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This is an important trend in current AI research, and one that is particularly difficult on graphs, time series, etc.
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Can the feature map be inverted?

- Right inverse (∃ preimage): interpretable AI

- Left inverse (∃! preimage): reliable interpretation

Scenarios: feature interpretation, deep learning, inverse problems, etc.

?
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by construction, the feature map φ to the RKHS associated to a given kernel is essentially surjective in the sense that the RKHS is the metric completion of the linear span of the φ(x) for x ∈ X universality of the associated kernel gives us that the RKHS is a dense subset of the set of continuous bounded functions over a compact domain
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f : X → R (filter)

persistence

Dgm f

X topological space

∞

X

R

f

signature: persistence diagram

encodes the topological structure of the pair (X, f)

Topological Persistence (in a nutshell)
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α

β

R

R

Inside the black box:

α

β

∞

• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α ranging over R
• Track the evolution of the topology throughout the family (homology)

• Finite set of intervals (barcode) encodes births/deaths of topological features

f

• Equivalent representation as a discrete
measure in the plane (pers. diagram).

Topological Persistence (in a nutshell)
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R

R

∞

Theorem (Stability):
For any tame functions f, g : X → R, d∞b (Dgm f,Dgm g) ≤ ‖f − g‖∞.

f

Topological Persistence (in a nutshell)

g



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



f : X = Rd → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320

5

Example: distance function



Vanilla pipeline

6

metric space (P, d)

Union of balls / Rips complex pers. barcode/diag.

(geometry)
(homology)



Vanilla pipeline

6

metric space (P, d)

Union of balls / Rips complex pers. barcode/diag.

(geometry)
(homology)

t/2

X = 2P \ {∅}

f : σ = {p0, · · · , pk} 7→ max
1≤i<j≤k

d(pi, pj)

Rips filtration R(P ): Rt(P ) := f−1((−∞, t])



Many variants (filters, topological constructions, approximations)
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w

Sd−1

projectionsdensity estimators

single-source distances

others:

• non-linear projections

• curvature measures

• PDE solutions (heat, wave)

• etc.
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Software

Dionysus, PHAT, DIPHA, Ripser, Eirene

I competitors (specialized on specific aspects of the TDA pipeline):

I reference library in TDA (encompasses all aspects)

I 60k downloads in the last 12 months

I developers community, editorial board

http://gudhi.inria.fr/



The problem
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left inverse: characterize isometry class uniquely

Lipschitz op (filter)

right inverse: realize barcode as the PH of some isom. class

compact metric space persistence barcode/diagram



M decomposes as a direct sum of interval modules, each of which is realized as the PH of a constant map fj on a sphere of appropriate dimension, bounding a ball over the interior of which fj is extended to a constant function with appropriate value. Then take the wedge sum of these balls, assigning the mimimum value to the basepoint Note: the tilda over H means ”reduced homology” Note: the non-persistent equivalent is to realize a (graded) vector space as the homology of a bouquet of spheres of various dimensions. More generally, realizing f.g. graded abelian groups as wedge sums of Moore spaces

Right inverses for Topological Persistence

10

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as
the (reduced) homology of some topological space.

bouquets of spheres
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Thm: Any locally finite point cloud in R2 can be realized as the (extended)
persistence diagram of some function on a topological space.

Fact: [Moore spaces] Any finitely generated Abelian group can be realized as
the (reduced) homology of some topological space.

bouquets of spheres handlebody theory



Idea: get local right inverses via the local inversion theorem from differential calculus. Problem: there is no smooth structure on Bar Solution: fix number and order or bars, and work in some Rn
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point cloud Rips filtration barcode

P ∈ Rnd v ∈ R2m+n

Local right inverses

ordered barcodes
with m bounded and
n unbounded intervals

(@ smooth structure on Bar)

ordered point clouds
with n points in Rd
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point cloud Rips filtration barcode

P ∈ Rnd v ∈ R2m+n

Thm: [Gameiro, Hiraoka, Obayashi ’16]

(i) Generic point cloud⇒ ∃U 3 P in Rnd over which the mapping P 7→ v can
be extended to a function B̃ : U → R2m+n computing ordered barcodes.

Observation: order of distances is constant in small enough U .

(ii) For U small enough, B̃ is of class C∞.

Local right inverses
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Local lift:
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struct. on R2m+n down to Bar



Idea: get local right inverses via the local inversion theorem from differential calculus. Problem: there is no smooth structure on Bar Solution: fix number and order or bars, and work in some Rn

11

Local right inverses

R2m+n

Qm,n

��

V ◦Qm,n

''M

∃B̃

44

F
// Filter(K)

Dgm
// Bar

V
// N

Prop: [Chain Rule]

If Dgm ◦F and V are r-differentiable, then V ◦Dgm ◦F is Cr and

dθ(V ◦Dgm ◦F ) = dB̃(θ)(V ◦Qm,n) ◦ dθB̃ is independent of lift

Thm: [Leygonie, O., Tillmann ’19]

If F is Cr on some generic subset of M, then so is Dgm ◦F .



w

Idea: get local right inverses via the local inversion theorem from differential calculus. Problem: there is no smooth structure on Bar Solution: fix number and order or bars, and work in some Rn

11

Local right inverses
Applications:

Optimization / ML:

[Carrière et al. ’19]

(gradient back-propagation)



This is the main classification of glass states, together with typical persistence diagrams. The goal of that work was to simulate the heating then cooling process of glass, and to dermine to which state it will transition using a point continuation method

w

Idea: get local right inverses via the local inversion theorem from differential calculus. Problem: there is no smooth structure on Bar Solution: fix number and order or bars, and work in some Rn

11

Local right inverses
Applications:

Optimization / ML:

[Carrière et al. ’19]

Continuation / inverse problems:

(gradient back-propagation)

(Newton-Raphson)

liquid crystalline

[Nakamura et al. ’15]

am
or

ph
ou

s



Left inverses?
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• distance functions

α ≥ π/21 1

⇒ diagrams for different values of α are indistinguishable

DgmR(P ) = {(0,+∞)} t {(0, 1)} t {(0, 1)}



Left inverses?
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• distance functions

Prop: For any metric tree (P,d):

DgmR(P ) = {(0,+∞)}

X is 0-hyperbolic

⇒ metric balls are convex

⇒ geodesic triangles are tripods

⇒ no information on the metric



too large a class of transformations

Left inverses?
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• distance functions

Prop: For any metric tree (P,d):

DgmR(P ) = {(0,+∞)}

⇒ no information on the metric

• real-valued functions

Prop: For any f : X → R and h : Y → X homeomorphism:

Dgm f ◦ h = Dgm f

⇒ Invariance under homeomorphisms, not just isometries



note: here, as before, Dgm f contains the diagrams of f of all dimensions, overlaid with labels

implicit: PHT(X) = PHT(X,F)

(X, dX) (compact)

R

· · · F = {fw}w∈W

(discrete measures, Wp)

Dgm fw

PHT(X)={Dgm fw | w ∈W}

PHT(X)

Persistent Homology Transform (PHT)

13



PHT for compact subanalytic sets in Rd

14

w

Sd−1
X

Focus: compact subanalytic sets in Rd

PHT: F = {fw}w∈Sd−1 where fw = 〈·, w〉

Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018]

[Ghrist, Levanger, Mai 2018]

With F = {〈·, w〉}w∈Sd−1 , PHT is injective on
the class of compact subanalytic sets in Rd.

Still true for a finite (O(2d)) set of directions if
we restrict to geometric simplicial complexes.



φ : X → R is constructible if it satisfies the following axioms: • φ−1(n) is subanalytic for all n ∈ Z. • the set of fibers {φ−1(n)}n∈Z is locally finite, i.e. for every point x ∈ X there is some neighborhood Ωx 3 x that intersects only finitely many fibers.
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φ : X → R is constructible if it satisfies the following axioms: • φ−1(n) is subanalytic for all n ∈ Z. • the set of fibers {φ−1(n)}n∈Z is locally finite, i.e. for every point x ∈ X there is some neighborhood Ωx 3 x that intersects only finitely many fibers.

here, the hyperplane is given by its normal vector v ∈ Sd−1 and the shift t ∈ R

This trivially implies that M = N . Since ECT = π ◦ PHT, we also have that PHT(M) = PHT(n)⇒M = N .
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constructible
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ECT(1M ) : Sd−1 → CF(R)

v 7−→
(
t 7→

∫
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)

Thm: For 1M ,1N ∈ CF(Rd): ECT(1M ) = ECT(1N )⇒ 1M = 1N

Radon transform

CF(Rd)→ CF(AffGrd)

inversion theorem

[Schapira 1995]



single-source distances

PHT for compact length spaces

15

Focus: compact length spaces (X, dX)

PHT: F = {dX(·, x)}x∈X



Note: this result does not extend to the class of compact length spaces. Indeed, a graph approximating a surface has no 2-homology in its barcodes. So, even the density result below does not help.

from now on we will focus on compact metric graphs, which are length spaces that admit a (finite) 1-dimensional stratification

PHT for metric graphs

16

Focus: compact metric graphs (1-dimensional stratified length spaces)

Thm (stability): [Dey, Shi, Wang 2015]

For any compact metric graphs X,Y ,

dH(PHT(X),PHT(Y )) ≤ 18 dGH(X,Y ).

PHT: F = {dX(·, x)}x∈X

Thm (density): [Gromov]

Compact metric graphs are GH-dense
among the compact length spaces.

Q: injectivity of PHT on metric graphs?



PHT for metric graphs
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Bad news: PHT is not injective on all compact metric graphs

X Y

PHT(X) = PHT(Y ) while X 6' Y



So, maybe there is a connection between ΨX being injective and PHTitself being injective... this is precisely what our results show

PHT for metric graphs

16

Bad news: PHT is not injective on all compact metric graphs

X Y

PHT(X) = PHT(Y ) while X 6' Y

Note: Aut(X) is non-trivial, hence ΨX : x 7→ Dgm dX(·, x) is not injective



PHT for metric graphs
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Let InjΨ = {X compact metric graph s.t. ΨX is injective}

Thm: (injectivity) [O., Solomon ’18]

• PHT is GH-locally injective on compact metric graphs.

• PHT is injective on InjΨ.

• InjΨ is generic among the compact metric graphs.

PHT is injective on a dense subset of the compact length spaces



PHT for compact metric measure spaces
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Let (X, d, µ) be a compact metric (Borel) measure space

(DXf)(x) :=

∫
X

f(y)d(x, y)dµ(y)

DX : L2(X)→ L2(X)

Distance kernel operator:



Hilbert-Schmidt means that the operator is compact, self-adjoint, and that its spectrum converges in `2 (i.e.
∑
i∈N λ

2
i < +∞) Note: compact and self-adjoint implies the existance of a real spectrum (by the spectral theorem)
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Let (X, d, µ) be a compact metric (Borel) measure space

(DXf)(x) :=

∫
X

f(y)d(x, y)dµ(y)

DX : L2(X)→ L2(X)

Distance kernel operator:

Hilbert-Schmidt op. ⇒ eigenvalues |λ1| ≥ |λ2| ≥ · · · , assumed simple wlog

Mapping: ΦX : X → C∞

ΦX := (
√
λ1φ1,

√
λ2φ2, · · · )

Choose unit eigenfunctions φ1, φ2, · · · , such that 〈φi, |φi|〉 > 0

ΦXk := ΦX|Ck

note:

d(x, y) =
∑
i∈N λiφi(x)φi(y)

=
∑
i∈N
√
λiφi(x)

√
λiφi(y)



Caveats: - the measures must be absolutely continuous w.r.t. each other - under this condition, having the same embedding implies having the same metric, but not necessarily the same measure. Thus, the injectivity applies to the metric spaces, not to their measures.

Note: if X,Y are not homeomorphic, then their embeddings are different (by the previous theorem). Therefore, it suffices to consider the case of a same base set X, with two different metrics and measures.

PHT for compact metric measure spaces

17

Let (X, d, µ) be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon ’19] If µ is strictly positive on open sets, then
ΦX : X → C∞ is a topological embedding

Thm: [Maria, O., Solomon ’19] Let d,d′ be metrics on X, and let µ, µ′

be strictly positive measures on X such that µ is absolutely continuous
w.r.t. µ′. Then,

Φ(X,d,µ)(X) = Φ(X,d′,µ′)(X) =⇒ d = d′
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PHT for compact metric measure spaces

17

Let (X, d, µ) be a compact metric (Borel) measure space

Thm: [Maria, O., Solomon ’19] If µ is strictly positive on open sets, then
ΦX : X → C∞ is a topological embedding

Thm: [Maria, O., Solomon ’19] Let d,d′ be metrics on X, and let µ, µ′

be strictly positive measures on X such that µ is absolutely continuous
w.r.t. µ′. Then,

Φ(X,d,µ)(X) = Φ(X,d′,µ′)(X) =⇒ d = d′

Pb: the Euclidean PHT and ECT apply only to finite-dimensional spaces
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Let (X, d, µ) be a compact metric (Borel) measure space

Fix k ∈ N.

ΦXk : X → Ck ' R2k may not be an embedding... but it doesn’t matter

X 7→ ΦX may not be injective... but we can bound its fibers:

Thm: [Maria, O., Solomon ’19] Assume ΦXk (X) = ΦYk (Y ), under the same
conditions as previously. Then, dGH(X,Y ) ≤ EX,k + EY,k, where EX,k
measures the sup-norm difference between d and its order-k eigenfunction
expansion (x, y) 7→

∑k
i=1 λiφi(x)φi(y).

Cor: [Maria, O., Solomon ’19] Assume ΦXk (X) = ΦYk (Y ), where X,Y are
finite or have finite non-zero spectrum. Then, under the same conditions
as previously, and for k large enough, X and Y are isometric.



Thank you


