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Introduction

I So far we have considereded mainly convex models based on the total variation, which
however only served as a crude approximation to the true image statistics.

I In this chapter we will discuss methods to learn better variational models from data.
I We will start be learning just the regularization parameter but then will also learn �lters

and potential functions.
I Finally, we will also consider deep-learning inspired architectures that achieve

state-of-the-art performance.
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Overview

Parameter learning in variational models

The Fields of Experts model

Early stopping

Total Deep Variation

Learning with graphical models
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Learning regularization parameters
I In [Kunisch, P. '12]we considered a weighted sum of`1 regularizers:

R(u) =
NKX

k=1

#k kKk uk1 =
NKX

k=1

X

i ;j

#k j(Kk u) i ;j j;

whereKk are linear operators and#k � 0 are the regularization weights.
I Can be see as a generalization of the total variation
I Usually, we restrict the linear operators to small convolution kernelsfk with the property

that Kk u , fk � u
I From JPEG compression, it is known that images have a sparse representation in terms of

DCT basis functions.

The 24 DCT5 �lters fk
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Bilevel optimization
I How can we choose optimal weights for the di�erent operators?
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Bilevel optimization
I How can we choose optimal weights for the di�erent operators?
I In machine learning a popular approach is empirical risk minimization adopting a loss

function.
I We assume we have given training data(fs; gs)S

s=1 consisting of noisy observationsfs and
ground truth reconstructionsgs.

I Applying this idea to our image reconstruction problems leads to abilevel optimization
problem[Kunisch, P. '12]

8
>>>><

>>>>:

min
# � 0

1
2

SX

s=1

kus(#) � gsk
2
2

s.t. us(#) = arg min
u

NKX

k=1

#k kKk uk1 +
1
2

ku � fsk
2
2 :
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Bilevel optimization
I How can we choose optimal weights for the di�erent operators?
I In machine learning a popular approach is empirical risk minimization adopting a loss

function.
I We assume we have given training data(fs; gs)S

s=1 consisting of noisy observationsfs and
ground truth reconstructionsgs.

I Applying this idea to our image reconstruction problems leads to abilevel optimization
problem[Kunisch, P. '12]

8
>>>><

>>>>:

min
# � 0

1
2

SX

s=1

kus(#) � gsk
2
2

s.t. us(#) = arg min
u

NKX

k=1

#k kKk uk1 +
1
2

ku � fsk
2
2 :

I Interpretation: We try to �nd parameters# such that the minimizers of the variational
model minimizes the loss function

I Closely related approaches:[Haber and Tenorio, '02], [Samuel and Tappen '09], [Peyr�e
and Fadili '11], [De Los Reyes and Sch•onlieb '12], ...

I We developed semi-smooth Newton algorithms to solve the bilevel optimization problem
for the optimal parameter vector#.
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Example: Image denoising

Original image Noisy image 6 / 67
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The Fields of Experts model

I Recall that thejxj function does not provide a very accurate
match to the marginal distributions of zero-mean �lters

I A much better match is obtained by the negative log
student's-t distributionlog(1 + jxj2=� 2) [Huang and Mumford
'99].

I Let us consider the following nonconvex model[Roth, Black
'09], [Samuel, Tappen '09], called the \Fields of Experts"
model:

R(u) =
NKX

k=1

X

i ;j

� k ((Kk u) i ;j );

whereKk are again linear operators implementing 2D
convolutions with small �ltersfk , that is fk � u , Kk u, and
� k (t ) = � k log(1 + jt j2).

I In contrast to the previous model, also the �lters are learned.
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Bilevel optimization

I We again consider training data consisting of clean and noisy images (fs; gs)S
s=1

I We again used a bilevel optimization approach to learn the �ltersand functions
# = ( fk ; � k )NK

k=1

8
>>>><

>>>>:

min
#

L(#) =
1
2

SX

s=1

kus(#) � gsk
2 + R(#)

s.t. us(#) = arg min
u

NKX

k=1

X

i ;j

� k ((Kk u) i ;j ) +
1
2

ku � fsk2
2;

whereR(#) is a regularization term for the learned parameters, for example one could
consider the constraints

1T fk = 0 ; � k � 0; k = 1 ; :::; K
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Lagrangian
I In order to compute gradients of the loss function with respect to#, we replace the

lower-level optimization problem by its �rst-order optimalitycondition (assumings = 1
and dropping the index):

NKX

k=1

K �
k � k (Kk u) + u � f = 0 ; � k (y) = diag( � 0

k (y1); :::; � 0
k (yn);

whereK �
k denotes the adjoint �lter and consider the Lagrangian functional

L (u; #; � ) = ku � gk2 + R(#) + (
NKX

k=1

K �
k � k (Kk u) + u � f )T p;

wherep is a vector of Lagrange multipliers.
I Assuming the existence of a regular local minimum in(u; #), we can invoke the classical

Lagrange multiplier theorem, which guarantees the existence of multipliersp such that:
0

B
@

(
P NK

k=1 K �
k D� k (Kk u)Kk + I )p + u � g

D# R(#) + ( D#
P NK

k=1 K �
k � k (Kk u))p

P NK
k=1 K �

k � k (Kk u) + u � f

1

C
A = 0 :
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Implicit di�erentiation

I For �xed #, the system can be reduced by �rst solving the lower level problem (last
equation) foru� , that is

NKX

k=1

K �
k � k (Kk u� ) + u� � f = 0 ;

then one can solve forp� by solving the linear system

p� = (
NKX

k=1

K �
k D� k (Kk u� )Kk + I ) � 1(g � u� );

and �nally the gradient of the loss function with respext to# is given by

@# L(#) = D# R(#) + ( D#

NKX

k=1

K �
k � k (Kk u� ))(

NKX

k=1

K �
k D� k (Kk u� )Kk + I ) � 1(g � u� );

which is nothing else then implicit di�erentiation.
I The loss function can then be minimized using any gradient-based optimization algorithm.
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The learned �lters and functions
I In [Chen, Ranftl, P. '14]we learned80 �lters of size 9 � 9 plus function parameters

! 6480parameters on a database of� 200 images using bilevel optimization
I ... two weeks later ...
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Evaluation

I Comparison with �ve state-of-the-art approaches: K-SVD[Elad and Aharon '06], FoE [Q.
Gao and Roth '12], BM3D [Dabov et al. '07], GMM [D. Zoran et al. '12], LSSC[Mairal
et al. '09]

I We report the average PSNR on 68 images of the Berkeley image data base [Chen, P. 14]

� KSVD FoE BM3D GMM LSSC BL7x7 BL9x9
15 30.87 30.99 31.08 31.19 31.27 31.18 31.22
25 28.28 28.40 28.56 28.68 28.70 28.66 28.70
50 25.17 25.35 25.62 25.67 25.72 25.70 25.76

I Performs as well as state-of-the-art
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Denoising results for� = 25

Original image Noisy image 14 / 67



Denoising results for� = 25

Original image TV denoised 14 / 67



Denoising results for� = 25

Original image FoE prior 14 / 67



Practical

foe.ipynb
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Computing gradients
I Bilevel optimization is heavily time consuming since for implicit di�erentiation we need to:

I Solve the lower problems exactly
I Invert the Hessian of the lower level problem

I Performance strongly depends on the error of the stationary pointu�
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Computing gradients
I Bilevel optimization is heavily time consuming since for implicit di�erentiation we need to:

I Solve the lower problems exactly
I Invert the Hessian of the lower level problem

I Performance strongly depends on the error of the stationary pointu�

I Alternative: Unroll the steps of an iterative algorithm
I The bilevel optimization problem becomes

8
>>>>>>><

>>>>>>>:

min
#

1
2

SX

s=1




 uT

s (#) � gs



 2

s.t. ut +1
s = ut

s � � t

 
NKX

k=1

K �
k � k (Kk us) + ( ut

s � f )

!

;

t = 0 :::T � 1

I We can compute the exact gradient with respect to the model parameters using the
backpropagation algorithm.

I It turns out that taking only a �nite number of steps works even better....
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Motivation

As a motivating example, let us step back to a smooth approximation of the TV{L2 (ROF)
model

E� [u; � ] = �
X

i ;j

q
j(Du) i ;j j2 + � 2 +

1
2

ku � gk2
2 ;

and for various weighting parameters� the gradient 
ow with step size�

us+1 = us � �

 

� D�

 
Dusp

j(Dus)j2 + � 2

!

+ us � g

!
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TV{ L2 classical

u0
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TV{ L2 classical

ug

u0
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TV{ L2 classical

ug

u0

PSNR = 20:53
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TV{ L2 classical

ug

u1 (� = 0 :002)

u0

PSNR = 24:26
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TV{ L2 classical

ug

u1 (� = 0 :001)u0

PSNR = 26:59
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TV{ L2 classical

ug

u1 (� = 0 :01)

u0

PSNR = 19:61
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TV{ L2 with early stopping

ug

u1 (� = 0 :01)

u64(� = 0 :01)

u0

PSNR = 25:23
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TV{ L2 with early stopping

ug

u1 (� = 0 :01)

u256(� = 0 :01)
u0

PSNR = 25:55
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TV{ L2 with early stopping

ug

u1 (� = 0 :01)

u128(� = 0 :01)u0

PSNR = 27:19
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Parameter search

I The best performance (red cross) is achieved for early stopping.
I When minimizing the energy exactly the solution is \ober�tted" tothe variational model

and gives inferior results. 20 / 67



A gradient 
ow perspective

Let u 2 Rn be a data vector, then the variational energy is

E[u] = D[u] + R[u]:
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E[u] = D[u] + R[u]:

Fields-of-Experts regularization:

R [u] =
mX

i =1

NKX

k=1

� k ((Kk u) i )

with Kk 2 Rm� n and associated nonlinear functions� k : R ! R
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A gradient 
ow perspective

Let u 2 Rn be a data vector, then the variational energy is

E[u] = D[u] + R[u]:

Fields-of-Experts regularization:

R [u] =
mX

i =1

NKX

k=1

� k ((Kk u) i )

with Kk 2 Rm� n and associated nonlinear functions� k : R ! R data �delity:

D[u] =
1
2

kAu � bk2
2

A 2 Rl � n and b 2 Rl �xed
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A gradient 
ow perspective

Gradient 
ow of energyE for a time t 2 (0; T ):

_~x(t ) = f (~x(t ); (Kk ; � k )NK
k=1 ) = � DE[~x(t )]

= � A� (A~x(t ) � b) �
NKX

k=1

K �
k � k (Kk ~x(t )) ;

~x(0) = x0;

with ~x 2 C1([0; T ]; Rn), T 2 R+
0 and the functions� k 2 V s are given by

(y1; : : : ; ym)> 7! (� 0
k (y1); : : : ; � 0

k (ym))> ;

with Vs �nite dimensional subspace ofCs(Rm; Rm)
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Optimal control problem

Reparametrization:x(t ) = ~x(t T )
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Optimal control problem

Reparametrization:x(t ) = ~x(t T )
optimal control problem:

min
T 2 R;Kk 2 Rm� n;� k 2V s

J(T ; (Kk ; � k )NK
k=1 )
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Optimal control problem

Reparametrization:x(t ) = ~x(t T )
optimal control problem:

min
T 2 R;Kk 2 Rm� n;� k 2V s

J(T ; (Kk ; � k )NK
k=1 )

cost functional:
J(T ; (Kk ; � k )NK

k=1 ) :=
1
2

kx(1) � xgk2
2
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Optimal control problem

Reparametrization:x(t ) = ~x(t T )
optimal control problem:

min
T 2 R;Kk 2 Rm� n;� k 2V s

J(T ; (Kk ; � k )NK
k=1 )

cost functional:
J(T ; (Kk ; � k )NK

k=1 ) :=
1
2

kx(1) � xgk2
2

constraints:
0 � T � Tmax ; � (Kk ) � 1; � (� k ) � 1; Kk 1 = 0 2 Rm;

� : Rm� n ! R+
0 and � : Vs ! R+

0 are continuously di�erentiable, coercive functions
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Optimal control problem

Reparametrization:x(t ) = ~x(t T )
optimal control problem:

min
T 2 R;Kk 2 Rm� n;� k 2V s

J(T ; (Kk ; � k )NK
k=1 )

cost functional:
J(T ; (Kk ; � k )NK

k=1 ) :=
1
2

kx(1) � xgk2
2

constraints:
0 � T � Tmax ; � (Kk ) � 1; � (� k ) � 1; Kk 1 = 0 2 Rm;

� : Rm� n ! R+
0 and � : Vs ! R+

0 are continuously di�erentiable, coercive functions
transformed state equation fort 2 (0; 1):

_x(t ) = T f (x(t ); (Kk ; � k )NK
k=1 ); x(0) = x0
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First order condition

Theorem (First order necessary condition)
Let s � 1. For each stationary point(T ; (K k ; � k )NK

k=1 ) of J with state x

Z 1

0
hp(t ); _x(t )i dt = 0

holds true. Here,p 2 C1([0; 1]; Rn) denotes the adjoint state ofx, which is given as the
solution to the ODE

_p(t ) =
NKX

k=1

K
�
k D� k (K k x(t ))K k p(t ) + A� Ap(t )

with terminal conditionp(1) = xg � x(1).
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Time discretization

xg

x(1 )

x(T )x(0)
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Time discretization

xg

x(1 )

x(T )x(0)

xg

x(1 )

x(T )

x0 = x(0)

x1

xS
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Time discretization

Let S � 2 be a �xed depth and � = (( K k ; � k )NK
k=1 ).

State equation:
Explicit forward Euler:

xs+1 = xs +
T
S

f (xs; �) s = 0 ; : : : ; S � 1
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Time discretization

Let S � 2 be a �xed depth and � = (( K k ; � k )NK
k=1 ).

State equation:
Explicit forward Euler:

xs+1 = xs +
T
S

f (xs; �) s = 0 ; : : : ; S � 1

Explicit 2nd{order Heun:

xs+1 = xs +
T
2S

�
f (xs; �) + f

�
xs +

T
S

f (xs; �)
��
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Time discretization

Let S � 2 be a �xed depth and � = (( K k ; � k )NK
k=1 ).

Adjoint state equation:

_p(t ) = g(x(t ); p(t ); �) =
NKX

k=1

K
�
k D� k (K k x(t ))K k p(t ) + A� Ap(t )

Explicit forward Euler:

ps = ps+1 �
T
S

g(xs+1 ; ps+1 ; �)

Explicit 2nd{order Heun:

ps = ps+1 �
T
2S

�
g(xs+1 ; ps+1 ; �) + g

�
xs; ps+1 �

T
S

g(xs+1 ; ps+1 ; �) ; �
��
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Learning

For a given training set(x i
0; x i

g ) i 2I , the loss for a batchB � I is given by

JB (T ; (Kk ; wk )NK
k=1 ) :=

1
2jBj

X

i 2B

kx i
S � x i

gk2
2
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Learning

For a given training set(x i
0; x i

g ) i 2I , the loss for a batchB � I is given by

JB (T ; (Kk ; wk )NK
k=1 ) :=

1
2jBj

X

i 2B

kx i
S � x i

gk2
2

subject to

Kk 2 K =
�

K 2 Rm� n : � (K ) � 1; K 1 = 0
	

;

wk 2 W =
�

w 2 RNw : � (w) � 1
	

:

Here

� 0(x) =
NwX

j =1

wj  j (x)

with quadratic B{spline basis functions j (x) 2 C1(R).
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Image restoration

image denoising

b = xg + n

where
n � N (0; � 2I ):

Default: � = 0 :1
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Image restoration

image denoising image deblurring

b = xg + n

where
n � N (0; � 2I ):

Default: � = 0 :1

b = A� xg + n

with blur operatorA�

(x; y) 7!
1

p
2�� 2

exp
�

�
x2 + y2

2� 2

�
:

Default: � = 1 :5 and � = 0 :01

27 / 67



Regularization parameters - denoising
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Regularization parameters - deblurring
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Early stopping

image denoising

Inference speed: 5.694ms forS = 20
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Early stopping

image denoising image deblurring

Inference speed: 5.694ms forS = 20 Inference speed: 8.687ms forS = 20
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First order condition

image denoising
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First order condition

image denoising image deblurring
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First order condition

image denoising image deblurringS = 0 T = 0

PSNR=20.00 PSNR=26.68
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First order condition

image denoising image deblurring

S = 10 T = T
2

PSNR=26.36 PSNR=28.87
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First order condition

image denoising image deblurring

S = 20 T = T

PSNR=29.68 PSNR=29.52
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First order condition

image denoising image deblurring

S = 30 T = 3T
2

PSNR=29.15 PSNR=25.34
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First order condition

image denoising image deblurring

S = 1000 T = 50TPSNR=27.90 PSNR=5.13
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Stopping time () Noise level

Does the stopping time depend on the noise level� ?
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Stopping time () Noise level

D[x] =
1

2� 2 kx � bk2
2

energy �rst order condition
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Stopping time () Noise level

� = 0 :075 � = 0 :1 � = 0 :125 � = 0 :15
PSNR T PSNR T PSNR T PSNR T

full optimization of all controls 30.05 0.724
28.72 1.082

27.72 1.445 26.95 1.433
optimization only ofT 30.00 0.757 27.73 1.514 26.95 2.055
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Stopping time () Blur strength

Does the stopping time depend on the blur strength� ?
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Stopping time () Blur strength

energy �rst order condition
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Stopping time () Blur strength

� = 1 :25 � = 1 :5 � = 1 :75 � = 2 :0
PSNR T PSNR T PSNR T PSNR T

full optimization of all controls 29.95 39.86
28.76 37.78

27.87 40.60 27.13 40.01
optimization only ofT 29.73 23.86 27.69 47.72 26.71 51.70
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Spectral analysis of the learned regularizers

Nonlinear eigenvalue analysis of FoE regularizers
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Spectral analysis of the learned regularizers

Nonlinear eigenvalue analysis of FoE regularizers
Compute generalized eigenpairs(� j ; vj ) 2 R � Rn via

NKX

k=1

K >
k � k (Kk vj ) = � j vj
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Spectral analysis of the learned regularizers

Nonlinear eigenvalue analysis of FoE regularizers
Compute generalized eigenpairs(� j ; vj ) 2 R � Rn via

NKX

k=1

K >
k � k (Kk vj ) = � j vj

! forward Euler scheme reduces to

vj �
T
S

NKX

k=1

K >
k � k (Kk vj ) =

�
1 �

� j T
S

�
vj ;
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Nonlinear eigenvalue analysis of FoE regularizers
Compute generalized eigenpairs(� j ; vj ) 2 R � Rn via

NKX

k=1

K >
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! forward Euler scheme reduces to
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NKX
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K >
k � k (Kk vj ) =
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1 �

� j T
S

�
vj ;

I contrast factor(1 � � j T
S ) determines global contrast change
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K >
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vj �
T
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NKX

k=1

K >
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�
1 �

� j T
S

�
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I contrast factor(1 � � j T
S ) determines global contrast change

I holds only for one step
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Spectral analysis of the learned regularizers

Nonlinear eigenvalue analysis of FoE regularizers
Compute generalized eigenpairs(� j ; vj ) 2 R � Rn via

NKX

k=1

K >
k � k (Kk vj ) = � j vj

! forward Euler scheme reduces to

vj �
T
S

NKX

k=1

K >
k � k (Kk vj ) =

�
1 �

� j T
S

�
vj ;

I contrast factor(1 � � j T
S ) determines global contrast change

I holds only for one step
I eigenvalue determines contrast preservation
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Estimation of generalized eigenpairs

ComputeNv generalized eigenpairs by solving

min
f vj g

Nv
j =1

NvX

j =1












NKX

k=1

K >
k � k (Kk vj ) � �( vj )vj












2

2

;

where

�( v) =

DP NK
k=1 K >

k � k (Kk v); v
E

kvk2
2

is generalized Rayleigh quotient.
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Estimation of generalized eigenpairs

ComputeNv generalized eigenpairs by solving

min
f vj g

Nv
j =1

NvX

j =1












NKX

k=1

K >
k � k (Kk vj ) � �( vj )vj












2

2

;

where

�( v) =

DP NK
k=1 K >

k � k (Kk v); v
E

kvk2
2

is generalized Rayleigh quotient.
Optimization by accelerated gradient method with backtracking.

35 / 67



Nonlinear eigenpairs for image denoising

� 1 = 0 :025 � 3 = 0 :052 � 5 = 0 :070 � 7 = 0 :080 � 9 = 0 :092 � 11 = 0 :104 � 13 = 0 :111 � 15 = 0 :121

� 17 = 0 :138 � 19 = 0 :139 � 21 = 0 :156 � 23 = 0 :164 � 25 = 0 :184 � 27 = 0 :200 � 29 = 0 :204 � 31 = 0 :214

� 33 = 0 :226 � 35 = 0 :249 � 37 = 0 :268 � 39 = 0 :282 � 41 = 0 :297 � 43 = 0 :297 � 45 = 0 :341 � 47 = 0 :366

� 49 = 0 :398 � 51 = 0 :458 � 53 = 0 :504 � 55 = 0 :587 � 57 = 1 :001 � 59 = 1 :056 � 61 = 3 :093 � 63 = 5 :028
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Nonlinear eigenpairs for image deblurring

� 1 = � 0:02922 � 3 = � 0:00212 � 5 = � 0:00127 � 7 = � 0:00120 � 9 = � 0:00059 � 11 = � 0:00053 � 13 = � 0:00035 � 15 = 0 :00006

� 17 = 0 :00011 � 19 = 0 :00024 � 21 = 0 :00031 � 23 = 0 :00034 � 25 = 0 :00041 � 27 = 0 :00046 � 29 = 0 :00054 � 31 = 0 :00058

� 33 = 0 :00065 � 35 = 0 :00072 � 37 = 0 :00079 � 39 = 0 :00082 � 41 = 0 :00098 � 43 = 0 :00100 � 45 = 0 :00103 � 47 = 0 :00105

� 49 = 0 :00122 � 51 = 0 :00134 � 53 = 0 :00169 � 55 = 0 :00194 � 57 = 0 :00215 � 59 = 0 :00242 � 61 = 0 :00366 � 63 = 0 :00445
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Overview

Parameter learning in variational models

The Fields of Experts model

Early stopping

Total Deep Variation

Learning with graphical models
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Variational Formulation of Linear Inverse Problems
I x 2 RnC restored image(sizen = n1 � n2, C channels)

x 2 argmin
bx2 RnC

n
E(bx; �; z) := D(bx; z) + R(bx; � )

o

I data �delity term D(x; z) = 1
2kAx � zk2

2 for �xed task-dependentA 2 RlC� nC and
observed dataz 2 RlC

I total deep variation:parametric deep multi-scale regularizerR depending on learned
training parameters� 2 � � Rp
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I x 2 RnC restored image(sizen = n1 � n2, C channels)

x 2 argmin
bx2 RnC

n
E(bx; �; z) := D(bx; z) + R(bx; � )

o

I data �delity term D(x; z) = 1
2kAx � zk2

2 for �xed task-dependentA 2 RlC� nC and
observed dataz 2 RlC

I total deep variation:parametric deep multi-scale regularizerR depending on learned
training parameters� 2 � � Rp

Gradient 
ow for t 2 (0; T ):
_~x(t ) = f (~x(t ); �; z) := � A> (A~x(t ) � z) � r 1R(~x(t ); � );

~x(0) = xinit

Reparametrizationx(t ) = ~x(tT ) results in equivalent gradient 
ow fort 2 (0; 1):
_x(t ) = Tf (x(t ); �; z); x(0) = xinit
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Total Deep Variation

K 2 Rnm� nC learned
convolution kernel
(
P nC

i=1 Kj ;i = 0 for j = 1 ; : : : ; nm),

f : Rnm ! Rnq multiscale
convolutional neural network,

w 2 Rq learned weight vector,

� = ( K ; K l
s;t ; w) for l 2 f 1; 2; 3g,

s 2 f 1; : : : ; 5g, t 2 f 1; 2g,

r (x; � ) := w> f (Kx),

( )
P n ( )
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Sampled Optimal Control Problem

Training set: N 2 N triples (x i
init ; y i ; zi )N

i=1

I x i
init 2 RnC initial image

I y i 2 RnC ground truth image
I zi 2 RlC observed data
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I y i 2 RnC ground truth image
I zi 2 RlC observed data

Example (additive Gaussian image denoising):A = I , ground truth y i corrupted by
noiseni � N (0; � 2) ) x i

init = zi = y i + ni

Sampled optimal control problemwith convex and coercive lossl :

inf
T 2 [0;Tmax ]; � 2 �

(

J(T ; � ) :=
1
N

NX

i =1

l (x i (1) � y i )

)

s.t. state equationfor each sample (i = 1 ; : : : ; N and t 2 (0; 1))

_x i (t ) = Tf (x i (t ); �; zi ); x i (0) = x i
init
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Training set: N 2 N triples (x i
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i=1

I x i
init 2 RnC initial image

I y i 2 RnC ground truth image
I zi 2 RlC observed data

Example (additive Gaussian image denoising):A = I , ground truth y i corrupted by
noiseni � N (0; � 2) ) x i

init = zi = y i + ni

Sampled optimal control problemwith convex and coercive lossl :

inf
T 2 [0;Tmax ]; � 2 �

(

J(T ; � ) :=
1
N

NX

i =1

l (x i (1) � y i )

)

s.t. state equationfor each sample (i = 1 ; : : : ; N and t 2 (0; 1))

_x i (t ) = Tf (x i (t ); �; zi ); x i (0) = x i
init

Theorem
The minimum in the sampled optimal control problem is attained.
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Discretized Optimal Control Problem

Discretized Optimal Control Problem

inf
T 2 [0;Tmax ]; � 2 �

(

JS(T ; � ) :=
1
N

NX

i =1

l (x i
S � y i )

)

subject todiscrete state equation(s = 0 ; : : : ; S � 1 and i = 1 ; : : : ; N)

x i
s+1 = x i

s � T
S A> (Ax i

s+1 � zi ) � T
S r 1R(x i

s; � );

x i
0 = x i

init 2 RnC

depth S 2 N a priori �xed
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Discretized Optimal Control Problem

Discretized Optimal Control Problem

inf
T 2 [0;Tmax ]; � 2 �

(

JS(T ; � ) :=
1
N

NX

i =1

l (x i
S � y i )

)

subject todiscrete state equation(s = 0 ; : : : ; S � 1 and i = 1 ; : : : ; N)

x i
s+1 = x i

s � T
S A> (Ax i

s+1 � zi ) � T
S r 1R(x i

s; � );

x i
0 = x i

init 2 RnC

depth S 2 N a priori �xed
Equivalent state equation:x i

s+1 = ef (x i
s; T ; �; zi ) with

ef (x; T ; �; z) := ( I + T
S A> A) � 1(x + T

S (A> z � r 1R(x; � )))
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Discretized Optimal Control Problem
Let (T ; � ) be a pair of optimal control parameters with the corresponding state f x i

sg
i =1 ;:::; N
s=0 ;:::; S.

We de�ne theHamiltonian

H : RnC � RnC � [0; Tmax ] � � � RlC ! R

(x; p; T ; �; z) 7! hp; ef (x; T ; �; z)i :

If r ef (x i
s; T ; �; zi ) has full rank for alli = 1 ; : : : ; N and s = 0 ; : : : ; S, then there exists an

adjoint processf pi
sg

i =1 ;:::; N
s=0 ;:::; S s.t.

x i
s+1 = r 2H(x i

s; pi
s+1 ; T ; �; zi ); x i

0 = x i
init ;

pi
s = r 1H(x i

s; pi
s+1 ; T ; �; zi ); pi

S = �
1
N

r l (x i
S � y i ):

Finally, the solution is optimal in the sense that

NX

i =1

H(x i
s; pi

s+1 ; T ; �; zi ) �
NX

i =1

H(x i
s; pi

s+1 ; T ; �; zi )

for all T 2 [0; Tmax ] and � 2 � .
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Discretized Optimal Control Problem

discrete adjoint statespi
s computed viadiscrete Pontryagin maximum principle:

pi
s = r 1H(x i

s; pi
s+1 ; T ; �; zi )

= ( I � T
S r 2

1R(x i
s; � ))( I + T

S A> A) � 1pi
s+1 ;

pi
S = �

1
N

r l (x i
S � y i ):
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Discretized Optimal Control Problem

discrete adjoint statespi
s computed viadiscrete Pontryagin maximum principle:

pi
s = r 1H(x i

s; pi
s+1 ; T ; �; zi )

= ( I � T
S r 2

1R(x i
s; � ))( I + T

S A> A) � 1pi
s+1 ;

pi
S = �

1
N

r l (x i
S � y i ):

Theorem (Optimality condition)
Let (T ; � ) be a stationary point ofJS with associated statesx i

s and adjoint statespi
s. We

further assume thatr ef (x i
s; T ; �; zi ) has full rank for alli = 1 ; : : : ; N and s = 0 ; : : : ; S. Then,

we have

�
1
N

S� 1X

s=0

NX

i =1

hpi
s+1 ; (I + T

S A> A) � 1(x i
s+1 � x i

s)i = 0 :
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Importance of Early Stopping

y

ground truth image

45 / 67



Importance of Early Stopping

y

xinit

PSNR = 20:18
0 5 10 15 20

20

22

24

26

28

30

32

34

S

P
S

N
R

45 / 67



Importance of Early Stopping

y

xinit

PSNR = 24:33

x2

0 5 10 15 20

20

22

24

26

28

30

32

34

S

P
S

N
R

45 / 67



Importance of Early Stopping
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Importance of Early Stopping
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Importance of Early Stopping
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Importance of Early Stopping

y

xinit
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Importance of Early Stopping
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Importance of Early Stopping

y

xinit
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Numerical Results (Gaussian Image Denoising)

ground truth image noisy image,
PSNR = 20 :19

S = 5 , T = T
2 ,

PSNR = 26 :66
S = 10 , T = T ,
PSNR = 30 :29

S = 15 , T = 3T
2 ,

PSNR = 29 :47
S = 20 , T = 2 T ,
PSNR = 28 :61

46 / 67



Energy

Surface plots of deep variation[� 1; 1] 3 (� 1; � 2) 7! r (� 1x + � 2n) i
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Numerical Results (Gaussian Image Denoising)

Top: S 7! 1
N

P N
i=1 PSNR(x i

S; y i )

Bottom: S 7! T
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Numerical Results (Gaussian Image Denoising)

Top: T 7! PSNR(x i
S; y i )

Bottom: T 7! �
P S

s=0 hpi
s+1 ; x i

s+1 � x i
si

Averages across samples are depicted by red curves
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Numerical Results (Gaussian Image Denoising)

Data set � BM3D TNRD DnCNN FFDNet N3Net FOCNet TDV3

Set12
15 32.37 32.50 32.86 32.75 - 33.07 33.01
25 29.97 30.05 30.44 30.43 30.55 30.73 30.66
50 26.72 26.82 27.18 27.32 27.43 27.68 27.59

BSDS68
15 31.08 31.42 31.73 31.63 - 31.83 31.82
25 28.57 28.92 29.23 29.19 29.30 29.38 29.37
50 25.60 25.97 26.23 26.29 26.39 26.50 26.45

Urban100
15 32.34 31.98 32.67 32.43 - 33.15 32.87
25 29.70 29.29 29.97 29.92 30.19 30.64 30.38
50 25.94 25.71 26.28 26.52 26.82 27.40 27.04

# Parameters 26,645 555,200 484,800 705,89553,513,120 427,330

TDV3 slightly worse than FOCNet (state-of-the-art), but
I FOCNetonly applicable for denoising,
I TDV3 hasless than 1 % of the parametersof FOCNet,
I rigorous mathematical theoryfor TDV3 available
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Understanding TDV
Nonlinear eigenmode analysisfor TDV3:

x 2 argmin
x

R(x; � ) s.t. kxk2 = kxinit k2
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Sensitivity Analysis (Gaussian Image Denoising)

I (T ; � ); ( bT ; b� ) two pairs of control parameters (obtained from two di�erent training
datasets)

I x; ex 2 (RnC)(S+1) two solutions of state equation with same observed dataz and initial
condition xinit , i.e.

xs+1 = ef (xs; T ; �; z); exs+1 = ef (exs; bT ; b�; z)

for s = 1 ; : : : ; S � 1 and x0 = ex0 = xinit

I upper bound estimate by ODE theory
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Numerical Results (Single Image Super-Resolution)

I single image super-resolution with scale factor
 2 f 2; 3; 4g
I full resolution ground truth imagey i 2 RnC

I linear downsampling operatorA as implementation of scale factor-dependent interpolation
convolution kernel in conjunction with stride

I observed low resolution imagezi = Ay i 2 RnC=
 2

high resolution low resolution,
PSNR = 28 :32

S = 5 , T = T
2 ,

PSNR = 31 :41
S = 10 , T = T ,
PSNR = 32 :56

S = 15 , T = 3T
2 ,

PSNR = 31 :24
S = 20 , T = 2 T ,
PSNR = 28 :47
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Numerical Results (Single Image Super-Resolution)

ground truth image T(y
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Numerical Results (Single Image Super-Resolution)

noisy T(y
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Numerical Results (Single Image Super-Resolution)

TDV T(y
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Numerical Results (Single Image Super-Resolution)

TDV (continued) T(y
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Numerical Results (Single Image Super-Resolution)

Data set Scale MemNet VDSR DRRN OISR-LF-s TDV3

Set14
� 2 33.28 33.03 33.23 33.62 33.35
� 3 30.00 29.77 29.96 30.35 29.96
� 4 28.26 28.01 28.21 28.63 28.41

BSDS100
� 2 32.08 31.90 32.05 32.20 32.18
� 3 28.96 28.82 28.95 29.11 28.98
� 4 27.40 27.29 27.38 27.60 27.50

# Parameters 585,435 665,984 297,000 1,370,000 428,970
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Transfering TDV to medical imaging
2D CT reconstruction for angular undersampling

CG initializationR = 576

PSNR = 34:17
TDV3

25 for R = 576
PSNR = 43:51

TDV3
25 for R = 2304 CG initializationR = 288

PSNR = 27:75
TDV3

25 for R = 288
PSNR = 35:03

undersampled MRI reconstruction

4-fold undersampling
PSNR = 24:98

our result
PSNR = 48:29

reference image 6-fold undersampling
PSNR = 24:07

our result
PSNR = 38:55
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Overview

Parameter learning in variational models

The Fields of Experts model

Early stopping

Total Deep Variation

Learning with graphical models
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Learning with graphical models

I Finally, we consider learning parameters with graphical models for image labeling.
I For many years, both the unary terms and binary terms have beencomputed based on

handcrafted functions.
I Cannot compete with recent deep-learning methods.
I We propose to ...
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Learning with graphical models

I Finally, we consider learning parameters with graphical models for image labeling.
I For many years, both the unary terms and binary terms have beencomputed based on

handcrafted functions.
I Cannot compete with recent deep-learning methods.
I We propose to ...

(i) Learn neural networks that compute� = ( � i ; � i ;j ) from the input.

(ii) Adopt the graphical model as aninference layerin the network.
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Application to Stereo

I Given a stereo image pair, compute the disparity (inverse depth)

I0

I1

Feature layer

Feature layer

Correlation layer Inference layer

Edge layer

x

+� i (xi )
X

i2V

min
x2L

E(x; � ) :=
X

(i ;j )2E
� i ;j (xi ; xj )
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Application to Stereo
I Given a stereo image pair, compute the disparity (inverse depth)

I0

I1

Feature layer

Feature layer

Correlation layer Inference layer

Edge layer

x

+� i (xi )
X

i2V

min
x2L

E(x; � ) :=
X

(i ;j )2E
� i ;j (xi ; xj )

I Two main issues:
(i) E�cient solution of the inference layer
(ii) End-to-end learning
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Learning

I For learning the parameters# of the neural network, we consider a loss function` that
compares the output of the image labeling problemx(#) with the ground truth labelsxy,
e.g.

`(x(#); xy) =



 x(#) � xy






1

I The learning problem represents a bilevel optimization problem:

min
#

`(x(#); g); s.t. x(#) 2 arg min
x2L

2 E(x; f (#)) ;

I Hard to solve, becausex(#) does not continuously depend on#.
I We approximate the problem by constructing a di�erentiable upper bound similar to the

structured output SVM[Tsochantaridis et al. '04]
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Convex upper bound
I We use the following chain of upper bounds:

max
x2 arg minx2L E(x;f )

`(x; xy) � max
x2L :E(x;f )� E(xy ;f )

`(x; xy)
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I The function  is linear inf (in the lifted space), hence it is a maximum over linear
functions convex.
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� max
x2L

`(x; xy) + E(xy; f ) � E(x; f )

=  (x̂; xy; f )

wherex̂ = arg max
x2L

`(x; xy) � E(x; f ).

I The function  is linear inf (in the lifted space), hence it is a maximum over linear
functions convex.

I Computing the upper bound requires to solve the labeling problembut with
loss-augmented unary terms.

I The resulting surrogate function is di�erentiable with respect to the unariesfi

Dfi  (x̂; xy; f ) = � (xy
i ) � � (x̂i )  

61 / 67



Convex upper bound
I We use the following chain of upper bounds:

max
x2 arg minx2L E(x;f )

`(x; xy) � max
x2L :E(x;f )� E(xy ;f )

`(x; xy)

� max
x2L :E(x;f )� E(xy ;f )

`(x; xy) + E(xy; f ) � E(x; f )

� max
x2L

`(x; xy) + E(xy; f ) � E(x; f )

=  (x̂; xy; f )

wherex̂ = arg max
x2L

`(x; xy) � E(x; f ).

I The function  is linear inf (in the lifted space), hence it is a maximum over linear
functions convex.

I Computing the upper bound requires to solve the labeling problembut with
loss-augmented unary terms.

I The resulting surrogate function is di�erentiable with respect to the unariesfi

Dfi  (x̂; xy; f ) = � (xy
i ) � � (x̂i )  Dfi  (ŷ; yy; f ) = yy

i � ŷi| {z }
in the lifted space
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in the lifted space

I Similar formula for the binary weightsfi ;j .
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Graphical Explanation
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Training

Data bases
I Middlebury Stereo - Version 3
I KITTI 2015

Training

I Learning is performed using stochastic
subgradient descent with momentum

I First, we perform a CNN-only pre-training,
followed by a joint training
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Experiments - Middlebury Stereo
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Experiments - Kitti 2015
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Experiments - Kitti 2015
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Kitti 2015 - Quality of groundtruth

Ours MC-CNN ContentCNN

Ours MC-CNN ContentCNN
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Extension to motion estimation (Sintel)
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	Parameter learning in variational models
	

	The Fields of Experts model
	

	Early stopping
	

	Total Deep Variation
	


