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Saddle-point problem

◮ We again consider problems of the form

min
x∈X

f (Kx) + g(x),

where f , g are convex, l.s.c. and ‘simple’, and K : X → Y is a bounded linear operator.

◮ Rewriting the problem as a saddle-point problem

min
x

max
y

L(x , y) := 〈y ,Kx〉 − f ∗(y) + g(x)

◮ The most basic algorithm to find a saddle-point dates back to [Arrow, Hurwicz, Uzawa
’58]. It alternates a proximal descent in x and a proximal ascent in y

{

xk+1 = proxτg (x
k − τK∗yk),

yk+1 = proxσf ∗(y
k + σKxk+1).

◮ Convergence requires boundedness of the domain of f ∗ and τ = 1/
√
k
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Convergence

◮ A convergent algorithm is obtained by incorporating so-called extra-gradients [Korpelevich
’76], [Popov 81]

◮ Another simple modification is to replace xk+1 in the second line by 2xk+1 − xk [P.
Cremers, Bischof, Chambolle ’09], [Esser et al. ’10]

Algorithm 1 PDHG.

Input: initial pair of primal and dual points (x0, y0), steps τ, σ > 0.
for all k ≥ 0 do

{

xk+1 = proxτg (x
k − τK∗yk)

yk+1 = proxσf ∗(y
k + σK (2xk+1 − xk)).

end for
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Relations to the proximal point algorithm

◮ It can be shown [He, You, Yuan ’14] that the algorithm is just an instance of the proximal
point algorithm in a certain metric M

(

K∗xk+1 + ∂g(xk+1)
−Kyk+1 + ∂f ∗(yk+1)

)

+M

(

xk+1 − xk

yk+1 − yk

)

∋ 0

◮ It turns out that the correct metric M is given by

M =

(

1
τ
I −K∗

−K 1
σ
I

)

,

which is positive definite as soon as

τσ ‖K‖2 < 1
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A more general class of problems
◮ Let us consider a slightly more general form:

min
x∈X

f (Kx) + g(x) + h(x),

where h is a convex function with Lh Lipschitz continuous gradient. The corresponding
Lagrangian is given by

L(x , y) := 〈y ,Kx〉 − f ∗(y) + g(x) + h(x)

◮ We consider the following more general form of primal-dual iterations [Condat ’13] [Vu
’13]:

Algorithm 2 General form of primal–dual iteration.

Input: previous points (x̄ , ȳ , x̃ , ỹ), steps τ, σ > 0.
Output: new points (x̂ , ŷ) = PDτ,σ(x̄ , ȳ , x̃ , ỹ) given by

{

x̂ = proxτg (x̄ − τ(∇h(x̄) + K∗ỹ)),

ŷ = proxσf ∗(ȳ + σKx̃).
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Convergence rate

Choosing as in the PDHG algorithm x̄ = xk , ȳ = yk , ỹ = yk , x̃ = 2xk+1 − xk , we can show
the following convergence rate:

Theorem
Let τ, σ > 0 and (x0, y0) ∈ X × Y be given, and for k ≥ 0 let

(xk+1, yk+1) = PDτ,σ(x
k , yk , 2xk+1 − xk , yk).

Assume

(

1
τ
− Lh

)

1
σ
≥ L2. Then, for any (x , y) ∈ X × Y, we have

L(X k , y)− L(x ,Y k) ≤ 1

2k

∥

∥

∥

∥

(

x
y

)

−
(

x0

y0

)∥

∥

∥

∥

2

M

where X k = 1
k

∑k

i=1 x
i , Y k = 1

k

∑k

i=1 y
i . Moreover, if the step size restriction is strict, then

(xk , yk) converge (weakly in infinite dimension) to a saddle point.

Remark: Note that the true primal-dual gap G(X k ,Y k) can be bounded by taking the
supremum on both sides, but this requires additional assumptions on the functions f ∗, g , h.
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Acceleration

◮ Similar to Nesterov’s accelerated gradient descent, we can accelerate the primal-dual
algorithm by choosing dynamic step size parameters τk and σk

◮ This idea has been first proposed in [Zhu, Chan ’07] as a heuristic to accelerate the
convergence of the AHU algorithm in case of the ROF model

◮ In contrast to Nesterov’s algorithm, who exploits the smoothness of the function, we
exploit the strong convexity of either g + h (or f ∗)

Algorithm 3 Accelerated primal–dual algorithm 1.

Choose τ0 = 1/(2Lh) and σ0 = Lh/L
2 (or any τ0, σ0 with τ0σ0L

2 ≤ 1 if Lh = 0), θ0 = 0 and
x−1 = x0 ∈ X , y0 ∈ Y,
for all k ≥ 0 do

(xk+1, yk+1) = PDτk ,σk
(xk , yk , xk + θk(x

k − xk−1), yk+1),
θk+1 = 1/

√

1 + µgτk , τk+1 = θk+1τk , σk+1 = σk/θk+1.
end for
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Convergence rate

Theorem
Let (xk , yk)k≥0 be the iterations of the accelerated primal dual algorithm 1. For each k ≥ 1,

define tk = σk−1/σ0, Tk =
∑k

i=1 ti and the averaged points

(X k ,Y k) =
1

Tk

k
∑

i=1

ti (x
i , y i ).

Then for any k ≥ 1 and any (x , y) ∈ X × Y,

Tk

(

L(X k , y)− L(x ,Y k)
)

≤ 1

2τ0

∥

∥x0 − x
∥

∥

2
+

1

2σ0

∥

∥y0 − y
∥

∥

2
.

One can show that 1/Tk = O(1/k2). The global gap converges with this rate with additional
assumptions on f , for instance that f has full domain.
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Complete strongly convex

◮ In case both g + h and f ∗ are strongly convex, one can devise another variant with
optimal constant step size parameters which yields an optimal linear convergence rate.

Algorithm 4 Accelerated primal–dual algorithm 2.

Choose x−1 = x0 ∈ X , y0 ∈ Y, and τ, σ, θ > 0 satisfying θ−1 = 1 + µgτ = 1 + µf ∗σ and
θL2στ ≤ 1− Lhτ .
for all k ≥ 0 do

(xk+1, yk+1) = PDτ,σ(x
k , yk , xk + θ(xk − xk−1), yk+1),

end for
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Convergence rate

Theorem
Let (xk , yk)k≥0 be the iterations of the accelerated primal-dual algorithm 2. For each k ≥ 1,

define tk = σk−1/σ0, Tk =
∑k

i=1 θ
−i+1 and the averaged points

(X k ,Y k) =
1

Tk

k
∑

i=1

θ−i+1(x i , y i ).

Then, for any k ≥ 1 and any (x , y) ∈ X × Y,

L(X k , y)− L(x ,Y k) ≤ 1

Tk

(

1

2τ

∥

∥x0 − x
∥

∥

2
+

1

2σ

∥

∥y0 − y
∥

∥

2
)

.

Observe that 1/Tk = O(θk), so this is indeed a linear convergence rate.
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Non-linear proximal terms

◮ The PDHG algorithm can also be implemented using Bregman distance functions.

◮ For this, we choose two norms ‖·‖x and ‖·‖y and corresponding Bregman distance
functions Dx(x , x̄) and Dy (y , ȳ) which are 1-strongly convex with respect to the norms,
that is

Dx(x , x̄) ≥
1

2
‖x − x̄‖2x , Dy (y , ȳ) ≥

1

2
‖y − ȳ‖2y .

◮ The general convergence rates remains the same.

◮ It might be beneficial if the respective operator norms are smaller.
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α-preconditioning

On can avoid the computation of L via replacing τ, σ by preconditioning matrices:

M =

(

T−1 −K∗

−K Σ−1

)

≥ 0 ⇔ ‖Σ 1
2KT

1
2 ‖ ≤ 1

Lemma
Let T = diag(τ1, ...τn) and Σ = diag(σ1, ..., σm).

τj =
1

∑m

i=1 |Ki,j |2−α
, σi =

1
∑n

j=1 |Ki,j |α

then for any α ∈ [0, 2]

‖Σ 1
2KT

1
2 ‖2 = sup

x∈X , x 6=0

‖Σ 1
2KT

1
2 x‖2

‖x‖2 ≤ 1 .

The parameter α can be used to vary between pure primal (α = 0) and pure dual (α = 2)
preconditioning

15 / 30



Backtracking linesearch
◮ If the operator norm L = ‖K‖ is unknown, one can also implement a backtracking

linesearch procedure, preserving all the convergence guarantees and rates [Malitsky, P. ’18].

Algorithm 5 PDHG-linesearch.

Input: initial pair of primal and dual points (x0, y0), steps τ0 > 0, µ ∈ (0, 1), δ ∈ (0, 1), β > 0.
Set θ0 = 1.
for all k ≥ 1 do

xk = proxτk−1g
(xk−1 − τk−1K

∗yk)

Choose any τk ∈ [τk−1, τk−1

√

1 + θk−1]
loop

θk = τk/τk−1, x̄
k = xk + θk(x

k − xk−1),
yk+1 = proxβτk f ∗(y

k + βτkKx̄k)

if
√
βτk

∥

∥K∗yk+1 − K∗yk
∥

∥ ≤ δ
∥

∥yk+1 − yk
∥

∥ then

break

else

τk = τkµ
end if

end loop

end for
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Discussion
◮ The parameter β plays the role of the ratio τ/σ, hence the linesearch condition becomes

τkσk

∥

∥K∗yk+1 − K∗yk
∥

∥

2 ≤ δ2
∥

∥yk+1 − yk
∥

∥

2

◮ Using constant step sizes, the algorithm reduces to the standard PDHG algorithm.

◮ In practice, δ should be close to 1.

◮ The role of the primal and dual variables should be chosen such that the respective prox
proxσf ∗(·) is simpler.

◮ Note that we can compute Kx̄k = (1 + θk)Kx
k − θkKx

k−1.

◮ In case proxσf ∗(·) is linear (or affine), no additional matrix-vector products have to be
computed.

◮ For example, if f ∗(y) = 1
2 ‖y − d‖2, then proxσk f ∗

(u) = u+σkd
1+σk

and

yk+1 = proxσk f ∗
(yk + σkKx̄k) = yk+σk (Kx̄k+d)

1+σk
,

K∗yk+1 = 1
1+σk

(K∗yk + σk(K
∗Kx̄k + K∗d)).

◮ Can be extended to situations where the algorithm can be extended and to cases with
explicit gradient steps.
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Example: ROF model

◮ Let us recall the ROF model

min
u

λ ‖Du‖2,1 +
1

2
‖u − d‖2 ,

◮ The saddle-point formulation is given by

min
u

max
p

〈Du,p〉+ 1

2
‖u − d‖2 − δ{‖·‖2,∞≤λ}(p).

◮ The problem is 1-strongly convex in the primal variable, hence we can make use of the
accelerated PDHG algorithm using

p̂ = proj{‖·‖2,∞≤λ}(p̃) ⇔ p̂i,j =
p̃i,j

max
{

1, 1
λ
|p̃i,j |2

} ,

and

û = proxτg (ũ) ⇔ ûi,j =
ũi,j + τdi,j

1 + τ
.
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Practical

rof-apg-vs-apd.ipynb
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Example: TV-deblurring
◮ In the next example we consider the image deblurring problem

min
u

λ ‖Du‖2,1 +
1

2
‖a ∗ u − d‖2 .

◮ There are 3 possibilities to apply the PDHG algorithm:

(1) Compute proximal map of data term using the FFT

(2) Keep the quadratic term and perform explicit steps

min
u

max
p

〈Du,p〉+ 1

2
‖Au − d‖2 − δ{‖·‖2,∞≤λ}(p).

(3) Additionally dualize the quadratic term

min
u

max
p,q

〈Du,p〉 − δ{‖·‖2,∞≤λ}(p) + 〈Au, q〉 − 1

2
‖q + d‖2 ,

with the proximal map

q̂ = proxσf ∗q (q̃) ⇔ q̂i,j =
q̃i,j − σdi,j

1 + σ
.
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Practical

tv-deconv-pd.ipynb

21 / 30



Example: TV-ℓ1 model

◮ Finally, we consider the completely non-smooth TV-ℓ1 model, which is given by

min
u

λ ‖Du‖2,1 + ‖u − d‖1

◮ The saddle-point formulation reads

min
u

max
p

〈Du,p〉+ ‖u − d‖1 − δ{‖·‖2,∞≤λ}(p).

◮ The PDHG algorithm can be applied with the proximal map û = proxτg (ũ) given by

ûi,j = di,j +max{0, |ũi,j − di,j | − τ} · sgn(ũi,j − di,j).
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Practical

tv-l1-pd.ipynb
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Augmented Lagrangian

◮ Perhaps one of the oldest and best studied approaches for solving non-smooth convex
problems is the “alternating directions methods of multipliers” (ADMM) [Glowinski,
Marroco ’75], [Gabay, Mercier ’76]

◮ In its standard form, ADMM can be applied to problems of the form

min
Ax+By=b

f (x) + g(y)

◮ The idea is to introduce a Lagrange multiplier z and write the “augmented Lagrangian”
[Hestenes ’69], [Powell ’69], [Fortin, Glowinski ’82]

min
x,y

max
z

f (x) + g(y) + 〈z , b − Ax − By〉+ γ

2
‖b − Ax − By‖2 ,

where γ > 0 is a parameter.
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ADMM

◮ The ADMM algorithm essentially performs a block-coordinate minimization for x , y
followed by a gradient ascent on z .

Algorithm 6 ADMM.

Choose γ > 0, y0, z0.
for all k ≥ 0 do











xk+1 = argminx f (x)−
〈

zk ,Ax
〉

+ γ
2

∥

∥b − Ax − Byk
∥

∥

2
,

yk+1 = argminy g(y)−
〈

zk ,By
〉

+ γ
2

∥

∥b − Axk+1 − By
∥

∥

2

zk+1 = zk + γ(b − Axk+1 − Byk+1).

end for
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Relation between ADMM and PDHG

◮ It turns out that ADMM is equivalent to the PDHG algorithm, if we let

f̃ (ξ) := min
{x :Ax=ξ}

f (x), g̃(η) := min
{y :By=η}

g(y),

and apply the PDHG algorithm to the problem

min
ξ

max
z

〈z , ξ − b〉+ f̃ (ξ)− g̃∗(z)

◮ Hence, the complete convergence theory of PDHG can be applied to the ADMM algorithm

◮ Moreover, we can accelerate the ADMM algorithm in case f̃ or g̃∗ is strongly convex.
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Linearized ADMM

◮ The PDHG algorithm is equivalent to a linearized variant of ADMM which in case B = I
is obtained by adding a proximal term to the first line in the ADMM algorithm

xk+1 = argmin
x

f (x)−
〈

zk ,Ax
〉

+
γ

2

∥

∥b − Ax − yk
∥

∥

2
+

γ

2

∥

∥x − xk
∥

∥

2

M
,

◮ Choosing the metric M as

M =
1

λ
I − A∗A

which is positive definite if λ ‖A‖2 ≤ 1.

◮ Since zk = zk−1 + γ(b − Axk − yk) and letting σ = λ/γ that

xk+1 = proxσf (x
k + σA∗(2zk − zk−1)),

which is exactly the second line of the PDHG algorithm.
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Douglas Rachford splitting

◮ In case K = I , the primal-dual algorithm takes the form

{

xk+1 = proxτg (x
k − τyk),

yk+1 = proxσf ∗(y
k + σ(2xk+1 − xk)),

where τσ ≤ 1 and hence σ = 1/τ .

◮ Using Moreau’s identity and by a change of variables vk = xk − τyk , we obtain the
Douglas-Rachford splitting algorithm [Douglas, Rachford ’56], [Lions, Mercier ’79]

{

xk+1 = proxτgv
k ,

vk+1 = vk − xk+1 + proxτ f (2x
k+1 − vk).

◮ Finally, we note that the ADMM is the same as the Douglas-Rachford splitting algorithm,
but on the dual formulation of the problem.
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Example: TV deblurring using ADMM

◮ We turn back to the TV deblurring problem

min
u

λ ‖Du‖2,1 +
1

2
‖Au − d‖2 = min

p
λ ‖p‖2,1 + G (p),

where p = (p1, p2) and

G (p) := min
u:Du=p

1

2
‖Au − d‖2

◮ The proximal map of G is computed as p̂ = Du, where u solves

min
u

1

2τ
‖Du − p̃‖2 + 1

2
‖Au − d‖2 .

◮ The solution is given by

p̂ = D(D∗D+ τA∗A)−1(D∗p̃+ τA∗d),

which can be efficiently computed using the FFT.

◮ The proximal map for λ ‖·‖2,1 is given by a standard shrinkage.
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