The skein algebra of the 4-punctured sphere from curve counting

Pierrick Bousseau

CNRS, Paris-Saclay
2021 IHES Summer School
Enumerative Geometry, Physics and Representation Theory July 5, 2021
Talk based on arXiv:2009.02266

Introduction

Topics:

- Low-dimensional topology.
- Complex enumerative algebraic geometry.

Introduction

Topics:

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

Introduction

Topics:

- Low-dimensional topology.
- Complex enumerative algebraic geometry.

Topics:

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.
- Low-dimensional topology: knots, links...

Introduction

- Complex (over \mathbb{C}) enumerative algebraic geometry: 27 complex lines on a complex cubic surface (Cayley, Salmon, 1849)

- String theory realizations of supersymmetric gauge theories

Introduction

Today, focus on a specific example:

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4}$, knots and links in $\mathbb{S}_{0,4} \times(0,1)$.

Introduction

Today, focus on a specific example:

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4}$, knots and links in $\mathbb{S}_{0,4} \times(0,1)$.
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.

Introduction

Today, focus on a specific example:

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4}$, knots and links in $\mathbb{S}_{0,4} \times(0,1)$.
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N}=2$ supersymmetric $S U(2)$ gauge theory with 4 hypermultiplets in the fundamental representation $\left(N_{f}=4\right)$.

Introduction

Today, focus on a specific example:

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4}$, knots and links in $\mathbb{S}_{0,4} \times(0,1)$.
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N}=2$ supersymmetric $S U(2)$ gauge theory with 4 hypermultiplets in the fundamental representation $\left(N_{f}=4\right)$. Non-trivial mathematical consequences: proof of positivity conjectures about the skein algebra of $\mathbb{S}_{0,4}$ (Thurston (2013), Bakshi, Mukherjee, Przytycki, Silvero and Wang (2018)) (so about curves drawn on a 4-punctured sphere) by counting Riemann surfaces in a complex cubic surface!

- The cubic surface as $S L_{2}(\mathbb{C})$ character variety and quantization via the skein algebra.
\qquad
- The cubic surface as $S L_{2}(\mathbb{C})$ character variety and quantization via the skein algebra.
- Mirror symmetry and curve counting for the cubic surface. Quantization from higher genus curve counting.
- The cubic surface as $S L_{2}(\mathbb{C})$ character variety and quantization via the skein algebra.
- Mirror symmetry and curve counting for the cubic surface. Quantization from higher genus curve counting.
- Comparison between the skein algebra and the higher genus mirror symmetry quantizations.

Character varieties

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from 「 to G.

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on $\operatorname{Hom}(\Gamma, G)$ by conjugation.

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on $\operatorname{Hom}(\Gamma, G)$ by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: $\operatorname{Ch}_{G}(\Gamma)=\operatorname{Spec}\left(\mathcal{O}(\operatorname{Hom}(\Gamma, G))^{G}\right)$. It is an affine variety of finite type over \mathbb{C}.

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on $\operatorname{Hom}(\Gamma, G)$ by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: $\mathrm{Ch}_{G}(\Gamma)=\operatorname{Spec}\left(\mathcal{O}(\operatorname{Hom}(\Gamma, G))^{G}\right)$. It is an affine variety of finite type over \mathbb{C}.
- Particularly interesting case: $\Gamma=\pi_{1}(\Sigma)$ for Σ a finite type topological space. Denote $\mathrm{Ch}_{G}(\Sigma):=\mathrm{Ch}_{G}\left(\pi_{1}(\Sigma)\right)$.
genus g compact orientable surface

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on $\operatorname{Hom}(\Gamma, G)$ by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: $\mathrm{Ch}_{G}(\Gamma)=\operatorname{Spec}\left(\mathcal{O}(\operatorname{Hom}(\Gamma, G))^{G}\right)$. It is an affine variety of finite type over \mathbb{C}.
- Particularly interesting case: $\Gamma=\pi_{1}(\Sigma)$ for Σ a finite type topological space. Denote $\mathrm{Ch}_{G}(\Sigma):=\mathrm{Ch}_{G}\left(\pi_{1}(\Sigma)\right)$.
- Take $\Sigma=\mathbb{S}_{g, \ell}$, a topological surface, complement of ℓ points in a genus g compact orientable surface.
\qquad
\qquad

Character varieties

- 「 a finitely generated group, G a reductive algebraic group over \mathbb{C} (e.g. $G=G L_{n}(\mathbb{C})$ or $S L_{n}(\mathbb{C})$)
- Affine variety $\operatorname{Hom}(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on $\operatorname{Hom}(\Gamma, G)$ by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: $\operatorname{Ch}_{G}(\Gamma)=\operatorname{Spec}\left(\mathcal{O}(\operatorname{Hom}(\Gamma, G))^{G}\right)$. It is an affine variety of finite type over \mathbb{C}.
- Particularly interesting case: $\Gamma=\pi_{1}(\Sigma)$ for Σ a finite type topological space. Denote $\mathrm{Ch}_{G}(\Sigma):=\mathrm{Ch}_{G}\left(\pi_{1}(\Sigma)\right)$.
- Take $\Sigma=\mathbb{S}_{g, \ell}$, a topological surface, complement of ℓ points in a genus g compact orientable surface.
- $\mathrm{Ch}_{G}\left(\mathbb{S}_{g, \ell}\right)$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

Character varieties

Example: $\ell=0, G=G L_{1}(\mathbb{C})=\mathbb{C}^{*}$, then $\mathrm{Ch}_{G L_{1}(\mathbb{C})}\left(\mathbb{S}_{g, 0}\right)=\left(\mathbb{C}^{*}\right)^{2 g}$. More precisely, taking monodromy around elements of a basis $\left(\gamma_{j}\right)_{1 \leq j \leq 2 g}$ of $H_{1}\left(\mathbb{S}_{g, 0}, \mathbb{Z}\right)$, get monomials $z^{\gamma_{j}}$ on $\left(\mathbb{C}^{*}\right)^{2 g}$. Poisson bracket:

$$
\left\{z^{\gamma_{i}}, z^{\gamma_{j}}\right\}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle z^{\gamma_{i}} z^{\gamma_{j}}
$$

where $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ is the intersection number of γ_{i} and γ_{j}.

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

Example: $g=0, \ell=4, G=S L_{2}(\mathbb{C})$, then $X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$ is a 4 -parameter family of affine cubic surfaces (Vogt 1889, Fricke, 1896).

Functions on $\mathrm{Ch}_{L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$ are obtained by taking trace of the monodromy around loons on $\mathbb{S o n}$. Algehra generators: around the punctures, and $\gamma_{v_{1}}, \gamma_{v_{2}}$ and $\gamma_{v_{3}}$ are traces around loops senarating the set of the 4 nunctures into time

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathrm{S}_{0,4}\right)$

Example: $g=0, \ell=4, G=S L_{2}(\mathbb{C})$, then $X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$ is a 4-parameter family of affine cubic surfaces (Vogt 1889, Fricke, 1896).

Functions on $\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$ are obtained by taking trace of the monodromy around loops on $\mathbb{S}_{0,4}$. Algebra generators:
$a_{1}, a_{2}, a_{3}, a_{4}, \gamma_{v_{1}}, \gamma_{v_{2}}, \gamma_{v_{3}}$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are traces around small loops around the punctures, and $\gamma_{v_{1}}, \gamma_{v_{2}}$ and $\gamma_{v_{3}}$ are traces around loops separating the set of the 4 punctures into two.

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

 relation

$$
\gamma_{v_{1}} \gamma_{v_{2}} \gamma_{v_{3}}=\gamma_{v_{1}}^{2}+\gamma_{v_{2}}^{2}+\gamma_{v_{3}}^{2}+R_{1,0} \gamma_{v_{1}}+R_{0,1} \gamma_{v_{2}}+R_{1,1} \gamma_{v_{3}}+y-4
$$

where

$$
\begin{gathered}
R_{1,0}:=a_{1} a_{2}+a_{3} a_{4}, \quad R_{0,1}:=a_{1} a_{3}+a_{2} a_{4}, \quad R_{1,1}:=a_{1} a_{4}+a_{2} a_{3}, \\
y:=a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}
\end{gathered}
$$

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathrm{S}_{0,4}\right)$

 relation

$$
\gamma_{v_{1}} \gamma_{v_{2}} \gamma_{v_{3}}=\gamma_{v_{1}}^{2}+\gamma_{v_{2}}^{2}+\gamma_{v_{3}}^{2}+R_{1,0} \gamma_{v_{1}}+R_{0,1} \gamma_{v_{2}}+R_{1,1} \gamma_{v_{3}}+y-4
$$

where

$$
\begin{gathered}
R_{1,0}:=a_{1} a_{2}+a_{3} a_{4}, \quad R_{0,1}:=a_{1} a_{3}+a_{2} a_{4}, \quad R_{1,1}:=a_{1} a_{4}+a_{2} a_{3}, \\
y:=a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}
\end{gathered}
$$

$a_{1}, a_{2}, a_{3}, a_{4}$ are in the center of the Poisson bracket, fixing them, get a cubic surface. Non-trivial Poisson brackets:

$$
\begin{gathered}
\left\{\gamma_{v_{1}}, \gamma_{v_{2}}\right\}=\gamma_{v_{1}} \gamma_{v_{2}}+2 \gamma_{v_{3}}-R_{1,1},\left\{\gamma_{v_{2}}, \gamma_{v_{3}}\right\}=\gamma_{v_{2}} \gamma_{v_{3}}+2 \gamma_{v_{1}}-R_{1,0} \\
\left\{\gamma_{v_{3}}, \gamma_{v_{1}}\right\}=\gamma_{v_{3}} \gamma_{v_{1}}+2 \gamma_{v_{2}}-R_{0,1}
\end{gathered}
$$

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

$\nu: X=\mathrm{Ch}_{\operatorname{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

$\nu: X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{\mathrm{a}_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
$\nu: X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{\mathrm{a}_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.
- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Smooth fibers of $\nu: X=\operatorname{Ch}_{L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ admits complete hyperkähler metrics.

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

$\nu: X=\operatorname{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Smooth fibers of $\nu: X=\operatorname{Ch}_{S_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ admits complete hyperkähler metrics.
- Specific to $\mathbb{S}_{0,4}$: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for $S L_{2}(\mathbb{C})$-connections on $\mathbb{S}_{0,4}$).

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathbb{S}_{0,4}\right)$

$\nu: X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Smooth fibers of $\nu: X=\operatorname{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ admits complete hyperkähler metrics.
- Specific to $\mathbb{S}_{0,4}$: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for $S L_{2}(\mathbb{C})$-connections on $\mathbb{S}_{0,4}$).
- Rich dynamics of the mapping class group action.

$X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathrm{C})}\left(\mathrm{S}_{0,4}\right)$

$\nu: X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Smooth fibers of $\nu: X=\mathrm{Ch}_{\operatorname{LL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}_{a_{1}, a_{2}, a_{3}, a_{4}}^{4}$ admits complete hyperkähler metrics.
- Specific to $\mathbb{S}_{0,4}$: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for $S L_{2}(\mathbb{C})$-connections on $\mathbb{S}_{0,4}$).
- Rich dynamics of the mapping class group action.

In this talk, focus on the question of quantizing X. Two approaches: one is well-known (via 3-dimensional topology and the skein algebra), the other is new (higher-genus version of mirror symmetry). Non-trivial results when comparing the two.

Deformation quantization

Definition

Let $(A,\{-,-\})$ be a Poisson algebra. A deformation quantization of A is a flat formal 1-parameter family of associative algebras A_{\hbar} such that

- $A_{\hbar=0}=A$
- if we lift elements $f, g \in A$ to $\tilde{f}, \tilde{g} \in A_{\hbar}$, then

$$
\tilde{f} \tilde{g}-\tilde{g} \tilde{f}=\{f, g\} \hbar+O\left(\hbar^{2}\right)
$$

General questions: given a Poisson algebra, can we find a deformation quantization? Can we find a "nice" deformation quantizations? One can ask these questions for the algebra of regular functions of the character varieties $\mathrm{Ch}_{G}\left(\mathbb{S}_{g, \ell}\right)$, and in particular for $X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$.

Deformation quantization

Deformation quantization

- Example: $\ell=0, G=G L_{1}(\mathbb{C})=\mathbb{C}^{*}$, then $\operatorname{Ch}_{G L_{1}(\mathbb{C})}\left(\mathbb{S}_{g, 0}\right)=\left(\mathbb{C}^{*}\right)^{2 g}$.

$$
\left\{z^{\gamma_{i}}, z^{\gamma_{j}}\right\}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle z^{\gamma_{i}} z^{\gamma_{j}}
$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{z}^{\gamma_{i}} \hat{z}^{\gamma_{j}}=q^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle} \hat{\boldsymbol{z}}^{\gamma_{j}} \hat{z}^{\gamma_{i}}$, where $q=e^{\hbar}$.

Deformation quantization

- Example: $\ell=0, G=G L_{1}(\mathbb{C})=\mathbb{C}^{*}$, then $\operatorname{Ch}_{G L_{1}(\mathbb{C})}\left(\mathbb{S}_{g, 0}\right)=\left(\mathbb{C}^{*}\right)^{2 g}$.

$$
\left\{z^{\gamma_{i}}, z^{\gamma_{j}}\right\}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle z^{\gamma_{i}} z^{\gamma_{j}}
$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{\boldsymbol{z}}^{\gamma_{i}} \hat{\boldsymbol{z}}^{\gamma_{j}}=q^{\left\langle\gamma_{i}, \gamma_{j}\right\rangle} \hat{\boldsymbol{Z}}^{\gamma_{j}} \hat{\boldsymbol{z}}^{\gamma_{i}}$, where $q=e^{\hbar}$.

- For $X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$, it is non-trivial

$$
\begin{gathered}
\left\{\gamma_{v_{1}}, \gamma_{v_{2}}\right\}=\gamma_{v_{1}} \gamma_{v_{2}}+2 \gamma_{v_{3}}-R_{1,1},\left\{\gamma_{v_{2}}, \gamma_{v_{3}}\right\}=\gamma_{v_{2}} \gamma_{v_{3}}+2 \gamma_{v_{1}}-R_{1,0} \\
\left\{\gamma_{v_{3}}, \gamma_{v_{1}}\right\}=\gamma_{v_{3}} \gamma_{v_{1}}+2 \gamma_{v_{2}}-R_{0,1}
\end{gathered}
$$

Deformation quantization

- Example: $\ell=0, G=G L_{1}(\mathbb{C})=\mathbb{C}^{*}$, then $\operatorname{Ch}_{G L_{1}(\mathbb{C})}\left(\mathbb{S}_{g, 0}\right)=\left(\mathbb{C}^{*}\right)^{2 g}$.

$$
\left\{z^{\gamma_{i}}, z^{\gamma_{j}}\right\}=\left\langle\gamma_{i}, \gamma_{j}\right\rangle z^{\gamma_{i}} z^{\gamma_{j}}
$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{\boldsymbol{z}}^{\gamma_{i}} \hat{\boldsymbol{z}}^{\gamma_{j}}=q^{\left(\gamma_{i}, \gamma_{j}\right\rangle} \hat{\boldsymbol{Z}}^{\gamma_{j}} \hat{\mathbf{z}}^{\gamma_{i}}$, where $q=e^{\hbar}$.

- For $X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right)$, it is non-trivial

$$
\begin{gathered}
\left\{\gamma_{v_{1}}, \gamma_{v_{2}}\right\}=\gamma_{v_{1}} \gamma_{v_{2}}+2 \gamma_{v_{3}}-R_{1,1},\left\{\gamma_{v_{2}}, \gamma_{v_{3}}\right\}=\gamma_{v_{2}} \gamma_{v_{3}}+2 \gamma_{v_{1}}-R_{1,0}, \\
\left\{\gamma_{v_{3}}, \gamma_{v_{1}}\right\}=\gamma_{v_{3}} \gamma_{v_{1}}+2 \gamma_{v_{2}}-R_{0,1}
\end{gathered}
$$

A general way to construct deformation quantizations of character varieties is provided by the skein algebras, coming from 3-dimensional topology. Will focus on the case $G=S L_{2}(\mathbb{C})$.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.
- Framing of a link: a choice of nowhere vanishing section of its normal bundle, that is the choice of realization of the link as the union of boundary components of some annuli.
- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

Skein modules of 3-manifolds

- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.

Skein modules of 3-manifolds

- The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold \mathbb{M} is the $\mathbb{Z}\left[A^{ \pm}\right]$-module generated by isotopy classes of framed links in \mathbb{M} satisfying the skein relations

$$
\left.\lambda=A \backsim+A^{-1}\right\rangle\left\langle\text { and } L \cup \bigcirc=-\left(A^{2}+A^{-2}\right) L\right.
$$

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.
- The skein module of $\mathbb{M}=\mathbb{R}^{3}$ is $\mathbb{Z}\left[A^{ \pm}\right]$(generated by the empty link). The class of a framed link $L \subset \mathbb{R}^{3}$ in $\mathbb{Z}\left[A^{ \pm}\right]$is the Kauffman bracket polynomial of L (equivalent to the Jones polynomial).

Skein algebras of surfaces

- Given an oriented 2-manifold \mathbb{S}, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold $\mathbb{M}:=\mathbb{S} \times(-1,1)$: given two framed links L_{1} and L_{2} in $\mathbb{S} \times(-1,1)$, and viewing the interval $(-1,1)$ as a vertical direction, the product $L_{1} L_{2}$ is defined by placing L_{1} on top of L_{2}.

Skein algebras of surfaces

- Given an oriented 2-manifold \mathbb{S}, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold $\mathbb{M}:=\mathbb{S} \times(-1,1)$: given two framed links L_{1} and L_{2} in $\mathbb{S} \times(-1,1)$, and viewing the interval $(-1,1)$ as a vertical direction, the product $L_{1} L_{2}$ is defined by placing L_{1} on top of L_{2}.
- We denote by $\mathrm{Sk}_{A}(\mathbb{S})$ the resulting associative $\mathbb{Z}\left[A^{ \pm}\right]$-algebra with unit. The skein algebra $\mathrm{Sk}_{A}(\mathbb{S})$ is in general non-commutative.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g, \ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g, \ell}$ such that none of them bounds a disc in $\mathbb{S}_{g, \ell}$. Identifying $\mathbb{S}_{g, \ell}$ with $\mathbb{S}_{g, \ell} \times\{0\} \subset \mathbb{S}_{g, \ell} \times(-1,1)$, a multicurve on $\mathbb{S}_{g, \ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g, \ell} \times(-1,1)$.

Skein algebras of surfaces

- We consider the case where \mathbb{S} is the complement $\mathbb{S}_{g, \ell}$ of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g, \ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g, \ell}$ such that none of them bounds a disc in $\mathbb{S}_{g, \ell}$. Identifying $\mathbb{S}_{g, \ell}$ with $\mathbb{S}_{g, \ell} \times\{0\} \subset \mathbb{S}_{g, \ell} \times(-1,1)$, a multicurve on $\mathbb{S}_{g, \ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g, \ell} \times(-1,1)$.

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ as $\mathbb{Z}\left[A^{ \pm}\right]$-module.

The skein algebra quantization of the $S L_{2}$ character variety

\square
Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

$\operatorname{tr}(M) \operatorname{tr}(N)=\operatorname{tr}(M N)+\operatorname{tr}\left(M^{-1} N\right)$

- For every γ multicurve on $\mathbb{S}_{g, \ell}$ with connected components $\gamma_{1}, \cdots, \gamma_{r}$, the map sending a representation $\rho: \pi_{1}\left(\mathbb{S}_{g, \ell}\right) \rightarrow S L_{2}(\mathbb{C})$ to $\prod_{j=1}^{r}\left(-\operatorname{tr}\left(\rho\left(\gamma_{j}\right)\right)\right)$ defines a regular function f_{γ} on $\mathrm{Ch}_{S_{L_{2}}(\mathbb{C})}\left(\mathbb{S}_{g, \ell}\right)$.
- For every γ multicurve on $\mathbb{S}_{g, \ell}$ with connected components $\gamma_{1}, \cdots, \gamma_{r}$, the map sending a representation $\rho: \pi_{1}\left(\mathbb{S}_{g, \ell}\right) \rightarrow S L_{2}(\mathbb{C})$ to $\prod_{j=1}^{r}\left(-\operatorname{tr}\left(\rho\left(\gamma_{j}\right)\right)\right)$ defines a regular function f_{γ} on $\mathrm{Ch}_{L_{2}(\mathbb{C})}\left(\mathbb{S}_{g, \ell}\right)$.

Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

The skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{g, \ell}\right)$ with $A=-e^{\frac{\hbar}{4}}$ is a deformation quantization of the algebra of regular functions on $X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{g, \ell}\right)$. The isomorphism at $A=-1$ is given by $\gamma \mapsto f_{\gamma}$.

Classical limit of the skein relation: for every $M, N \in S L_{2}(\mathbb{C})$,

$$
\operatorname{tr}(M) \operatorname{tr}(N)=\operatorname{tr}(M N)+\operatorname{tr}\left(M^{-1} N\right)
$$

The skein algebra of the 4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $S_{k}\left(\mathbb{S}_{0,4}\right)$, so we can view $\operatorname{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-module.
- Isotopy classes of multicurves in \mathbb{S}_{04} without peripheral connected components are in bjection with

The skein algebra of the 4-punctured sphere

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-module.

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-module.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

- Focus on the case of the 4 -punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves $a_{1}, a_{2}, a_{3}, a_{4}$, in the center of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$, so we can view $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as a $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-module.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$$
B(\mathbb{Z}):=\mathbb{Z}^{2} /\langle \pm i d\rangle \simeq\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text { if } n=0\right\}
$$

- $\left\{\gamma_{p}\right\}_{p \in B(\mathbb{Z})}$ is a basis of $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-module.

The skein algebra of the 4-punctured sphere

Theorem (Bullock-Przytycki, 2000)

$\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ is generated as $\mathbb{Z}\left[A^{ \pm}\right]\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$-algebra by $\gamma_{v_{1}}:=\gamma_{(1,0)}$, $\gamma_{v_{2}}:=\gamma_{(0,1)}, \gamma_{v_{3}}=\gamma_{(-1,1)}$, with the relations

$$
\begin{aligned}
& \left.A^{-2} \gamma_{v_{1}} \gamma_{v_{2}}-A^{2} \gamma_{v_{2}} \gamma_{v_{1}}=\left(A^{-4}\right) A^{4}\right) \gamma_{v_{3}}-\left(A^{2}-2\right) R_{1,1} \\
& A^{-2} \gamma_{v_{2}} \gamma_{v_{3}}-A^{2} \gamma_{v_{3}} \gamma_{v_{2}}=\left(A^{-4}-A^{4}\right) \gamma_{v_{1}}-\left(A^{2}-A^{-2}\right) R_{1,0} \\
& A^{-2} \gamma_{v_{3}} \gamma_{v_{1}}-A^{2} \gamma_{v_{1}} \gamma_{v_{3}}=\left(A^{-4}-A^{4}\right) \gamma_{v_{2}}-\left(A^{2}-A^{-2}\right) R_{0,1}
\end{aligned}
$$

$$
A^{-2} \gamma_{v_{1}} \gamma_{v_{2}} \gamma_{v_{3}}=A^{-4} \gamma_{v_{1}}^{2}+A^{4} \gamma_{v_{2}}^{2}+A^{-4} \gamma_{v_{3}}^{2}+A^{-2} R_{1,0} \gamma_{v_{1}}+A^{2} R_{0,1} \gamma_{v_{2}}
$$

$$
+A^{-2} R_{1,1} \gamma_{v_{3}}+y-2\left(A^{4}+A^{-4}\right)
$$

Same algebra from quantum Liouville theory (Teschner, Vartanov, 2013).

Mirror symmetry for log Calabi-Yau surfaces

Mirror symmetry between two Calabi-Yau varieties: exchanges symplectic geometry and complex geometry.

- Non-compact Calabi-Yau varieties.
- Log Calabi-Yau variety: $(Y, D), Y$ compact, D anticanonical divisor, $V=Y-D$ is non-compact Calabi-Yau.
- Mirror symmetry as a way to construct algebraic varieties.
- In dimension 2, mirror symmetry construction for log Calabi-Yau surfaces (Gross-Hacking-Keel, 2001).
- Enumerative geometry: counts rational curves in (Y, D) (morally holomorphic curves in $V=Y-D)$.
- Construction of the mirror family $\mathcal{V} \rightarrow \operatorname{Spec} \mathbb{C}[N E(Y)]$.
- Claim: one recovers $X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}^{4}$ for Y : smooth projective cubic surface, and D : triangle of lines on Y.

Enumerative geometry of log Calabi-Yau surfaces

- Y : smooth projective surface, $D=D_{1}+\ldots+D_{n}$ anticanonical cycle of rational curves.
- Fix a curve class $\beta \in N E(Y) \subset H_{2}(Y, \mathbb{Z})$.
- Want to count rational curves (genus 0) C in Y of class β such that $C \cap D$ is a single point.
- Tangency condition at the intersection point?

Enumerative geometry of log Calabi-Yau surfaces

- B: dual intersection complex of (Y, D), cone $\mathbb{R}_{\geq 0}^{2}$ for each intersection $D_{i} \cap D_{i+1}$.
- Contact order of a curve with $D: B(\mathbb{Z})$.

Enumerative geometry of log Calabi-Yau surfaces

- $v \in B(\mathbb{Z}), \beta \in H_{2}(Y, \mathbb{Z})$
- $N_{0, v}^{\beta}$: number of rational curves (genus 0) in Y of class β intersecting D at a single point with contact order v.
- Virtual dimension 0.
- Precise definition of $N_{0, v}^{\beta}$: log Gromov-Witten invariants of (Y, D) (Abrmovich-Chen, Gross-Siebert, 2011), $N_{0, v}^{\beta} \in \mathbb{Q}$ in general.

Enumerative geometry of log Calabi-Yau surfaces

Example: $Y=\mathbb{P}^{2}, D$: triangle of lines, $N_{0, v}^{\beta}=0$ for every v and β (a curve of degree $d>0$ in \mathbb{P}^{2} always intersect $\left.D_{1}, D_{2}, D_{3}\right)$.

Enumerative geometry of log Calabi-Yau surfaces

Example: Y : cubic surface in \mathbb{P}^{3}, D : triangle of lines. Y contains 27 lines. Each of the 24 lines not-contained in D intersects D in a single point.

Enumerative geometry of log Calabi-Yau surfaces

$24=3 \times 8, N_{0, v_{i}}^{\beta_{i j}}=1,\left(v_{i}:\right.$ transverse intersection with D_{i}, β_{j} : class of the line $L_{i j}$ intersecting $\left.D_{i}, 1 \leq j \leq 8\right)$.

Enumerative geometry of log Calabi-Yau surfaces

In Gromov-Witten theory, one considers maps $f: C \rightarrow Y$ and not just embedded curves $C \subset Y$. If $C=L_{i j}$ is the line contributing to $N_{0, v_{i}}^{\beta_{i j}}=1$, then every genus 0 cover of $L_{i j}$ totally ramified over $L_{i j} \cap D_{i}$ contributes to $N_{0, k v_{i}}^{k \beta_{i j}}$. Non-trivial moduli space, virtual computation
(Bryan-Pandharipande, 2001), $N_{0, k v_{i}}^{k \beta_{i j}}=\frac{(-1)^{k-1}}{k^{2}}$.

Mirror symmetry for log Calabi-Yau surfaces

Gross-Hacking-Keel (2011)

- Starting point, log Calabi-Yau surfaces (Y, D).
- Enumerative geometry: counts rational curves in (Y, D), invariants $N_{0, \beta}$
- Construction of the mirror family $\mathcal{V} \rightarrow \operatorname{Spec} \mathbb{C}[N E(Y)]$. For each intersection point $D_{i} \cap D_{i+1}$, local models $U_{i, i+1} \rightarrow \operatorname{Spec} \mathbb{C}[N E(Y)]$. Glue open sets $T_{i} \subset U_{i-1, i}$ and $T_{i}^{\prime} \subset U_{i, i+1}$ isomorphic $\left(\mathbb{C}^{*}\right)^{2} \times \operatorname{Spec} \mathbb{C}[N E(Y)]$ using birational transformations $\exp \left\{H_{v},-\right\}$ generated by the Hamiltonians

$$
H_{v}=\sum_{k \geq 0} \sum_{\beta} N_{0, k v}^{\beta} z^{k v} t^{\beta}
$$

where $v \in B(\mathbb{Z})$ is primitve in the cone dual to $D_{i} \cap D_{i+1}$. Order according to the slope of v.

Mirror symmetry for log Calabi-Yau surfaces

- For $H=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k^{2}} x^{k}$ (dilogarithm), $\exp \{H,-\}$ is a cluster birational transformation $x \mapsto x, y \mapsto y(1+x)$.
- Consistent gluing construction? The collection of numbers $\left(N_{0, v}^{\beta}\right)_{v, \beta}$ needs to satisfy a non-trivial constraint, proved using tropical geometry (Gross-Pandharipande-Siebert, 2009).

Mirror symmetry for log Calabi-Yau surfaces

- (Y, D)
- Counts of genus 0 curves: $N_{0, \beta}$
- Mirror family $\mathcal{V} \rightarrow$ Spec $\mathbb{C}[N E(Y)]$, Poisson variety, family of holomorphic symplectic (Calabi-Yau) surfaces.
- Consequence of the construction: "canonical basis of theta functions" $\left(\vartheta_{v}\right)_{v \in B(\mathbb{Z})}$ pour $\Gamma\left(\mathcal{V}, \mathcal{O}_{\mathcal{V}}\right)$.
- Question: can we deform this mirror construction to produce a deformation quantization of $\Gamma\left(\mathcal{V}, \mathcal{O}_{\mathcal{V}}\right)$?

Quantum mirror symmetry for log Calabi-Yau surfaces

- Problem: find a 1-parameter deformation of the enumerative question.
- Naive idea: replace genus 0 curves by curves of arbitrary genus g.
- Problem: virtual dimension wrong.
- Solution: replace the non-compact Calabi-Yau surface $V=Y-D$ by the non-compact Calabi-Yau 3-fold $V \times \mathbb{C}^{*}$ and count higher genus curves here. Get a definition of $N_{g, v}^{\beta} \in \mathbb{Q}$.

Quantum mirror symmetry for log Calabi-Yau surfaces

Construct a deformation quantization of the mirror family $\mathcal{V} \rightarrow$ Spec $\mathbb{C}[N E(Y)]$. For each intersection point $D_{i} \cap D_{i+1}$, local $\hat{U}_{i, i+1} \rightarrow \operatorname{Spec} \mathbb{C}[N E(Y)]$. Glue "non-commutative open sets" $\hat{T}_{i} \subset U_{i-1, i}$ and $\hat{T}_{i}^{\prime} \subset U_{i, i+1}$ isomorphic to quantum tori $\widehat{\left(\mathbb{C}^{*}\right)^{2}} \times \operatorname{Spec} \mathbb{C}[N E(Y)]$ using the quantum transformation $\exp \left[\hat{H}_{v},-\right]$ defined by the quantum Hamiltonian

$$
\hat{H}_{v}=\sum_{g \geq 0} \sum_{k \geq 0} \sum_{\beta} N_{g, k v}^{\beta} z^{k v} t^{\beta} \hbar^{2 g-1}
$$

Quantum mirror symmetry for log Calabi-Yau surfaces

If $C=L_{i j}$ is the line contributing to $N_{0, v_{i}}^{\beta_{i j}}=1$, every genus g cover of $L_{i j}$ entirely ramified above $L_{i j} \cap D_{i}$ contributes to $N_{g, k V_{V}}^{k \beta_{i j}}$. Non-trivial moduli space, virtual computation (Bryan-Pandharipande, 2001),
$\sum_{g \geq 0} N_{g, k V_{i}}^{k \beta_{j}} \hbar^{2 g-1}=\frac{(-1)^{k-1}}{k} \frac{1}{2 \sin \left(\frac{k \hbar}{2}\right)}=i \frac{(-1)^{k-1}}{k} \frac{1}{q^{\frac{k}{2}}-q^{-\frac{k}{2}}}$ (Quantum dilogarithm).

Consistency of the gluing? The collection of invariants $\left(N_{g, v}^{\beta}\right)_{g, v, \beta}$ needs to satisfy a non-trivial constraint, proof using tropical geometry (B, 1806.11495).

Quantum mirror symmetry for log Calabi-Yau surfaces

Conclusion (B, 2018):

- (Y, D)
- Genus g log Gromov-Witten invariants $N_{g, v}^{\beta}$.
- Deformation quantization $\hat{\mathcal{V}} \rightarrow \operatorname{Spec} \mathbb{C}[N E(Y)]$ of the mirror family.
- \hat{A} non-commutative algebra deforming $\Gamma\left(\mathcal{V}, \mathcal{O}_{\mathcal{V}}\right)$
- Consequence of the construction: canonical basis of quantum theta functions for $\left(\hat{\vartheta}_{v}\right)_{v \in B(\mathbb{Z})}$ for \hat{A}.

Comparison of quantizations

- $S L_{2}(\mathbb{C})$ character variety $X=\mathrm{Ch}_{\mathrm{SL}_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}^{4}$, quantization given by the skein algebra $\mathrm{Sk}\left(\mathbb{S}_{0,4}\right)$
- (Gross-Hacking-Keel-Siebert, 2019), $X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}^{4}$ is the result of the classical mirror construction applied to Y : smooth projecitve cubic surface, D : triangle of lines.
- Quantum mirror symmetry gives another deformation quantization \hat{A} of $X=\mathrm{Ch}_{S L_{2}(\mathbb{C})}\left(\mathbb{S}_{0,4}\right) \rightarrow \mathbb{A}^{4}$.

Theorem (B, 2020)

The skein quantization and the mirror symmetry quantization agree:

$$
\operatorname{Sk}\left(\mathbb{S}_{0,4}\right) \simeq \hat{A}
$$

Gauge theories from string/M-theory

> - $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
> - Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 \mathrm{~d}$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.
- V : complement of a triangle of lines D in Y, hyperkähler manifold, D_{4} elliptic fibration in rotated complex structure, Σ : elliptic fiber.

Gauge theories from string/M-theory

- $\mathcal{T}: \mathcal{N}=2 N_{f}=4 S U(2)$ gauge theory.
- Realization of \mathcal{T} as a class S theory: $\mathcal{N}=(2,0) 6 d$ SCFT of class A_{1} compactified on $\mathbb{S}_{0,4}$. Physical realization of the skein algebra $\mathrm{Sk}_{A}\left(\mathbb{S}_{0,4}\right)$ as an algebra of supersymmetric line operators.
- V : complement of a triangle of lines D in Y, hyperkähler manifold, D_{4} elliptic fibration in rotated complex structure, Σ : elliptic fiber.
- Realization of \mathcal{T} from M-theory on $\mathbb{R}^{1,3} \times V \times \mathbb{R}^{3}$ with a $M 5$-brane on $\mathbb{R}^{1,3} \times \Sigma$. Physical realization of holomorphic curves in (Y, D) as M2-branes determining the BPS spectrum of \mathcal{T} (uses Ooguri-Vafa relation between open M2-branes and higher genus open topological string).

Gauge theories from string/M-theory

> - Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
> - BPS states of charges $(m, 0)$: 1 vector multiplet of charge $(2,0)$, and 8 hypermultiplets of charge $(1,0)$. The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of $D(27=3 \times 8+3)$.
> - $S L_{2}(\mathbb{Z})$ S-duality and triality realized geometrically from the point of view of enumerative geometry.

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.

Gauge theories from string/M-theory

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- BPS states of charges $(m, 0)$: 1 vector multiplet of charge $(2,0)$, and 8 hypermultiplets of charge $(1,0)$. The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of $D(27=3 \times 8+3)$.
- $S L_{2}(\mathbb{Z}) S$-duality and triality realized geometrically from the point of view of enumerative geometry.

Thank you for your attention!

