Journée statistique et informatique pour la science des données IHES, January 2020

The pre-image problem from a topological perspective

(nnía_

Preimage problem in data Sciences

Preimage problem in data Sciences

Mathematical framework:

Mathematical framework:

Mathematical framework:

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over $\mathbb R$
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over $\mathbb R$
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over $\mathbb R$
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)
- Finite set of intervals (barcode) encodes births/deaths of topological features

- Nested family (*filtration*) of sublevel-sets $f^{-1}((-\infty, \alpha])$ for α ranging over \mathbb{R}
- Track the evolution of the topology throughout the family (homology)
- Finite set of intervals (barcode) encodes births/deaths of topological features

Theorem (Stability): For any *tame* functions $f, g: X \to \mathbb{R}$, $d_b^{\infty}(\text{Dgm } f, \text{Dgm } g) \leq ||f - g||_{\infty}$.

5

 $f: \quad X = \mathbb{R}^d \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

 $f: \quad X = \mathbb{R}^d \to \mathbb{R}$ $x \mapsto \min_{p \in P} \|x - p\|_2$

Vanilla pipeline

Union of balls

pers. barcode/diag.

Vanilla pipeline

Many variants (filters, topological constructions, approximations)

density estimators

single-source distances

others:

- non-linear projections
- curvature measures
- PDE solutions (heat, wave)
- etc.

Software

http://gudhi.inria.fr/

- ► reference library in TDA (encompasses all aspects)
- \blacktriangleright 60k downloads in the last 12 months
- developers community, editorial board
- competitors (specialized on specific aspects of the TDA pipeline): DIONYSUS, PHAT, DIPHA, RIPSER, EIRENE

right inverse: realize barcode as the PH of some isom. class **left inverse:** characterize isometry class uniquely

Right inverses for Topological Persistence

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as the (reduced) homology of some topological space.

bouquets of spheres

Right inverses for Topological Persistence

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as the (reduced) homology of some topological space.

Thm: Any locally finite point cloud in \mathbb{R}^2 can be realized as the (extended) persistence diagram of some function on a topological space.

Local right inverses

point cloud

Rips filtration

barcode

Local right inverses

Thm: [Gameiro, Hiraoka, Obayashi '16] (i) *Generic* point cloud $\Rightarrow \exists U \ni P$ in \mathbb{R}^{nd} over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \to \mathbb{R}^{2m+n}$ computing ordered barcodes. (ii) For U small enough, \tilde{B} is of class C^{∞} .

Thm: [Gameiro, Hiraoka, Obayashi '16]

(i) Generic point cloud $\Rightarrow \exists U \ni P$ in \mathbb{R}^{nd} over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \to \mathbb{R}^{2m+n}$ computing ordered barcodes.

(ii) For U small enough, \tilde{B} is of class C^{∞} .

Thm: [Gameiro, Hiraoka, Obayashi '16]

(i) Generic point cloud $\Rightarrow \exists U \ni P$ in \mathbb{R}^{nd} over which the mapping $P \mapsto v$ can be extended to a function $\tilde{B}: U \to \mathbb{R}^{2m+n}$ computing ordered barcodes.

(ii) For U small enough, \tilde{B} is of class C^{∞} .

Thm: [Leygonie, O., Tillmann '19]

If F is C^r on some generic subset of \mathcal{M} , then so is $Dgm \circ F$.

Prop: [Chain Rule] If $Dgm \circ F$ and V are r-differentiable, then $V \circ Dgm \circ F$ is C^r and $d_{\theta}(V \circ Dgm \circ F) = d_{\tilde{B}(\theta)}(V \circ Q_{m,n}) \circ d_{\theta}\tilde{B}$ is independent of lift

Applications:

Applications:

Continuation / inverse problems: (Newton-Raphson)

Left inverses?

distance functions

 $Dgm \mathcal{R}(P) = \{(0, +\infty)\} \sqcup \{(0, 1)\} \sqcup \{(0, 1)\}$

\Rightarrow diagrams for different values of α are indistinguishable

Left inverses?

• distance functions

Prop: For any *metric tree* (P, d):

$$\operatorname{Dgm} \mathcal{R}(P) = \{(0, +\infty)\}\$$

 \Rightarrow no information on the metric

Left inverses?

• distance functions

Prop: For any *metric tree* (P, d):

$$\operatorname{Dgm} \mathcal{R}(P) = \{(0, +\infty)\}$$

 \Rightarrow no information on the metric

real-valued functions

Prop: For any $f: X \to \mathbb{R}$ and $h: Y \to X$ homeomorphism:

 $\operatorname{Dgm} f \circ h = \operatorname{Dgm} f$

 \Rightarrow Invariance under homeomorphisms, not just isometries

Persistent Homology Transform (PHT)

Focus: compact subanalytic sets in \mathbb{R}^d

PHT: $\mathcal{F} = \{f_w\}_{w \in \mathbb{S}^{d-1}}$ where $f_w = \langle \cdot, w \rangle$

Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018] [Ghrist, Levanger, Mai 2018] With $\mathcal{F} = \{\langle \cdot, w \rangle\}_{w \in \mathbb{S}^{d-1}}$, PHT is injective on the class of compact subanalytic sets in \mathbb{R}^d .

Still true for a finite $(O(2^d))$ set of directions if we restrict to geometric simplicial complexes.

Formalism:

 $M \subset \mathbb{R}^d \quad \checkmark$

 $\mathbb{1}_M: \mathbb{R}^d \to \mathbb{Z}$

compact subanalytic constructible

Thm: For $\mathbb{1}_M, \mathbb{1}_N \in CF(\mathbb{R}^d)$: $ECT(\mathbb{1}_M) = ECT(\mathbb{1}_N) \Rightarrow \mathbb{1}_M = \mathbb{1}_N$

PHT for compact length spaces

Focus: compact length spaces (X, d_X)

PHT: $\mathcal{F} = \{ d_X(\cdot, x) \}_{x \in X}$

Focus: compact metric graphs (1-dimensional stratified length spaces)

PHT: $\mathcal{F} = \{ d_X(\cdot, x) \}_{x \in X}$

Thm (stability): [Dey, Shi, Wang 2015] For any compact metric graphs X, Y,

 $d_{\mathrm{H}}(\mathsf{PHT}(X), \mathsf{PHT}(Y)) \le 18 d_{\mathrm{GH}}(X, Y).$

Thm (density): [Gromov]

Compact metric graphs are GH-dense among the compact length spaces.

Q: injectivity of PHT on metric graphs?

Bad news: PHT is not injective on all compact metric graphs

$\mathsf{PHT}(X) = \mathsf{PHT}(Y) \text{ while } X \not\simeq Y$

Bad news: PHT is not injective on all compact metric graphs

 $\mathsf{PHT}(X) = \mathsf{PHT}(Y)$ while $X \not\simeq Y$

Note: Aut(X) is non-trivial, hence $\Psi_X : x \mapsto Dgm d_X(\cdot, x)$ is not injective

Let $Inj_{\Psi} = \{X \text{ compact metric graph s.t. } \Psi_X \text{ is injective}\}$

Thm: (injectivity) [O., Solomon '18]

- PHT is GH-*locally* injective on compact metric graphs.
- PHT is injective on Inj_{Ψ} .
- Inj_{Ψ} is generic among the compact metric graphs.

— PHT is injective on a dense subset of the compact length spaces

Let (X, d, μ) be a compact metric (Borel) measure space

Distance kernel operator:

$$D^{X} : L^{2}(X) \to L^{2}(X)$$
$$(D^{X}f)(x) := \int_{X} f(y) d(x, y) d\mu(y)$$

Let (X, d, μ) be a compact metric (Borel) measure space

Distance kernel operator:

$$D^X : L^2(X) \to L^2(X)$$
$$(D^X f)(x) := \int_X f(y) d(x, y) d\mu(y)$$

Hilbert-Schmidt op. \Rightarrow eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots$, assumed simple wlog

Choose unit eigenfunctions ϕ_1, ϕ_2, \cdots , such that $\langle \phi_i, |\phi_i| \rangle > 0$

Let (X, d, μ) be a compact metric (Borel) measure space

Distance kernel operator:

$$D^X : L^2(X) \to L^2(X)$$
$$(D^X f)(x) := \int_X f(y) d(x, y) d\mu(y)$$

Hilbert-Schmidt op. \Rightarrow eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots$, assumed simple wlog Choose unit eigenfunctions ϕ_1, ϕ_2, \cdots , such that $\langle \phi_i, |\phi_i| \rangle > 0$

 $\begin{array}{l|l} \text{Mapping: } \Phi^X:X\to\mathbb{C}^\infty & \quad \text{no}\\ \Phi^X:=(\sqrt{\lambda_1}\phi_1,\sqrt{\lambda_2}\phi_2,\cdots) & \quad \text{d}\\ \Phi^X_k:=\Phi^X_{|\mathbb{C}^k} & \quad \ \ \end{array}$

note:

$$d(x, y) = \sum_{i \in \mathbb{N}} \lambda_i \phi_i(x) \phi_i(y)$$
$$= \sum_{i \in \mathbb{N}} \sqrt{\lambda_i} \phi_i(x) \sqrt{\lambda_i} \phi_i(y)$$

Let (X, d, μ) be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon '19] If μ is strictly positive on open sets, then $\Phi^X : X \to \mathbb{C}^\infty$ is a topological embedding

Thm: [Maria, O., Solomon '19] Let d, d' be metrics on X, and let μ, μ' be strictly positive measures on X such that μ is absolutely continuous w.r.t. μ' . Then,

$$\Phi^{(X,d,\mu)}(X) = \Phi^{(X,d',\mu')}(X) \implies d = d'$$

Let (X, d, μ) be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon '19] If μ is strictly positive on open sets, then $\Phi^X : X \to \mathbb{C}^\infty$ is a topological embedding

Thm: [Maria, O., Solomon '19] Let d, d' be metrics on X, and let μ, μ' be strictly positive measures on X such that μ is absolutely continuous w.r.t. μ' . Then,

$$\Phi^{(X,d,\mu)}(X) = \Phi^{(X,d',\mu')}(X) \implies d = d'$$

Pb: the Euclidean PHT and ECT apply only to finite-dimensional spaces

Let (X, d, μ) be a compact metric (Borel) measure space

Fix $k \in \mathbb{N}$.

 $\Phi_k^X: X \to \mathbb{C}^k \simeq \mathbb{R}^{2k}$ may not be an embedding... but it doesn't matter

Let (X, d, μ) be a compact metric (Borel) measure space

Fix $k \in \mathbb{N}$.

 $\Phi_k^X: X \to \mathbb{C}^k \simeq \mathbb{R}^{2k}$ may not be an embedding... but it doesn't matter

 $X \mapsto \Phi^X$ may not be injective... but we can bound its fibers:

Thm: [Maria, O., Solomon '19] Assume $\Phi_k^X(X) = \Phi_k^Y(Y)$, under the same conditions as previously. Then, $d_{GH}(X,Y) \leq E_{X,k} + E_{Y,k}$, where $E_{X,k}$ measures the sup-norm difference between d and its order-k eigenfunction expansion $(x, y) \mapsto \sum_{i=1}^k \lambda_i \phi_i(x) \phi_i(y)$.

Cor: [Maria, O., Solomon '19] Assume $\Phi_k^X(X) = \Phi_k^Y(Y)$, where X, Y are finite or have finite non-zero spectrum. Then, under the same conditions as previously, and for k large enough, X and Y are isometric.

Thank you