightarrow \mathbb{C}^{\infty}$

$$
\Phi^{X}:=\left(\sqrt{\lambda_{1}} \phi_{1}, \sqrt{\lambda_{2}} \phi_{2}, \cdots\right)
$$

$\Phi_{k}^{X}:=\Phi_{\mid \mathbb{C}^{k}}^{X}$
note:

$$
\begin{aligned}
\mathrm{d}(x, y) & =\sum_{i \in \mathbb{N}} \lambda_{i} \phi_{i}(x) \phi_{i}(y) \\
& =\sum_{i \in \mathbb{N}} \sqrt{\lambda_{i}} \phi_{i}(x) \sqrt{\lambda_{i}} \phi_{i}(y)
\end{aligned}
$$

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon '19] If μ is strictly positive on open sets, then $\Phi^{X}: X \rightarrow \mathbb{C}^{\infty}$ is a topological embedding

Thm: [Maria, O., Solomon '19] Let $\mathrm{d}, \mathrm{d}^{\prime}$ be metrics on X, and let μ, μ^{\prime} be strictly positive measures on X such that μ is absolutely continuous w.r.t. μ^{\prime}. Then,

$$
\Phi^{(X, \mathrm{~d}, \mu)}(X)=\Phi^{\left(X, \mathrm{~d}^{\prime}, \mu^{\prime}\right)}(X) \quad \Longrightarrow \quad \mathrm{d}=\mathrm{d}^{\prime}
$$

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon '19] If μ is strictly positive on open sets, then $\Phi^{X}: X \rightarrow \mathbb{C}^{\infty}$ is a topological embedding

Thm: [Maria, O., Solomon '19] Let $\mathrm{d}, \mathrm{d}^{\prime}$ be metrics on X, and let μ, μ^{\prime} be strictly positive measures on X such that μ is absolutely continuous w.r.t. μ^{\prime}. Then,

$$
\Phi^{(X, \mathrm{~d}, \mu)}(X)=\Phi^{\left(X, \mathrm{~d}^{\prime}, \mu^{\prime}\right)}(X) \quad \Longrightarrow \quad \mathrm{d}=\mathrm{d}^{\prime}
$$

Pb: the Euclidean PHT and ECT apply only to finite-dimensional spaces

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space
$\operatorname{Fix} k \in \mathbb{N}$.
$\Phi_{k}^{X}: X \rightarrow \mathbb{C}^{k} \simeq \mathbb{R}^{2 k}$ may not be an embedding... but it doesn't matter

PHT for compact metric measure spaces

Let $(X, \mathrm{~d}, \mu)$ be a compact metric (Borel) measure space
$\operatorname{Fix} k \in \mathbb{N}$.
$\Phi_{k}^{X}: X \rightarrow \mathbb{C}^{k} \simeq \mathbb{R}^{2 k}$ may not be an embedding... but it doesn't matter
$X \mapsto \Phi^{X}$ may not be injective... but we can bound its fibers:

Thm: [Maria, O., Solomon '19] Assume $\Phi_{k}^{X}(X)=\Phi_{k}^{Y}(Y)$, under the same conditions as previously. Then, $\mathrm{d}_{\mathrm{GH}}(X, Y) \leq E_{X, k}+E_{Y, k}$, where $E_{X, k}$ measures the sup-norm difference between d and its order- k eigenfunction expansion $(x, y) \mapsto \sum_{i=1}^{k} \lambda_{i} \phi_{i}(x) \phi_{i}(y)$.

Cor: [Maria, O., Solomon '19] Assume $\Phi_{k}^{X}(X)=\Phi_{k}^{Y}(Y)$, where X, Y are finite or have finite non-zero spectrum. Then, under the same conditions as previously, and for k large enough, X and Y are isometric.

Thank you

