
The skein algebra of the 4-punctured sphere
from curve counting

Pierrick Bousseau

CNRS, Paris-Saclay

2021 IHES Summer School
Enumerative Geometry, Physics and Representation Theory

July 5, 2021
Talk based on arXiv:2009.02266

Pierrick Bousseau The skein algebra of the 4-punctured sphere 1 / 42



Introduction

Topics:
Low-dimensional topology.
Complex enumerative algebraic geometry.
String theory realizations of supersymmetric gauge theories.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 2 / 42



Introduction

Topics:
Low-dimensional topology.
Complex enumerative algebraic geometry.
String theory realizations of supersymmetric gauge theories.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 2 / 42



Introduction

Topics:
Low-dimensional topology.
Complex enumerative algebraic geometry.
String theory realizations of supersymmetric gauge theories.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 2 / 42



Introduction

Topics:
Low-dimensional topology.
Complex enumerative algebraic geometry.
String theory realizations of supersymmetric gauge theories.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 2 / 42



Introduction

Low-dimensional topology: knots, links...
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Introduction

Complex (over C) enumerative algebraic geometry: 27 complex lines
on a complex cubic surface (Cayley, Salmon, 1849)
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Introduction

Today, focus on a specific example:
Low-dimensional topology: skein algebra of S0,4, knots and links in
S0,4 × (0, 1).
Enumerative algebraic geometry: counting holomorphic curves in
complex cubic surfaces.
Physics: 4-dimensional N = 2 supersymmetric SU(2) gauge theory
with 4 hypermultiplets in the fundamental representation (Nf = 4).

Non-trivial mathematical consequences: proof of positivity conjectures
about the skein algebra of S0,4 (Thurston (2013), Bakshi, Mukherjee,
Przytycki, Silvero and Wang (2018)) (so about curves drawn on a
4-punctured sphere) by counting Riemann surfaces in a complex cubic
surface!
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Plan

The cubic surface as SL2(C) character variety and quantization via
the skein algebra.
Mirror symmetry and curve counting for the cubic surface.
Quantization from higher genus curve counting.
Comparison between the skein algebra and the higher genus mirror
symmetry quantizations.
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Character varieties

Γ a finitely generated group, G a reductive algebraic group over C
(e.g. G = GLn(C) or SLn(C))
Affine variety Hom(Γ,G) of group morphisms from Γ to G .
Natural action of G on Hom(Γ,G) by conjugation.
Take the quotient in the sense of geometric invariant theory, get the
character variety: ChG(Γ) = Spec (O(Hom(Γ,G))G). It is an affine
variety of finite type over C.
Particularly interesting case: Γ = π1(Σ) for Σ a finite type topological
space. Denote ChG(Σ) := ChG(π1(Σ)).
Take Σ = Sg ,`, a topological surface, complement of ` points in a
genus g compact orientable surface.
ChG(Sg ,`) admits a natural Poisson structure, Poisson bracket on the
algebra of regular functions ({−,−} Lie bracket, biderivation with
respect to the product).
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Character varieties

Example: ` = 0, G = GL1(C) = C∗, then ChGL1(C)(Sg ,0) = (C∗)2g . More
precisely, taking monodromy around elements of a basis (γj)1≤j≤2g of
H1(Sg ,0,Z), get monomials zγj on (C∗)2g . Poisson bracket:

{zγi , zγj} = 〈γi , γj〉zγi zγj

where 〈γi , γj〉 is the intersection number of γi and γj .
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X = ChSL2(C)(S0,4)

Example: g = 0, ` = 4, G = SL2(C), then X = ChSL2(C)(S0,4) is a
4-parameter family of affine cubic surfaces (Vogt 1889, Fricke, 1896).

Functions on ChSL2(C)(S0,4) are obtained by taking trace of the
monodromy around loops on S0,4. Algebra generators:
a1, a2, a3, a4, γv1 , γv2 , γv3 , where a1, a2, a3, a4 are traces around small loops
around the punctures, and γv1 , γv2 and γv3 are traces around loops
separating the set of the 4 punctures into two.
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X = ChSL2(C)(S0,4)

X = ChSL2(C)(S0,4), 7 algebra generators a1, a2, a3, a4, γv1 , γv2 , γv3 , single
relation

γv1γv2γv3 = γ2
v1 + γ2

v2 + γ2
v3 + R1,0γv1 + R0,1γv2 + R1,1γv3 + y − 4 ,

where

R1,0 := a1a2 + a3a4 , R0,1 := a1a3 + a2a4 , R1,1 := a1a4 + a2a3 ,

y := a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4

a1, a2, a3, a4 are in the center of the Poisson bracket, fixing them, get a
cubic surface. Non-trivial Poisson brackets:

{γv1 , γv2} = γv1γv2 + 2γv3 − R1,1 , {γv2 , γv3} = γv2γv3 + 2γv1 − R1,0 ,

{γv3 , γv1} = γv3γv1 + 2γv2 − R0,1 .
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X = ChSL2(C)(S0,4)

ν : X = ChSL2(C)(S0,4)→ A4
a1,a2,a3,a4 is a very much studied object.

As a character variety: Riemann-Hilbert analytic isomorphism with
moduli space of flat connections with regular singularities, non-abelian
Hodge correspondence: homeomorphic to a moduli space of parabolic
Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of
N = 2 Nf = 4 SU(2) gauge theory.
Smooth fibers of ν : X = ChSL2(C)(S0,4)→ A4

a1,a2,a3,a4 admits
complete hyperkähler metrics.
Specific to S0,4: phase space of the Painlevé VI non-linear differential
equation (isomonodromy condition for SL2(C)-connections on S0,4).
Rich dynamics of the mapping class group action.

In this talk, focus on the question of quantizing X . Two approaches: one
is well-known (via 3-dimensional topology and the skein algebra), the other
is new (higher-genus version of mirror symmetry). Non-trivial results when
comparing the two.
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Deformation quantization

Definition
Let (A, {−,−}) be a Poisson algebra. A deformation quantization of A is
a flat formal 1-parameter family of associative algebras A~ such that

A~=0 = A
if we lift elements f , g ∈ A to f̃ , g̃ ∈ A~, then

f̃ g̃ − g̃ f̃ = {f , g}~ + O(~2) .

General questions: given a Poisson algebra, can we find a deformation
quantization? Can we find a “nice" deformation quantizations?
One can ask these questions for the algebra of regular functions of the
character varieties ChG(Sg ,`), and in particular for X = ChSL2(C)(S0,4).
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Deformation quantization

Example: ` = 0, G = GL1(C) = C∗, then ChGL1(C)(Sg ,0) = (C∗)2g .

{zγi , zγj} = 〈γi , γj〉zγi zγj

A “nice" deformation quantization is provided by the quantum torus:
ẑγi ẑγj = q〈γi ,γj 〉ẑγj ẑγi , where q = e~.
For X = ChSL2(C)(S0,4), it is non-trivial
{γv1 , γv2} = γv1γv2 + 2γv3 − R1,1 , {γv2 , γv3} = γv2γv3 + 2γv1 − R1,0 ,

{γv3 , γv1} = γv3γv1 + 2γv2 − R0,1 .

A general way to construct deformation quantizations of character
varieties is provided by the skein algebras, coming from 3-dimensional
topology. Will focus on the case G = SL2(C).
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Knots, links and framing

Knot in a manifold: a connected compact embedded 1-dimensional
submanifold.
Link in a manifold: the disjoint union of finitely many knots.
Framing of a link: a choice of nowhere vanishing section of its normal
bundle, that is the choice of realization of the link as the union of
boundary components of some annuli.
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Skein modules of 3-manifolds

The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an
oriented 3-manifold M is the Z[A±]-module generated by isotopy
classes of framed links in M satisfying the skein relations

= A + A−1 and L ∪ = −(A2 + A−2) L .

The diagrams in each relation indicate framed links that can be
isotoped to identical embeddings except within the neighborhood
shown, where the framing is vertical.
The skein module of M = R3 is Z[A±] (generated by the empty link).
The class of a framed link L ⊂ R3 in Z[A±] is the Kauffman bracket
polynomial of L (equivalent to the Jones polynomial).
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Skein algebras of surfaces

Given an oriented 2-manifold S, one can define a natural algebra
structure on the Kauffmann bracket skein module of the 3-manifold
M := S× (−1, 1): given two framed links L1 and L2 in S× (−1, 1),
and viewing the interval (−1, 1) as a vertical direction, the product
L1L2 is defined by placing L1 on top of L2.
We denote by SkA(S) the resulting associative Z[A±]-algebra with
unit. The skein algebra SkA(S) is in general non-commutative.
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Skein algebras of surfaces

We consider the case where S is the complement Sg ,` of a finite
number ` of points in a compact oriented 2-manifold of genus g .
A multicurve on Sg ,` is the union of finitely many disjoint compact
connected embedded 1-dimensional submanifolds of Sg ,` such that
none of them bounds a disc in Sg ,`. Identifying Sg ,` with
Sg ,` × {0} ⊂ Sg ,` × (−1, 1), a multicurve on Sg ,` endowed with the
vertical framing naturally defined a framed link in Sg ,` × (−1, 1).

Theorem (Przytycki)
Isotopy classes of multicurves form a basis of SkA(Sg ,`) as Z[A±]-module.
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The skein algebra quantization of the SL2 character variety

For every γ multicurve on Sg ,` with connected components
γ1, · · · , γr , the map sending a representation ρ : π1(Sg ,`)→ SL2(C)
to

∏r
j=1(− tr(ρ(γj))) defines a regular function fγ on ChSL2(C)(Sg ,`).

Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

The skein algebra SkA(Sg ,`) with A = −e ~
4 is a deformation quantization

of the algebra of regular functions on X = ChSL2(C)(Sg ,`). The
isomorphism at A = −1 is given by γ 7→ fγ .

Classical limit of the skein relation: for every M,N ∈ SL2(C),

tr(M) tr(N) = tr(MN) + tr(M−1N) .
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The skein algebra of the 4-punctured sphere
Focus on the case of the 4-punctured sphere S0,4.
Peripheral curves a1, a2, a3, a4, in the center of SkA(S0,4), so we can
view SkA(S0,4) as a Z[A±][a1, a2, a3, a4]-module.
Isotopy classes of multicurves in S0,4 without peripheral connected
components are in bjection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .

{γp}p∈B(Z) is a basis of SkA(S0,4) as Z[A±][a1, a2, a3, a4]-module.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 21 / 42



The skein algebra of the 4-punctured sphere
Focus on the case of the 4-punctured sphere S0,4.
Peripheral curves a1, a2, a3, a4, in the center of SkA(S0,4), so we can
view SkA(S0,4) as a Z[A±][a1, a2, a3, a4]-module.
Isotopy classes of multicurves in S0,4 without peripheral connected
components are in bjection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .

{γp}p∈B(Z) is a basis of SkA(S0,4) as Z[A±][a1, a2, a3, a4]-module.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 21 / 42



The skein algebra of the 4-punctured sphere
Focus on the case of the 4-punctured sphere S0,4.
Peripheral curves a1, a2, a3, a4, in the center of SkA(S0,4), so we can
view SkA(S0,4) as a Z[A±][a1, a2, a3, a4]-module.
Isotopy classes of multicurves in S0,4 without peripheral connected
components are in bjection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .

{γp}p∈B(Z) is a basis of SkA(S0,4) as Z[A±][a1, a2, a3, a4]-module.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 21 / 42



The skein algebra of the 4-punctured sphere
Focus on the case of the 4-punctured sphere S0,4.
Peripheral curves a1, a2, a3, a4, in the center of SkA(S0,4), so we can
view SkA(S0,4) as a Z[A±][a1, a2, a3, a4]-module.
Isotopy classes of multicurves in S0,4 without peripheral connected
components are in bjection with

B(Z) := Z2/〈±id〉 ' {(m, n) ∈ Z× Z≥0 |m ≥ 0 if n = 0} .

{γp}p∈B(Z) is a basis of SkA(S0,4) as Z[A±][a1, a2, a3, a4]-module.

Pierrick Bousseau The skein algebra of the 4-punctured sphere 21 / 42



The skein algebra of the 4-punctured sphere

Theorem (Bullock-Przytycki, 2000)
SkA(S0,4) is generated as Z[A±][a1, a2, a3, a4]-algebra by γv1 := γ(1,0),
γv2 := γ(0,1), γv3 = γ(−1,1), with the relations

A−2γv1γv2 − A2γv2γv1 = (A−4 − A4)γv3 − (A2 − A−2)R1,1 ,

A−2γv2γv3 − A2γv3γv2 = (A−4 − A4)γv1 − (A2 − A−2)R1,0 ,

A−2γv3γv1 − A2γv1γv3 = (A−4 − A4)γv2 − (A2 − A−2)R0,1 ,

A−2γv1γv2γv3 = A−4γ2
v1 + A4γ2

v2 + A−4γ2
v3 + A−2R1,0γv1 + A2R0,1γv2

+A−2R1,1γv3 + y − 2(A4 + A−4) .

Same algebra from quantum Liouville theory (Teschner, Vartanov, 2013).
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Mirror symmetry for log Calabi-Yau surfaces

Mirror symmetry between two Calabi-Yau varieties: exchanges symplectic
geometry and complex geometry.

Non-compact Calabi-Yau varieties.
Log Calabi-Yau variety: (Y ,D), Y compact, D anticanonical divisor,
V = Y − D is non-compact Calabi-Yau.
Mirror symmetry as a way to construct algebraic varieties.
In dimension 2, mirror symmetry construction for log Calabi-Yau
surfaces (Gross-Hacking-Keel, 2001).
Enumerative geometry: counts rational curves in (Y ,D) (morally
holomorphic curves in V = Y − D).
Construction of the mirror family V → Spec C[NE (Y )].
Claim: one recovers X = ChSL2(C)(S0,4)→ A4 for Y : smooth
projective cubic surface, and D: triangle of lines on Y .
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Enumerative geometry of log Calabi-Yau surfaces

Y : smooth projective surface, D = D1 + ...+ Dn anticanonical cycle
of rational curves.
Fix a curve class β ∈ NE (Y ) ⊂ H2(Y ,Z).
Want to count rational curves (genus 0) C in Y of class β such that
C ∩ D is a single point.
Tangency condition at the intersection point?

Pierrick Bousseau The skein algebra of the 4-punctured sphere 24 / 42



Enumerative geometry of log Calabi-Yau surfaces

B: dual intersection complex of (Y ,D), cone R2
≥0 for each

intersection Di ∩ Di+1.
Contact order of a curve with D: B(Z).
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Enumerative geometry of log Calabi-Yau surfaces

v ∈ B(Z), β ∈ H2(Y ,Z)
Nβ

0,v : number of rational curves (genus 0) in Y of class β intersecting
D at a single point with contact order v .
Virtual dimension 0.
Precise definition of Nβ

0,v : log Gromov-Witten invariants of (Y ,D)
(Abrmovich-Chen, Gross-Siebert, 2011), Nβ

0,v ∈ Q in general.
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Enumerative geometry of log Calabi-Yau surfaces

Example: Y = P2, D: triangle of lines, Nβ
0,v = 0 for every v and β (a

curve of degree d > 0 in P2 always intersect D1, D2, D3).
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Enumerative geometry of log Calabi-Yau surfaces

Example: Y : cubic surface in P3, D: triangle of lines. Y contains 27 lines.
Each of the 24 lines not-contained in D intersects D in a single point.
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Enumerative geometry of log Calabi-Yau surfaces

24 = 3× 8, Nβij
0,vi

= 1, (vi : transverse intersection with Di , βj : class of the
line Lij intersecting Di , 1 ≤ j ≤ 8).
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Enumerative geometry of log Calabi-Yau surfaces

In Gromov-Witten theory, one considers maps f : C → Y and not just
embedded curves C ⊂ Y . If C = Lij is the line contributing to Nβij

0,vi
= 1,

then every genus 0 cover of Lij totally ramified over Lij ∩ Di contributes to
Nkβij

0,kvi
. Non-trivial moduli space, virtual computation

(Bryan-Pandharipande, 2001), Nkβij
0,kvi

= (−1)k−1

k2 .
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Mirror symmetry for log Calabi-Yau surfaces

Gross-Hacking-Keel (2011)
Starting point, log Calabi-Yau surfaces (Y ,D).
Enumerative geometry: counts rational curves in (Y ,D), invariants
N0,β

Construction of the mirror family V → Spec C[NE (Y )]. For each
intersection point Di ∩ Di+1, local models Ui ,i+1 → Spec C[NE (Y )].
Glue open sets Ti ⊂ Ui−1,i and T ′i ⊂ Ui ,i+1 isomorphic
(C∗)2 × Spec C[NE (Y )] using birational transformations exp{Hv ,−}
generated by the Hamiltonians

Hv =
∑
k≥0

∑
β

Nβ
0,kv zkv tβ ,

where v ∈ B(Z) is primitve in the cone dual to Di ∩ Di+1. Order
according to the slope of v .

Pierrick Bousseau The skein algebra of the 4-punctured sphere 31 / 42



Mirror symmetry for log Calabi-Yau surfaces

For H =
∑

k≥1
(−1)k−1

k2 xk (dilogarithm), exp{H,−} is a cluster
birational transformation x 7→ x , y 7→ y(1 + x).
Consistent gluing construction? The collection of numbers (Nβ

0,v )v ,β
needs to satisfy a non-trivial constraint, proved using tropical
geometry (Gross-Pandharipande-Siebert, 2009).
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Mirror symmetry for log Calabi-Yau surfaces

(Y ,D)
Counts of genus 0 curves: N0,β

Mirror family V → Spec C[NE (Y )], Poisson variety, family of
holomorphic symplectic (Calabi-Yau) surfaces.
Consequence of the construction: “canonical basis of theta functions"
(ϑv )v∈B(Z) pour Γ(V,OV).
Question: can we deform this mirror construction to produce a
deformation quantization of Γ(V,OV)?
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Quantum mirror symmetry for log Calabi-Yau surfaces

Problem: find a 1-parameter deformation of the enumerative question.
Naive idea: replace genus 0 curves by curves of arbitrary genus g .
Problem: virtual dimension wrong.
Solution: replace the non-compact Calabi-Yau surface V = Y − D by
the non-compact Calabi-Yau 3-fold V × C∗ and count higher genus
curves here. Get a definition of Nβ

g ,v ∈ Q.
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Quantum mirror symmetry for log Calabi-Yau surfaces

Construct a deformation quantization of the mirror family
V → Spec C[NE (Y )]. For each intersection point Di ∩ Di+1, local
Ûi ,i+1 → Spec C[NE (Y )]. Glue "non-commutative open sets" T̂i ⊂ Ui−1,i

and T̂ ′i ⊂ Ui ,i+1 isomorphic to quantum tori (̂C∗)2 × Spec C[NE (Y )]
using the quantum transformation exp[Ĥv ,−] defined by the quantum
Hamiltonian

Ĥv =
∑
g≥0

∑
k≥0

∑
β

Nβ
g ,kv zkv tβ~2g−1 .
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Quantum mirror symmetry for log Calabi-Yau surfaces

If C = Lij is the line contributing to Nβij
0,vi

= 1, every genus g cover of Lij

entirely ramified above Lij ∩ Di contributes to Nkβij
g ,kvi

. Non-trivial moduli
space, virtual computation (Bryan-Pandharipande, 2001),∑

g≥0 Nkβij
g ,kvi

~2g−1 = (−1)k−1

k
1

2 sin( k~
2 ) = i (−1)k−1

k
1

q
k
2−q− k

2
(Quantum

dilogarithm).

Consistency of the gluing? The collection of invariants (Nβ
g ,v )g ,v ,β needs

to satisfy a non-trivial constraint, proof using tropical geometry (B,
1806.11495).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 36 / 42



Quantum mirror symmetry for log Calabi-Yau surfaces

Conclusion (B, 2018):
(Y ,D)
Genus g log Gromov-Witten invariants Nβ

g ,v .
Deformation quantization V̂ → Spec C[NE (Y )] of the mirror family.
Â non-commutative algebra deforming Γ(V,OV)
Consequence of the construction: canonical basis of quantum theta
functions for (ϑ̂v )v∈B(Z) for Â.
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Comparison of quantizations

SL2(C) character variety X = ChSL2(C)(S0,4)→ A4, quantization
given by the skein algebra Sk(S0,4)
(Gross-Hacking-Keel-Siebert, 2019), X = ChSL2(C)(S0,4)→ A4 is the
result of the classical mirror construction applied to Y : smooth
projecitve cubic surface, D: triangle of lines.
Quantum mirror symmetry gives another deformation quantization Â
of X = ChSL2(C)(S0,4)→ A4.

Theorem (B, 2020)
The skein quantization and the mirror symmetry quantization agree:

Sk(S0,4) ' Â .
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Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
V : complement of a triangle of lines D in Y , hyperkähler manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × V × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T (uses Ooguri-Vafa
relation between open M2-branes and higher genus open topological
string).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 39 / 42



Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
V : complement of a triangle of lines D in Y , hyperkähler manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × V × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T (uses Ooguri-Vafa
relation between open M2-branes and higher genus open topological
string).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 39 / 42



Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
V : complement of a triangle of lines D in Y , hyperkähler manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × V × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T (uses Ooguri-Vafa
relation between open M2-branes and higher genus open topological
string).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 39 / 42



Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
V : complement of a triangle of lines D in Y , hyperkähler manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × V × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T (uses Ooguri-Vafa
relation between open M2-branes and higher genus open topological
string).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 39 / 42



Gauge theories from string/M-theory

T : N = 2 Nf = 4 SU(2) gauge theory.
Realization of T as a class S theory: N = (2, 0) 6d SCFT of class A1
compactified on S0,4. Physical realization of the skein algebra
SkA(S0,4) as an algebra of supersymmetric line operators.
V : complement of a triangle of lines D in Y , hyperkähler manifold,
D4 elliptic fibration in rotated complex structure, Σ: elliptic fiber.
Realization of T from M-theory on R1,3 × V × R3 with a M5-brane
on R1,3 × Σ. Physical realization of holomorphic curves in (Y ,D) as
M2-branes determining the BPS spectrum of T (uses Ooguri-Vafa
relation between open M2-branes and higher genus open topological
string).

Pierrick Bousseau The skein algebra of the 4-punctured sphere 39 / 42



Gauge theories from string/M-theory

Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of
framed BPS states. Wall-crossing of these IR expansions in terms of
(unframed) BPS states.
BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and
8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond
to the 8 lines of Y intersecting in a single point intersecting one
component of D (27 = 3× 8 + 3).
SL2(Z) S-duality and triality realized geometrically from the point of
view of enumerative geometry.
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Summary
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End

Thank you for your attention!
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