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PDHG algorithm
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Saddle-point problem

» We again consider problems of the form

min f(Kx) + g(x);

where f, g are convex, l.s.c. and ‘simple’, and K : X — ) is a bounded linear operator.

» Rewriting the problem as a saddle-point problem

mXin myaxl:(x,y) = (y, Kx) — f*(y) + g(x)

» The most basic algorithm to find a saddle-point dates back to [Arrow, Hurwicz, Uzawa
'58]. It alternates a proximal descent in x and a proximal ascent in y

xk+1 — prong(xk — 7K*yh),
y L = prox, q. (YK + o KxkH1).

> Convergence requires boundedness of the domain of f* and 7 = 1/vk

3/30



Convergence

» A convergent algorithm is obtained by incorporating so-called extra-gradients [Korpelevich
'76], [Popov 81]

» Another simple modification is to replace x**1 in the second line by 2x**1 — x* [P.
Cremers, Bischof, Chambolle '09], [Esser et al. '10]

Algorithm 1 PDHG.

Input: initial pair of primal and dual points (x°, y°), steps 7,0 > 0.
for all Kk >0 do

xk+1 = prong(xk — 7K*yk)
y L = prox, q (y5 + oK (2xK1 — xK)).

end for
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Relations to the proximal point algorithm

» It can be shown [He, You, Yuan '14] that the algorithm is just an instance of the proximal

point algorithm in a certain metric M

K*Xk+1 + 8g(Xk+1) Xk+1 _ Xk
M
<Kyk+1 + af*(yk+1) + yk+1 o yk 250

» |t turns out that the correct metric M is given by

1k
M= (G 1)

which is positive definite as soon as

ro|K|? <1



A more general class of problems

» Let us consider a slightly more general form:
min f(Kx) + g(x) + h(x),

where h is a convex function with L, Lipschitz continuous gradient. The corresponding
Lagrangian is given by

L(x,y) == (y, Kx) = f*(y) + g(x) + h(x)

> We consider the following more general form of primal-dual iterations [Condat '13] [Vu
"13]:

Algorithm 2 General form of primal—-dual iteration.

Input: previous points (X,y, X, ), steps 7,0 > 0.
Output: new points (X,7) = PD, ,(X,¥,X,¥) given by

= prox,, (X — 7(Vh(X) + K*7)),
? prox, s« (¥ + oKX).

6/30



Convergence rate

Choosing as in the PDHG algorithm x = x*, 7 = y*, j = y*, % = 2xk*1 — x¥ we can show
the following convergence rate:

Theorem
Let 7,0 > 0 and (x°,y°) € X x ) be given, and for k > 0 let

(XKL YR L) = PD. o (xK, yK, 25K — k).

Assume (i — L/,); > L2. Then, for any (x,y) € X x Y, we have

X XO
y)
where Xk = LS xi, Yk = LS i, Moreover, if the step size restriction is strict, then

(x*,y*) converge (weakly in infinite dimension) to a saddle point.

Remark: Note that the true primal-dual gap G(X*, Y*) can be bounded by taking the
supremum on both sides, but this requires additional assumptions on the functions *, g, h.

2
LXK y) - L, Y9 < £ H

M

7/30



Overview

Accelerated version
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Acceleration

» Similar to Nesterov's accelerated gradient descent, we can accelerate the primal-dual
algorithm by choosing dynamic step size parameters 7, and oy

» This idea has been first proposed in [Zhu, Chan '07] as a heuristic to accelerate the
convergence of the AHU algorithm in case of the ROF model

» In contrast to Nesterov's algorithm, who exploits the smoothness of the function, we
exploit the strong convexity of either g + h (or f*)

Algorithm 3 Accelerated primal—-dual algorithm 1.

Choose 7o = 1/(2L) and oo = L,/L? (or any 79, 0¢ with 7ooqL? < 1 if L, = 0), 6 = 0 and
xtT=x0ecx ey,
for all Kk > 0 do
(XKL, kY = PD, (%K, vk, XK + O (xk — xK=1), ykH),
Okr1 = 1/\/1 4 pgTh, Tky1 = Oks17Tk, Oki1 = 0k/Oks1.
end for
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Convergence rate

Theorem
Let (x*,y*)k>0 be the iterations of the accelerated primal dual algorithm 1. For each k > 1,

define ty = ok_1/00, Tk = Z,-kzl t; and the averaged points
1k
XY == "t(x,y).
(XY = 2 D)

Then for any k > 1 and any (x,y) € X x ),

Ti(L(X5,y) = L0x, Y5)) < HX A+ 5 Hy I

One can show that 1/ T, = O(1/k?). The global gap converges with this rate with additional
assumptions on f, for instance that f has full domain.
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Complete strongly convex

» In case both g + h and f* are strongly convex, one can devise another variant with
optimal constant step size parameters which yields an optimal linear convergence rate.

Algorithm 4 Accelerated primal—dual algorithm 2.
Choose x 1 =x% € X, y® € J, and 7,0,0 > 0 satisfying 71 = 1 + p,7 = 1 + ps-0 and
OL207 <1— LpT.
for all Kk > 0 do
(xkHL Yk 1) = PD.(x%, yk, xK + O(xk — xk=1), yk+1),
end for
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Convergence rate

Theorem
Let (x*,y*)i>0 be the iterations of the accelerated primal-dual algorithm 2. For each k > 1,
define ty = ox_1/00, Tk = Zle 0~'*1 and the averaged points

(Xk Yk ZH—H—I I
Then, for any k > 1 and any (x,y) € X x ),

1 /1 2 1 2
L(X*y) = L(x, Y*) < Tk<2THX°—XH + 55 1Y = )

Observe that 1/ T, = O(6¥), so this is indeed a linear convergence rate.
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Overview

Extensions
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Non-linear proximal terms

» The PDHG algorithm can also be implemented using Bregman distance functions.

P For this, we choose two norms ||-[|, and [-[|, and corresponding Bregman distance
functions D,(x, X) and D, (y, y) which are 1-strongly convex with respect to the norms,
that is

o1 2 | _2
Di(x,%) = 5 lIx = %I, Dy(y:y) = 5 lly = ¥l -

» The general convergence rates remains the same.

» It might be beneficial if the respective operator norms are smaller.
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a-preconditioning
On can avoid the computation of L via replacing 7,0 by preconditioning matrices:

T! —K* 1 1
M_<_K 24)20©DKWH§1

Lemma
Let T = diag(7,...7,) and ¥ = diag(o1, ..., om).

1 1
T = e o a 0T = e
’ Z,’:1 |Ki.,j|2 Zj:l |Ki-,j|
then for any o € [0, 2]
1 1 2
IZZKT?|]2 = wﬁl-
xeX, x#£0 HXH

The parameter « can be used to vary between pure primal (o = 0) and pure dual (o = 2)
preconditioning
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Backtracking linesearch

» If the operator norm L = ||K|| is unknown, one can also implement a backtracking
linesearch procedure, preserving all the convergence guarantees and rates [Malitsky, P. '18].

Algorithm 5 PDHG-linesearch.
Input: initial pair of primal and dual points (x°, y°), steps 70 > 0, € (0,1),8 € (0,1),8 > 0.

Set 6y = 1.

for all Kk > 1 do
xk = pro><Tk71g(X"—1 — 1 K*yF)
Choose any T € [kal, Tk—1v/1+ 9/(,1]
loop

O = T /Th—1, XK = xk + ek(Xk - Xk_l),
yktl = ProXg,, £+ (y¥ + BT KxF)
if /Bri ||[K Yy = K*yk|| <6 ]y*™ — y*|| then
break
else
Tk = Tkl
end if
end loop
end for
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Discussion

» The parameter (3 plays the role of the ratio 7/c, hence the linesearch condition becomes

Te Ok HK*ka _ K*ka2 < 52 Hyk+1 _ ka2

» Using constant step sizes, the algorithm reduces to the standard PDHG algorithm.

» In practice, § should be close to 1.

» The role of the primal and dual variables should be chosen such that the respective prox
prox, - (+) is simpler.

» Note that we can compute KxK = (1 + ) Kx* — 0, Kx*—1.

» In case prox,.(+) is linear (or affine), no additional matrix-vector products have to be

computed.
> For example, if F*(y) = 3 [ly — d||%, then prox,, ;. (u) = %% and
yk+1 = Prox;, = (yk + O’kK)_(k) = %}W
Koy* = (K 4 ou(K* KR  + K*d)).

» Can be extended to situations where the algorithm can be extended and to cases with
explicit gradient steps.
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Example: ROF model

» Let us recall the ROF model

) 1 2
min X [Dul, + & lu— d

» The saddle-point formulation is given by

. 1
min max (Du,p) + 5 [Ju— d|* - S)-f1,. . <21 (P)-

» The problem is 1-strongly convex in the primal variable, hence we can make use of the
accelerated PDHG algorithm using

Bi

P = Projgj., . < (B) < Pij = max{1, X 1pil}

and .
bjj + 7di,

0= prong(L”/) & 0y = T,

18/30



Practical

rof-apg-vs—-apd.ipynb



Example: TV-deblurring

» In the next example we consider the image deblurring problem

laxu—d|>.

. 1
min A ||DuH2’1 + 5

» There are 3 possibilities to apply the PDHG algorithm:
(1) Compute proximal map of data term using the FFT
(2) Keep the quadratic term and perform explicit steps

. 1
min max (Du,p) + 5 |Au—d|* — )11, o <x(P)-

(3) Additionally dualize the quadratic term

) 1
min max (Du, p) — 5{\|.\|2=W§A}(P) + (Au, q) — > lq + de )

with the proximal map

R . N Gij — O'd'y'
g = prox,¢-(4) < Gij = L
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Practical

tv-deconv-pd.1ipynb



Example: TV-£; model

» Finally, we consider the completely non-smooth TV-¢; model, which is given by

muin A ||DUH2,1 + [Ju—d|;

» The saddle-point formulation reads

min max (Du, p) + [|u — dl|; = dg.p, < (P)-

» The PDHG algorithm can be applied with the proximal map & = prox_ (&) given by

ﬁ;’j = d,'yj + max{O, |LNI,'~J' — d,'yj‘ — ’7'} . sgn(ﬂ,-_j - d,'yj).
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Practical

tv-11-pd.1ipynb



Overview

Augmented Lagrangian and ADMM
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Augmented Lagrangian

» Perhaps one of the oldest and best studied approaches for solving non-smooth convex
problems is the “alternating directions methods of multipliers” (ADMM) [Glowinski,
Marroco '75], [Gabay, Mercier '76]

» In its standard form, ADMM can be applied to problems of the form

in f
A, Fx) +a(y)

» The idea is to introduce a Lagrange multiplier z and write the “augmented Lagrangian”
[Hestenes '69], [Powell '69], [Fortin, Glowinski '82]

minmax f(x) + g(y) + (z, b — Ax — By) + % |b— Ax — By|?,

X,y z

where v > 0 is a parameter.
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ADMM

» The ADMM algorithm essentially performs a block-coordinate minimization for x, y
followed by a gradient ascent on z.

Algorithm 6 ADMM.

Choose v > 0, y°, 2.
for all Kk > 0 do

X} = argmin, f(x) — (¥, Ax) + 2 ||b — Ax — Bka2,
y*1 = argmin, g(y) — <z’<7 By> +3 Hb — Axktl _ By||2
2 = ZK oy (b — AxKHL — Bykt1y,

end for
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Relation between ADMM and PDHG

> |t turns out that ADMM is equivalent to the PDHG algorithm, if we let

&)= min fx). &)= min ()

and apply the PDHG algorithm to the problem

min max (z,¢ — ) + 7(€) ~ £"(2)

» Hence, the complete convergence theory of PDHG can be applied to the ADMM algorithm
» Moreover, we can accelerate the ADMM algorithm in case f or g* is strongly convex.
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Linearized ADMM

» The PDHG algorithm is equivalent to a linearized variant of ADMM which in case B =/

is obtained by adding a proximal term to the first line in the ADMM algorithm

XK+ = arg min f(x) — <Zk,AX> + % ||b—AX—yk||2+ g ||X—xk||§/,,

» Choosing the metric M as

1
M=—-1-AA
A

which is positive definite if A [|A|[> < 1.
» Since z¥ = zK71 + ~v(b — AxK — yk) and letting 0 = A/~ that

XKL = prox_(x¥ + o A* (22 — ZK71)),

which is exactly the second line of the PDHG algorithm.
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Douglas Rachford splitting

» In case K =/, the primal-dual algorithm takes the form
XK = prox, (x* — 7y¥),
YR = prox . (v + 02641 — x)),

where 70 <1 and hence o0 = 1/7.

» Using Moreau’s identity and by a change of variables vk = x¥ — 7y*, we obtain the
Douglas-Rachford splitting algorithm [Douglas, Rachford '56], [Lions, Mercier '79]

{XkJrl = prox, v,

vitl = vk xk+1 4 prox (2xKHL — vk).

» Finally, we note that the ADMM is the same as the Douglas-Rachford splitting algorithm,
but on the dual formulation of the problem.
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Example: TV deblurring using ADMM

» We turn back to the TV deblurring problem
min A[Duly + 5 [Au— I = min A [pl; + G(p),
where p = (p1, p2) and
6(p) = min > [1Au—d’
» The proximal map of G is computed as p = Du, where u solves

.1 2, 1 2
min o= 1D~ Bl + 3 1w — d”

» The solution is given by
p =D(D*D + 7A*A)"1(D*p + TA*d),

which can be efficiently computed using the FFT.
» The proximal map for A ||-||, ; is given by a standard shrinkage.
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