The skein algebra of the 4-punctured sphere from curve counting

Pierrick Bousseau

CNRS, Paris-Saclay

2021 IHES Summer School Enumerative Geometry, Physics and Representation Theory July 5, 2021 Talk based on arXiv:2009.02266

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

- Low-dimensional topology.
- Complex enumerative algebraic geometry.
- String theory realizations of supersymmetric gauge theories.

• Low-dimensional topology: knots, links...

Introduction

• Complex (over C) enumerative algebraic geometry: 27 complex lines on a complex cubic surface (Cayley, Salmon, 1849)

• String theory realizations of supersymmetric gauge theories

- \bullet Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4},$ knots and links in $\mathbb{S}_{0,4}\times(0,1).$
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N} = 2$ supersymmetric SU(2) gauge theory with 4 hypermultiplets in the fundamental representation ($N_f = 4$).

Non-trivial mathematical consequences: proof of positivity conjectures about the skein algebra of $S_{0,4}$ (Thurston (2013), Bakshi, Mukherjee, Przytycki, Silvero and Wang (2018)) (so about curves drawn on a 4-punctured sphere) by counting Riemann surfaces in a complex cubic surface!

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4},$ knots and links in $\mathbb{S}_{0,4}\times(0,1).$
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N} = 2$ supersymmetric SU(2) gauge theory with 4 hypermultiplets in the fundamental representation ($N_f = 4$). Non-trivial mathematical consequences: proof of positivity conjectures about the skein algebra of $\mathbb{S}_{0,4}$ (Thurston (2013), Bakshi, Mukherjee, Przytycki, Silvero and Wang (2018)) (so about curves drawn on a 4-punctured sphere) by counting Riemann surfaces in a complex cubic surface!

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4},$ knots and links in $\mathbb{S}_{0,4}\times(0,1).$
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N} = 2$ supersymmetric SU(2) gauge theory with 4 hypermultiplets in the fundamental representation $(N_f = 4)$.

Non-trivial mathematical consequences: proof of positivity conjectures about the skein algebra of $S_{0,4}$ (Thurston (2013), Bakshi, Mukherjee, Przytycki, Silvero and Wang (2018)) (so about curves drawn on a 4-punctured sphere) by counting Riemann surfaces in a complex cubic surface!

- Low-dimensional topology: skein algebra of $\mathbb{S}_{0,4},$ knots and links in $\mathbb{S}_{0,4}\times(0,1).$
- Enumerative algebraic geometry: counting holomorphic curves in complex cubic surfaces.
- Physics: 4-dimensional $\mathcal{N} = 2$ supersymmetric SU(2) gauge theory with 4 hypermultiplets in the fundamental representation $(N_f = 4)$.

Non-trivial mathematical consequences: proof of positivity conjectures about the skein algebra of $S_{0,4}$ (Thurston (2013), Bakshi, Mukherjee, Przytycki, Silvero and Wang (2018)) (so about curves drawn on a 4-punctured sphere) by counting Riemann surfaces in a complex cubic surface!

- The cubic surface as $SL_2(\mathbb{C})$ character variety and quantization via the skein algebra.
- Mirror symmetry and curve counting for the cubic surface.
 Quantization from higher genus curve counting.
- Comparison between the skein algebra and the higher genus mirror symmetry quantizations.

8/42

- The cubic surface as $SL_2(\mathbb{C})$ character variety and quantization via the skein algebra.
- Mirror symmetry and curve counting for the cubic surface. Quantization from higher genus curve counting.
- Comparison between the skein algebra and the higher genus mirror symmetry quantizations.

- The cubic surface as $SL_2(\mathbb{C})$ character variety and quantization via the skein algebra.
- Mirror symmetry and curve counting for the cubic surface. Quantization from higher genus curve counting.
- Comparison between the skein algebra and the higher genus mirror symmetry quantizations.

8/42

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,l}, a topological surface, complement of l points in a genus g compact orientable surface.
- $Ch_G(S_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,l}, a topological surface, complement of l points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,l}, a topological surface, complement of l points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,l}, a topological surface, complement of l points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,ℓ}, a topological surface, complement of ℓ points in a genus g compact orientable surface.
- $Ch_G(S_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take Σ = S_{g,l}, a topological surface, complement of l points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $\{-, -\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take $\Sigma = \mathbb{S}_{g,\ell}$, a topological surface, complement of ℓ points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

- Γ a finitely generated group, G a reductive algebraic group over C (e.g. G = GL_n(C) or SL_n(C))
- Affine variety $Hom(\Gamma, G)$ of group morphisms from Γ to G.
- Natural action of G on Hom (Γ, G) by conjugation.
- Take the quotient in the sense of geometric invariant theory, get the character variety: Ch_G(Γ) = Spec (O(Hom(Γ, G))^G). It is an affine variety of finite type over C.
- Particularly interesting case: Γ = π₁(Σ) for Σ a finite type topological space. Denote Ch_G(Σ) := Ch_G(π₁(Σ)).
- Take $\Sigma = \mathbb{S}_{g,\ell}$, a topological surface, complement of ℓ points in a genus g compact orientable surface.
- $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$ admits a natural Poisson structure, Poisson bracket on the algebra of regular functions $(\{-,-\}$ Lie bracket, biderivation with respect to the product).

Example: $\ell = 0$, $G = GL_1(\mathbb{C}) = \mathbb{C}^*$, then $\operatorname{Ch}_{GL_1(\mathbb{C})}(\mathbb{S}_{g,0}) = (\mathbb{C}^*)^{2g}$. More precisely, taking monodromy around elements of a basis $(\gamma_j)_{1 \leq j \leq 2g}$ of $H_1(\mathbb{S}_{g,0},\mathbb{Z})$, get monomials z^{γ_j} on $(\mathbb{C}^*)^{2g}$. Poisson bracket:

$$\{z^{\gamma_i}, z^{\gamma_j}\} = \langle \gamma_i, \gamma_j \rangle z^{\gamma_i} z^{\gamma_j}$$

where $\langle \gamma_i, \gamma_j \rangle$ is the intersection number of γ_i and γ_j .

Example: g = 0, $\ell = 4$, $G = SL_2(\mathbb{C})$, then $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$ is a 4-parameter family of affine cubic surfaces (Vogt 1889, Fricke, 1896).

Functions on $\operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$ are obtained by taking trace of the monodromy around loops on $\mathbb{S}_{0,4}$. Algebra generators:

 $a_1, a_2, a_3, a_4, \gamma_{v_1}, \gamma_{v_2}, \gamma_{v_3}$, where a_1, a_2, a_3, a_4 are traces around small loops around the punctures, and γ_{v_1} , γ_{v_2} and γ_{v_3} are traces around loops separating the set of the 4 punctures into two.

11/42

Example: g = 0, $\ell = 4$, $G = SL_2(\mathbb{C})$, then $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$ is a 4-parameter family of affine cubic surfaces (Vogt 1889, Fricke, 1896).

Functions on $\operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$ are obtained by taking trace of the monodromy around loops on $\mathbb{S}_{0,4}$. Algebra generators:

 $a_1, a_2, a_3, a_4, \gamma_{\nu_1}, \gamma_{\nu_2}, \gamma_{\nu_3}$, where a_1, a_2, a_3, a_4 are traces around small loops around the punctures, and γ_{ν_1} , γ_{ν_2} and γ_{ν_3} are traces around loops separating the set of the 4 punctures into two.

 $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, 7 algebra generators $a_1, a_2, a_3, a_4, \gamma_{v_1}, \gamma_{v_2}, \gamma_{v_3}$, single relation

$$\gamma_{\nu_1}\gamma_{\nu_2}\gamma_{\nu_3} = \gamma_{\nu_1}^2 + \gamma_{\nu_2}^2 + \gamma_{\nu_3}^2 + R_{1,0}\gamma_{\nu_1} + R_{0,1}\gamma_{\nu_2} + R_{1,1}\gamma_{\nu_3} + y - 4$$

where

$$R_{1,0} := a_1 a_2 + a_3 a_4 , \quad R_{0,1} := a_1 a_3 + a_2 a_4 , \quad R_{1,1} := a_1 a_4 + a_2 a_3 ,$$
$$y := a_1 a_2 a_3 a_4 + a_1^2 + a_2^2 + a_3^2 + a_4^2$$

 a_1, a_2, a_3, a_4 are in the center of the Poisson bracket, fixing them, get a cubic surface. Non-trivial Poisson brackets:

$$\{\gamma_{\nu_1}, \gamma_{\nu_2}\} = \gamma_{\nu_1}\gamma_{\nu_2} + 2\gamma_{\nu_3} - R_{1,1}, \{\gamma_{\nu_2}, \gamma_{\nu_3}\} = \gamma_{\nu_2}\gamma_{\nu_3} + 2\gamma_{\nu_1} - R_{1,0}, \\ \{\gamma_{\nu_3}, \gamma_{\nu_1}\} = \gamma_{\nu_3}\gamma_{\nu_1} + 2\gamma_{\nu_2} - R_{0,1}.$$

 $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, 7 algebra generators $a_1, a_2, a_3, a_4, \gamma_{v_1}, \gamma_{v_2}, \gamma_{v_3}$, single relation

$$\gamma_{\nu_1}\gamma_{\nu_2}\gamma_{\nu_3} = \gamma_{\nu_1}^2 + \gamma_{\nu_2}^2 + \gamma_{\nu_3}^2 + R_{1,0}\gamma_{\nu_1} + R_{0,1}\gamma_{\nu_2} + R_{1,1}\gamma_{\nu_3} + y - 4$$

where

$$R_{1,0} := a_1 a_2 + a_3 a_4 , \quad R_{0,1} := a_1 a_3 + a_2 a_4 , \quad R_{1,1} := a_1 a_4 + a_2 a_3 ,$$
$$y := a_1 a_2 a_3 a_4 + a_1^2 + a_2^2 + a_3^2 + a_4^2$$

 a_1, a_2, a_3, a_4 are in the center of the Poisson bracket, fixing them, get a cubic surface. Non-trivial Poisson brackets:

$$\begin{split} \{\gamma_{\nu_1}, \gamma_{\nu_2}\} &= \gamma_{\nu_1}\gamma_{\nu_2} + 2\gamma_{\nu_3} - R_{1,1} , \ \{\gamma_{\nu_2}, \gamma_{\nu_3}\} = \gamma_{\nu_2}\gamma_{\nu_3} + 2\gamma_{\nu_1} - R_{1,0} , \\ \{\gamma_{\nu_3}, \gamma_{\nu_1}\} &= \gamma_{\nu_3}\gamma_{\nu_1} + 2\gamma_{\nu_2} - R_{0,1} . \end{split}$$

12/42

$\nu\colon X=\mathrm{Ch}_{\mathit{SL}_2(\mathbb{C})}(\mathbb{S}_{0,4})\to \mathbb{A}^4_{a_1,a_2,a_3,a_4} \text{ is a very much studied object.}$

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of *ν*: X = Ch_{SL2(C)}(S_{0,4}) → A⁴_{a1,a2,a3,a4} admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for *SL*₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

 $\nu\colon X=\mathrm{Ch}_{\mathit{SL}_2(\mathbb{C})}(\mathbb{S}_{0,4})\to \mathbb{A}^4_{a_1,a_2,a_3,a_4} \text{ is a very much studied object.}$

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of *ν*: X = Ch_{SL2(C)}(S_{0,4}) → A⁴_{a1,a2,a3,a4} admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for SL₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

 $\nu\colon X=\mathrm{Ch}_{\mathit{SL}_2(\mathbb{C})}(\mathbb{S}_{0,4})\to \mathbb{A}^4_{a_1,a_2,a_3,a_4} \text{ is a very much studied object.}$

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of $\nu \colon X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4_{a_1,a_2,a_3,a_4}$ admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for SL₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

 $\nu \colon X = \mathrm{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4_{a_1,a_2,a_3,a_4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of *ν*: X = Ch_{SL2(C)}(S_{0,4}) → A⁴_{a1,a2,a3,a4} admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for SL₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

 $\nu \colon X = \mathrm{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4_{a_1,a_2,a_3,a_4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of *ν*: X = Ch_{SL2(C)}(S_{0,4}) → A⁴_{a1,a2,a3,a4} admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for SL₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

 $\nu \colon X = \mathrm{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4_{a_1,a_2,a_3,a_4}$ is a very much studied object.

- As a character variety: Riemann-Hilbert analytic isomorphism with moduli space of flat connections with regular singularities, non-abelian Hodge correspondence: homeomorphic to a moduli space of parabolic Higgs bundles. Hitchin elliptic fibration, Seiberg-Witten geometry of $\mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Smooth fibers of *ν*: X = Ch_{SL2(C)}(S_{0,4}) → A⁴_{a1,a2,a3,a4} admits complete hyperkähler metrics.
- Specific to S_{0,4}: phase space of the Painlevé VI non-linear differential equation (isomonodromy condition for SL₂(ℂ)-connections on S_{0,4}).
- Rich dynamics of the mapping class group action.

In this talk, focus on the question of quantizing X. Two approaches: one is well-known (via 3-dimensional topology and the skein algebra), the other is new (higher-genus version of mirror symmetry). Non-trivial results when comparing the two.

13/42

Definition

Let $(A, \{-, -\})$ be a Poisson algebra. A *deformation quantization* of A is a flat formal 1-parameter family of associative algebras A_{\hbar} such that

•
$$A_{\hbar=0} = A$$

• if we lift elements $f,g\in A$ to $\widetilde{f},\widetilde{g}\in A_{\hbar}$, then

$$\widetilde{f}\widetilde{g} - \widetilde{g}\widetilde{f} = \{f,g\}\hbar + O(\hbar^2)$$
.

General questions: given a Poisson algebra, can we find a deformation quantization? Can we find a "nice" deformation quantizations? One can ask these questions for the algebra of regular functions of the character varieties $\operatorname{Ch}_{G}(\mathbb{S}_{g,\ell})$, and in particular for $X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$.
• Example: $\ell = 0$, $G = GL_1(\mathbb{C}) = \mathbb{C}^*$, then $\operatorname{Ch}_{GL_1(\mathbb{C})}(\mathbb{S}_{g,0}) = (\mathbb{C}^*)^{2g}$.

$$\{z^{\gamma_i}, z^{\gamma_j}\} = \langle \gamma_i, \gamma_j \rangle z^{\gamma_i} z^{\gamma_j}$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{z}^{\gamma_i}\hat{z}^{\gamma_j} = q^{\langle \gamma_i, \gamma_j \rangle} \hat{z}^{\gamma_j} \hat{z}^{\gamma_i}$, where $q = e^{\hbar}$.

• For $X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, it is non-trivial $\{\gamma_{v_1}, \gamma_{v_2}\} = \gamma_{v_1}\gamma_{v_2} + 2\gamma_{v_3} - R_{1,1}, \{\gamma_{v_2}, \gamma_{v_3}\} = \gamma_{v_2}\gamma_{v_3} + 2\gamma_{v_1} - R_{1,0},$ $\{\gamma_{v_3}, \gamma_{v_1}\} = \gamma_{v_3}\gamma_{v_1} + 2\gamma_{v_2} - R_{0,1}.$

Deformation quantization

• Example: $\ell = 0$, $G = GL_1(\mathbb{C}) = \mathbb{C}^*$, then $\operatorname{Ch}_{GL_1(\mathbb{C})}(\mathbb{S}_{g,0}) = (\mathbb{C}^*)^{2g}$.

$$\{z^{\gamma_i}, z^{\gamma_j}\} = \langle \gamma_i, \gamma_j \rangle z^{\gamma_i} z^{\gamma_j}$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{z}^{\gamma_i}\hat{z}^{\gamma_j} = q^{\langle \gamma_i, \gamma_j \rangle}\hat{z}^{\gamma_j}\hat{z}^{\gamma_i}$, where $q = e^{\hbar}$.

• For $X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, it is non-trivial $\{\gamma_{v_1}, \gamma_{v_2}\} = \gamma_{v_1}\gamma_{v_2} + 2\gamma_{v_3} - R_{1,1}, \{\gamma_{v_2}, \gamma_{v_3}\} = \gamma_{v_2}\gamma_{v_3} + 2\gamma_{v_1} - R_{1,0},$ $\{\gamma_{v_3}, \gamma_{v_1}\} = \gamma_{v_3}\gamma_{v_1} + 2\gamma_{v_2} - R_{0,1}.$

Deformation quantization

• Example: $\ell = 0$, $G = GL_1(\mathbb{C}) = \mathbb{C}^*$, then $\operatorname{Ch}_{GL_1(\mathbb{C})}(\mathbb{S}_{g,0}) = (\mathbb{C}^*)^{2g}$.

$$\{z^{\gamma_i}, z^{\gamma_j}\} = \langle \gamma_i, \gamma_j \rangle z^{\gamma_i} z^{\gamma_j}$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{z}^{\gamma_i}\hat{z}^{\gamma_j} = q^{\langle \gamma_i, \gamma_j \rangle}\hat{z}^{\gamma_j}\hat{z}^{\gamma_i}$, where $q = e^{\hbar}$.

• For $X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, it is non-trivial $\{\gamma_{v_1}, \gamma_{v_2}\} = \gamma_{v_1}\gamma_{v_2} + 2\gamma_{v_3} - R_{1,1}, \{\gamma_{v_2}, \gamma_{v_3}\} = \gamma_{v_2}\gamma_{v_3} + 2\gamma_{v_1} - R_{1,0},$ $\{\gamma_{v_3}, \gamma_{v_1}\} = \gamma_{v_3}\gamma_{v_1} + 2\gamma_{v_2} - R_{0,1}.$

Deformation quantization

• Example: $\ell = 0$, $G = GL_1(\mathbb{C}) = \mathbb{C}^*$, then $\operatorname{Ch}_{GL_1(\mathbb{C})}(\mathbb{S}_{g,0}) = (\mathbb{C}^*)^{2g}$.

$$\{z^{\gamma_i}, z^{\gamma_j}\} = \langle \gamma_i, \gamma_j \rangle z^{\gamma_i} z^{\gamma_j}$$

A "nice" deformation quantization is provided by the quantum torus: $\hat{z}^{\gamma_i}\hat{z}^{\gamma_j} = q^{\langle \gamma_i, \gamma_j \rangle}\hat{z}^{\gamma_j}\hat{z}^{\gamma_i}$, where $q = e^{\hbar}$.

• For $X = \operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4})$, it is non-trivial $\{\gamma_{v_1}, \gamma_{v_2}\} = \gamma_{v_1}\gamma_{v_2} + 2\gamma_{v_3} - R_{1,1}, \{\gamma_{v_2}, \gamma_{v_3}\} = \gamma_{v_2}\gamma_{v_3} + 2\gamma_{v_1} - R_{1,0},$ $\{\gamma_{v_3}, \gamma_{v_1}\} = \gamma_{v_3}\gamma_{v_1} + 2\gamma_{v_2} - R_{0,1}.$

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.
- Framing of a link: a choice of nowhere vanishing section of its normal bundle, that is the choice of realization of the link as the union of boundary components of some annuli.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.
- Framing of a link: a choice of nowhere vanishing section of its normal bundle, that is the choice of realization of the link as the union of boundary components of some annuli.

Knots, links and framing

- Knot in a manifold: a connected compact embedded 1-dimensional submanifold.
- Link in a manifold: the disjoint union of finitely many knots.
- Framing of a link: a choice of nowhere vanishing section of its normal bundle, that is the choice of realization of the link as the union of boundary components of some annuli.

Skein modules of 3-manifolds

The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold M is the Z[A[±]]-module generated by isotopy classes of framed links in M satisfying the skein relations

$$= A + A^{-1} \ and \ L \cup = -(A^2 + A^{-2}) \ L.$$

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.
- The skein module of M = R³ is Z[A[±]] (generated by the empty link). The class of a framed link L ⊂ R³ in Z[A[±]] is the Kauffman bracket polynomial of L (equivalent to the Jones polynomial).

Skein modules of 3-manifolds

The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold M is the Z[A[±]]-module generated by isotopy classes of framed links in M satisfying the skein relations

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.
- The skein module of M = R³ is Z[A[±]] (generated by the empty link). The class of a framed link L ⊂ R³ in Z[A[±]] is the Kauffman bracket polynomial of L (equivalent to the Jones polynomial).

Skein modules of 3-manifolds

The Kauffman bracket skein module (Przytycki, Turaev, 1988) of an oriented 3-manifold M is the Z[A[±]]-module generated by isotopy classes of framed links in M satisfying the skein relations

- The diagrams in each relation indicate framed links that can be isotoped to identical embeddings except within the neighborhood shown, where the framing is vertical.
- The skein module of $\mathbb{M} = \mathbb{R}^3$ is $\mathbb{Z}[A^{\pm}]$ (generated by the empty link). The class of a framed link $L \subset \mathbb{R}^3$ in $\mathbb{Z}[A^{\pm}]$ is the Kauffman bracket polynomial of L (equivalent to the Jones polynomial).

- Given an oriented 2-manifold S, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold M := S × (-1, 1): given two framed links L₁ and L₂ in S × (-1, 1), and viewing the interval (-1, 1) as a vertical direction, the product L₁L₂ is defined by placing L₁ on top of L₂.
- We denote by Sk_A(S) the resulting associative Z[A[±]]-algebra with unit. The skein algebra Sk_A(S) is in general non-commutative.

- Given an oriented 2-manifold S, one can define a natural algebra structure on the Kauffmann bracket skein module of the 3-manifold M := S × (-1, 1): given two framed links L₁ and L₂ in S × (-1, 1), and viewing the interval (-1, 1) as a vertical direction, the product L₁L₂ is defined by placing L₁ on top of L₂.
- We denote by Sk_A(S) the resulting associative Z[A[±]]-algebra with unit. The skein algebra Sk_A(S) is in general non-commutative.

- We consider the case where S is the complement S_{g,ℓ} of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on S_{g,ℓ} is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of S_{g,ℓ} such that none of them bounds a disc in S_{g,ℓ}. Identifying S_{g,ℓ} with S_{g,ℓ} × {0} ⊂ S_{g,ℓ} × (-1, 1), a multicurve on S_{g,ℓ} endowed with the vertical framing naturally defined a framed link in S_{g,ℓ} × (-1, 1).

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of ${
m Sk}_{\mathcal A}(\mathbb{S}_{g,\ell})$ as $\mathbb{Z}[A^{\pm}]$ -module.

19/42

- We consider the case where S is the complement S_{g,ℓ} of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g,\ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g,\ell}$ such that none of them bounds a disc in $\mathbb{S}_{g,\ell}$. Identifying $\mathbb{S}_{g,\ell}$ with $\mathbb{S}_{g,\ell} \times \{0\} \subset \mathbb{S}_{g,\ell} \times (-1,1)$, a multicurve on $\mathbb{S}_{g,\ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g,\ell} \times (-1,1)$.

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of ${
m Sk}_{\mathcal A}(\mathbb{S}_{g,\ell})$ as $\mathbb{Z}[A^{\pm}]$ -module.

- We consider the case where S is the complement S_{g,ℓ} of a finite number ℓ of points in a compact oriented 2-manifold of genus g.
- A multicurve on $\mathbb{S}_{g,\ell}$ is the union of finitely many disjoint compact connected embedded 1-dimensional submanifolds of $\mathbb{S}_{g,\ell}$ such that none of them bounds a disc in $\mathbb{S}_{g,\ell}$. Identifying $\mathbb{S}_{g,\ell}$ with $\mathbb{S}_{g,\ell} \times \{0\} \subset \mathbb{S}_{g,\ell} \times (-1,1)$, a multicurve on $\mathbb{S}_{g,\ell}$ endowed with the vertical framing naturally defined a framed link in $\mathbb{S}_{g,\ell} \times (-1,1)$.

Theorem (Przytycki)

Isotopy classes of multicurves form a basis of $Sk_A(\mathbb{S}_{g,\ell})$ as $\mathbb{Z}[A^{\pm}]$ -module.

• For every γ multicurve on $\mathbb{S}_{g,\ell}$ with connected components $\gamma_1, \dots, \gamma_r$, the map sending a representation $\rho \colon \pi_1(\mathbb{S}_{g,\ell}) \to SL_2(\mathbb{C})$ to $\prod_{j=1}^r (-\operatorname{tr}(\rho(\gamma_j)))$ defines a regular function f_{γ} on $\operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{g,\ell})$.

Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

The skein algebra $Sk_A(\mathbb{S}_{g,\ell})$ with $A = -e^{\frac{h}{4}}$ is a deformation quantization of the algebra of regular functions on $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{g,\ell})$. The isomorphism at A = -1 is given by $\gamma \mapsto f_{\gamma}$.

Classical limit of the skein relation: for every $M, N \in SL_2(\mathbb{C})$,

$$\operatorname{tr}(M)\operatorname{tr}(N) = \operatorname{tr}(MN) + \operatorname{tr}(M^{-1}N)$$
.

The skein algebra quantization of the SL_2 character variety

 For every γ multicurve on S_{g,ℓ} with connected components γ₁,..., γ_r, the map sending a representation ρ: π₁(S_{g,ℓ}) → SL₂(ℂ) to ∏^r_{j=1}(−tr(ρ(γ_j))) defines a regular function f_γ on Ch_{SL₂(ℂ)}(S_{g,ℓ}).

Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

The skein algebra $Sk_A(\mathbb{S}_{g,\ell})$ with $A = -e^{\frac{\mu}{4}}$ is a deformation quantization of the algebra of regular functions on $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{g,\ell})$. The isomorphism at A = -1 is given by $\gamma \mapsto f_{\gamma}$.

Classical limit of the skein relation: for every $M, N \in SL_2(\mathbb{C})$,

$$\operatorname{tr}(M)\operatorname{tr}(N) = \operatorname{tr}(MN) + \operatorname{tr}(M^{-1}N)$$
.

• For every γ multicurve on $\mathbb{S}_{g,\ell}$ with connected components $\gamma_1, \cdots, \gamma_r$, the map sending a representation $\rho \colon \pi_1(\mathbb{S}_{g,\ell}) \to SL_2(\mathbb{C})$ to $\prod_{j=1}^r (-\operatorname{tr}(\rho(\gamma_j)))$ defines a regular function f_γ on $\operatorname{Ch}_{SL_2(\mathbb{C})}(\mathbb{S}_{g,\ell})$.

Theorem (Bullock, Przytycki-Sikora, Charles-Marché)

The skein algebra $Sk_A(\mathbb{S}_{g,\ell})$ with $A = -e^{\frac{h}{4}}$ is a deformation quantization of the algebra of regular functions on $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{g,\ell})$. The isomorphism at A = -1 is given by $\gamma \mapsto f_{\gamma}$.

Classical limit of the skein relation: for every $M, N \in SL_2(\mathbb{C})$,

$$\operatorname{tr}(M)\operatorname{tr}(N) = \operatorname{tr}(MN) + \operatorname{tr}(M^{-1}N).$$

• Focus on the case of the 4-punctured sphere S_{0,4}.

- Peripheral curves a₁, a₂, a₃, a₄, in the center of Sk_A(S_{0,4}), so we can view Sk_A(S_{0,4}) as a ℤ[A[±]][a₁, a₂, a₃, a₄]-module.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

 $B(\mathbb{Z}) := \mathbb{Z}^2 / \langle \pm id \rangle \simeq \{ (m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text{ if } n = 0 \} \,.$

• $\{\gamma_p\}_{p\in B(\mathbb{Z})}$ is a basis of Sk_A(S_{0,4}) as $\mathbb{Z}[A^{\pm}][a_1, a_2, a_3, a_4]$ -module.

21/42

- Focus on the case of the 4-punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves a₁, a₂, a₃, a₄, in the center of Sk_A(S_{0,4}), so we can view Sk_A(S_{0,4}) as a ℤ[A[±]][a₁, a₂, a₃, a₄]-module.
- Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

 $B(\mathbb{Z}) := \mathbb{Z}^2 / \langle \pm id \rangle \simeq \{ (m, n) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0} \mid m \geq 0 \text{ if } n = 0 \} \,.$

• $\{\gamma_{P}\}_{P \in B(\mathbb{Z})}$ is a basis of $Sk_{A}(\mathbb{S}_{0,4})$ as $\mathbb{Z}[A^{\pm}][a_{1}, a_{2}, a_{3}, a_{4}]$ -module.

- Focus on the case of the 4-punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves a₁, a₂, a₃, a₄, in the center of Sk_A(S_{0,4}), so we can view Sk_A(S_{0,4}) as a ℤ[A[±]][a₁, a₂, a₃, a₄]-module.
- \bullet Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$$B(\mathbb{Z}):=\mathbb{Z}^2/\langle\pm id
angle\simeq\{(m,n)\in\mathbb{Z} imes\mathbb{Z}_{\geq 0}\mid m\geq 0 ext{ if } n=0\}$$
 .

• $\{\gamma_p\}_{p\in B(\mathbb{Z})}$ is a basis of $\mathsf{Sk}_A(\mathbb{S}_{0,4})$ as $\mathbb{Z}[A^{\pm}][a_1, a_2, a_3, a_4]$ -module.

21/42

- Focus on the case of the 4-punctured sphere $\mathbb{S}_{0,4}$.
- Peripheral curves a₁, a₂, a₃, a₄, in the center of Sk_A(S_{0,4}), so we can view Sk_A(S_{0,4}) as a ℤ[A[±]][a₁, a₂, a₃, a₄]-module.
- \bullet Isotopy classes of multicurves in $\mathbb{S}_{0,4}$ without peripheral connected components are in bjection with

$${\mathcal B}({\mathbb Z}):={\mathbb Z}^2/\langle\pm id
angle\simeq \{(m,n)\in {\mathbb Z} imes {\mathbb Z}_{\ge 0}\ \mid m\ge 0 \ ext{if}\ n=0\}\,.$$

• $\{\gamma_p\}_{p\in B(\mathbb{Z})}$ is a basis of $Sk_A(\mathbb{S}_{0,4})$ as $\mathbb{Z}[A^{\pm}][a_1, a_2, a_3, a_4]$ -module.

21/42

Theorem (Bullock-Przytycki, 2000)

 $Sk_A(\mathbb{S}_{0,4})$ is generated as $\mathbb{Z}[A^{\pm}][a_1, a_2, a_3, a_4]$ -algebra by $\gamma_{v_1} := \gamma_{(1,0)}$, $\gamma_{v_2} := \gamma_{(0,1)}$, $\gamma_{v_3} = \gamma_{(-1,1)}$, with the relations

$$\begin{split} A^{-2}\gamma_{\nu_1}\gamma_{\nu_2} - A^2\gamma_{\nu_2}\gamma_{\nu_1} &= (A^{-4} - A^4)\gamma_{\nu_3} - (A^2 - A^{-2})R_{1,1} \,, \\ A^{-2}\gamma_{\nu_2}\gamma_{\nu_3} - A^2\gamma_{\nu_3}\gamma_{\nu_2} &= (A^{-4} - A^4)\gamma_{\nu_1} - (A^2 - A^{-2})R_{1,0} \,, \\ A^{-2}\gamma_{\nu_3}\gamma_{\nu_1} - A^2\gamma_{\nu_1}\gamma_{\nu_3} &= (A^{-4} - A^4)\gamma_{\nu_2} - (A^2 - A^{-2})R_{0,1} \,, \end{split}$$

$$\begin{aligned} A^{-2}\gamma_{\nu_{1}}\gamma_{\nu_{2}}\gamma_{\nu_{3}} &= A^{-4}\gamma_{\nu_{1}}^{2} + A^{4}\gamma_{\nu_{2}}^{2} + A^{-4}\gamma_{\nu_{3}}^{2} + A^{-2}R_{1,0}\gamma_{\nu_{1}} + A^{2}R_{0,1}\gamma_{\nu_{2}} \\ &+ A^{-2}R_{1,1}\gamma_{\nu_{3}} + y - 2(A^{4} + A^{-4}) \,. \end{aligned}$$

Same algebra from quantum Liouville theory (Teschner, Vartanov, 2013).

Mirror symmetry between two Calabi-Yau varieties: exchanges symplectic geometry and complex geometry.

- Non-compact Calabi-Yau varieties.
- Log Calabi-Yau variety: (Y, D), Y compact, D anticanonical divisor, V = Y - D is non-compact Calabi-Yau.
- Mirror symmetry as a way to construct algebraic varieties.
- In dimension 2, mirror symmetry construction for log Calabi-Yau surfaces (Gross-Hacking-Keel, 2001).
- Enumerative geometry: counts rational curves in (Y, D) (morally holomorphic curves in V = Y D).
- Construction of the mirror family $\mathcal{V} \to \operatorname{Spec} \mathbb{C}[NE(Y)]$.
- Claim: one recovers $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4$ for Y: smooth projective cubic surface, and D: triangle of lines on Y.

23/42

- Y: smooth projective surface, $D = D_1 + ... + D_n$ anticanonical cycle of rational curves.
- Fix a curve class $\beta \in NE(Y) \subset H_2(Y, \mathbb{Z})$.
- Want to count rational curves (genus 0) C in Y of class β such that $C \cap D$ is a single point.
- Tangency condition at the intersection point?

- B: dual intersection complex of (Y, D), cone ℝ²_{≥0} for each intersection D_i ∩ D_{i+1}.
- Contact order of a curve with D: $B(\mathbb{Z})$.

- $v \in B(\mathbb{Z}), \ \beta \in H_2(Y,\mathbb{Z})$
- N^β_{0,ν}: number of rational curves (genus 0) in Y of class β intersecting D at a single point with contact order v.
- Virtual dimension 0.
- Precise definition of $N_{0,v}^{\beta}$: log Gromov-Witten invariants of (Y, D)(Abrmovich-Chen, Gross-Siebert, 2011), $N_{0,v}^{\beta} \in \mathbb{Q}$ in general.

Example: $Y = \mathbb{P}^2$, *D*: triangle of lines, $N_{0,v}^{\beta} = 0$ for every *v* and β (a curve of degree d > 0 in \mathbb{P}^2 always intersect D_1 , D_2 , D_3).

Example: Y: cubic surface in \mathbb{P}^3 , D: triangle of lines. Y contains 27 lines. Each of the 24 lines not-contained in D intersects D in a single point.

24 = 3 × 8, $N_{0,v_i}^{\beta_{ij}}$ = 1, (v_i : transverse intersection with D_i , β_j : class of the line L_{ij} intersecting D_i , $1 \le j \le 8$).

In Gromov-Witten theory, one considers maps $f : C \to Y$ and not just embedded curves $C \subset Y$. If $C = L_{ij}$ is the line contributing to $N_{0,V_i}^{\beta_{ij}} = 1$, then every genus 0 cover of L_{ij} totally ramified over $L_{ij} \cap D_i$ contributes to $N_{0,k_{V_i}}^{k\beta_{ij}}$. Non-trivial moduli space, virtual computation (Bryan-Pandharipande, 2001), $N_{0,k_{V_i}}^{k\beta_{ij}} = \frac{(-1)^{k-1}}{k^2}$.

Gross-Hacking-Keel (2011)

- Starting point, log Calabi-Yau surfaces (Y, D).
- Enumerative geometry: counts rational curves in (Y, D), invariants $N_{0,\beta}$
- Construction of the mirror family V → Spec C[NE(Y)]. For each intersection point D_i ∩ D_{i+1}, local models U_{i,i+1} → Spec C[NE(Y)]. Glue open sets T_i ⊂ U_{i-1,i} and T'_i ⊂ U_{i,i+1} isomorphic (C*)² × Spec C[NE(Y)] using birational transformations exp{H_v, -} generated by the Hamiltonians

$$H_{\mathbf{v}} = \sum_{k\geq 0} \sum_{\beta} N_{0,k\mathbf{v}}^{\beta} z^{k\mathbf{v}} t^{\beta} ,$$

where $v \in B(\mathbb{Z})$ is primitve in the cone dual to $D_i \cap D_{i+1}$. Order according to the slope of v.

Mirror symmetry for log Calabi-Yau surfaces

- For $H = \sum_{k \ge 1} \frac{(-1)^{k-1}}{k^2} x^k$ (dilogarithm), $\exp\{H, -\}$ is a cluster birational transformation $x \mapsto x, y \mapsto y(1+x)$.
- Consistent gluing construction? The collection of numbers $(N_{0,v}^{\beta})_{v,\beta}$ needs to satisfy a non-trivial constraint, proved using tropical geometry (Gross-Pandharipande-Siebert, 2009).

• (Y,D)

- Counts of genus 0 curves: $N_{0,\beta}$
- Mirror family V → Spec C[NE(Y)], Poisson variety, family of holomorphic symplectic (Calabi-Yau) surfaces.
- Consequence of the construction: "canonical basis of theta functions" $(\vartheta_{\nu})_{\nu \in B(\mathbb{Z})}$ pour $\Gamma(\mathcal{V}, \mathcal{O}_{\mathcal{V}})$.
- Question: can we deform this mirror construction to produce a deformation quantization of $\Gamma(\mathcal{V}, \mathcal{O}_{\mathcal{V}})$?

- Problem: find a 1-parameter deformation of the enumerative question.
- Naive idea: replace genus 0 curves by curves of arbitrary genus g.
- Problem: virtual dimension wrong.
- Solution: replace the non-compact Calabi-Yau surface V = Y D by the non-compact Calabi-Yau 3-fold $V \times \mathbb{C}^*$ and count higher genus curves here. Get a definition of $N_{g,v}^{\beta} \in \mathbb{Q}$.

Construct a deformation quantization of the mirror family $\mathcal{V} \to \operatorname{Spec} \mathbb{C}[NE(Y)]$. For each intersection point $D_i \cap D_{i+1}$, local $\hat{U}_{i,i+1} \to \operatorname{Spec} \mathbb{C}[NE(Y)]$. Glue "non-commutative open sets" $\hat{T}_i \subset U_{i-1,i}$ and $\hat{T}'_i \subset U_{i,i+1}$ isomorphic to quantum tori $\widehat{(\mathbb{C}^*)^2} \times \operatorname{Spec} \mathbb{C}[NE(Y)]$ using the quantum transformation $\exp[\hat{H}_{\mathcal{V}}, -]$ defined by the quantum Hamiltonian

$$\hat{\mathcal{H}}_{v} = \sum_{g \ge 0} \sum_{k \ge 0} \sum_{\beta} N_{g,kv}^{\beta} z^{kv} t^{\beta} \hbar^{2g-1}$$
Quantum mirror symmetry for log Calabi-Yau surfaces

If $C = L_{ij}$ is the line contributing to $N_{0,v_i}^{\beta_{ij}} = 1$, every genus g cover of L_{ij} entirely ramified above $L_{ij} \cap D_i$ contributes to $N_{g,kv_i}^{k\beta_{ij}}$. Non-trivial moduli space, virtual computation (Bryan-Pandharipande, 2001), $\sum_{g\geq 0} N_{g,kv_i}^{k\beta_{ij}} \hbar^{2g-1} = \frac{(-1)^{k-1}}{k} \frac{1}{2\sin(\frac{k\hbar}{2})} = i \frac{(-1)^{k-1}}{k} \frac{1}{q^{\frac{k}{2}} - q^{-\frac{k}{2}}}$ (Quantum dilogarithm).

Consistency of the gluing? The collection of invariants $(N_{g,v}^{\beta})_{g,v,\beta}$ needs to satisfy a non-trivial constraint, proof using tropical geometry (B, 1806.11495).

Conclusion (B, 2018):

- (*Y*,*D*)
- Genus g log Gromov-Witten invariants $N_{g,v}^{\beta}$.
- Deformation quantization $\hat{\mathcal{V}} \to \operatorname{Spec} \mathbb{C}[\operatorname{NE}(Y)]$ of the mirror family.
- \hat{A} non-commutative algebra deforming $\Gamma(\mathcal{V}, \mathcal{O}_{\mathcal{V}})$
- Consequence of the construction: canonical basis of quantum theta functions for $(\hat{\vartheta}_{v})_{v \in B(\mathbb{Z})}$ for \hat{A} .

Comparison of quantizations

- $SL_2(\mathbb{C})$ character variety $X = Ch_{SL_2(\mathbb{C})}(\mathbb{S}_{0,4}) \to \mathbb{A}^4$, quantization given by the skein algebra $Sk(\mathbb{S}_{0,4})$
- (Gross-Hacking-Keel-Siebert, 2019), X = Ch_{SL2(ℂ)}(S_{0,4}) → A⁴ is the result of the classical mirror construction applied to Y: smooth projecitve cubic surface, D: triangle of lines.
- Quantum mirror symmetry gives another deformation quantization Â of X = Ch_{SL2(C)}(S_{0,4}) → A⁴.

Theorem (B, 2020)

The skein quantization and the mirror symmetry quantization agree:

$$\mathsf{Sk}(\mathbb{S}_{0,4})\simeq \hat{A}.$$

• $T: N = 2 N_f = 4 SU(2)$ gauge theory.

- Realization of *T* as a class *S* theory: *N* = (2,0) 6d SCFT of class *A*₁ compactified on S_{0,4}. Physical realization of the skein algebra Sk_A(S_{0,4}) as an algebra of supersymmetric line operators.
- V: complement of a triangle of lines D in Y, hyperkähler manifold, D₄ elliptic fibration in rotated complex structure, Σ: elliptic fiber.
- Realization of *T* from *M*-theory on ℝ^{1,3} × *V* × ℝ³ with a *M*5-brane on ℝ^{1,3} × Σ. Physical realization of holomorphic curves in (*Y*, *D*) as *M*2-branes determining the BPS spectrum of *T* (uses Ooguri-Vafa relation between open *M*2-branes and higher genus open topological string).

• $T: \mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.

- Realization of T as a class S theory: N = (2,0) 6d SCFT of class A₁ compactified on S_{0,4}. Physical realization of the skein algebra Sk_A(S_{0,4}) as an algebra of supersymmetric line operators.
- V: complement of a triangle of lines D in Y, hyperkähler manifold, D₄ elliptic fibration in rotated complex structure, Σ: elliptic fiber.
- Realization of *T* from *M*-theory on ℝ^{1,3} × *V* × ℝ³ with a *M*5-brane on ℝ^{1,3} × Σ. Physical realization of holomorphic curves in (*Y*, *D*) as *M*2-branes determining the BPS spectrum of *T* (uses Ooguri-Vafa relation between open *M*2-branes and higher genus open topological string).

- \mathcal{T} : $\mathcal{N} = 2 \ N_f = 4 \ SU(2)$ gauge theory.
- Realization of *T* as a class *S* theory: *N* = (2,0) 6d SCFT of class *A*₁ compactified on S_{0,4}. Physical realization of the skein algebra Sk_A(S_{0,4}) as an algebra of supersymmetric line operators.
- V: complement of a triangle of lines D in Y, hyperkähler manifold, D₄ elliptic fibration in rotated complex structure, Σ: elliptic fiber.
- Realization of *T* from *M*-theory on R^{1,3} × V × R³ with a M5-brane on R^{1,3} × Σ. Physical realization of holomorphic curves in (Y, D) as M2-branes determining the BPS spectrum of *T* (uses Ooguri-Vafa relation between open M2-branes and higher genus open topological string).

- $T: \mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Realization of *T* as a class *S* theory: *N* = (2,0) 6d SCFT of class *A*₁ compactified on S_{0,4}. Physical realization of the skein algebra Sk_A(S_{0,4}) as an algebra of supersymmetric line operators.
- V: complement of a triangle of lines D in Y, hyperkähler manifold, D₄ elliptic fibration in rotated complex structure, Σ: elliptic fiber.
- Realization of *T* from *M*-theory on ℝ^{1,3} × *V* × ℝ³ with a *M*5-brane on ℝ^{1,3} × Σ. Physical realization of holomorphic curves in (*Y*, *D*) as *M*2-branes determining the BPS spectrum of *T* (uses Ooguri-Vafa relation between open *M*2-branes and higher genus open topological string).

- $T: \mathcal{N} = 2 N_f = 4 SU(2)$ gauge theory.
- Realization of *T* as a class *S* theory: *N* = (2,0) 6d SCFT of class *A*₁ compactified on S_{0,4}. Physical realization of the skein algebra Sk_A(S_{0,4}) as an algebra of supersymmetric line operators.
- V: complement of a triangle of lines D in Y, hyperkähler manifold, D₄ elliptic fibration in rotated complex structure, Σ: elliptic fiber.
- Realization of *T* from *M*-theory on ℝ^{1,3} × *V* × ℝ³ with a *M*5-brane on ℝ^{1,3} × Σ. Physical realization of holomorphic curves in (*Y*, *D*) as *M*2-branes determining the BPS spectrum of *T* (uses Ooguri-Vafa relation between open *M*2-branes and higher genus open topological string).

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and 8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of D (27 = 3 × 8 + 3).
- SL₂(ℤ) S-duality and triality realized geometrically from the point of view of enumerative geometry.

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and 8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of D (27 = 3 × 8 + 3).
- SL₂(ℤ) S-duality and triality realized geometrically from the point of view of enumerative geometry.

- Gaiotto-Moore-Neitzke: IR expansions of line operators in terms of framed BPS states. Wall-crossing of these IR expansions in terms of (unframed) BPS states.
- BPS states of charges (m, 0): 1 vector multiplet of charge (2, 0), and 8 hypermultiplets of charge (1, 0). The 8 hypermultiplets correspond to the 8 lines of Y intersecting in a single point intersecting one component of D (27 = 3 × 8 + 3).
- *SL*₂(Z) *S*-duality and triality realized geometrically from the point of view of enumerative geometry.

Thank you for your attention!