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Scattering amplitudes are the fundamental
tools for making contact between quantum field
P & theory description of nature and experiments

» Comparing particule physics model against datas from accelators
» Post-Minkowskian expansion for Gravitational wave physics
> Various condensed matter and statistical physics
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Physics arguments indicate that any quantum field theory amplitude
can be expanded on a finite basis of integral functions

A%:g;?f = Z coeff; Integral; 4 Rational function
ieB(L)

> What is the dimension of the basis B(L)?
» What are the functions in the basis?
e Feynman integrals are highly transcendental functions with a lot
singularities
> We still do not understand completely two-loop amplitudes !

We want to design a method based on the geometry of the graph that

gets an intrinsic meaning to the differential equation and the basis of
master integrals
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Motives for Feynman Graph
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Feynman Integrals: parametric representation

The integral functions in the basis are Feynman integrals with L-loop

and ninternal edges w = 3 ; v, — %

Ur(x)*~2 T dx;
Fvsm =) | on are= ST T

Ir(x X

The integral is an analytic function of the space-time dimension D with
the Laurent expansion near D, € IN*

Hg,m):Z(D D)I (s, m) D = D, — 2¢: 0<e< 1

rz—m
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Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in P

n
Up(x) = Z Ug,,...a, HX,-‘a', Vr(x) = Z Sa,,...,aonia’
i=1

aq+-+an=L =1 aq+-+anp=L+1
0<aj<t 0<a;<1

Ua,,. .a, €{0,1}and S, ... a, are linear combination of the kinematic
variables

From 5 we can reconstruct the associated Feynman graph I
» the number of edges is n
> the loop orderis L = deg(Fr) — 1
» Number of vertices v = 1 + n— L from Euler characteristic of the
planar graph
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Feynman Integrals: parametric representation

[L+1D n—1
LD Ur(x)"
/r(§, m) =T (n— 2) JA Qr; Qp:= RCSXr ( 3‘( ) H dX,)

Algebraic differential form Qr ¢ H"~1(IP"~"\ Xi) on the complement
of the graph hypersurface

Xr == {Ur(x) = 0&Jr(x) =0,x € P}

» Generically the graph hypersurface has non-isolated singularities
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Feynman integral and periods

An ¢ H'1(P"~"\X) because

we have to look at the relative conomology H®(P"~"\Xr; I,\ 1, N Xr)

The normal crossings divisor /1, :={x; --- x, = 0} and X are
separated by performing a series of iterated blowups of the
complement of the graph hypersurface siocn, esnaut, kreimer
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Differential equation

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

M(s, M) == H* (P \Xr; I\ I, N Xr)

Since O varies with the kinematic variables s and internal mass m
one needs to study a variation of (mixed) Hodge structure

The Feynman integrals inhomogenous differential equation

Lpr Ir = Sr

Generically there is an inhomogeneous term Sr # 0 due to the
boundary components 0A,

Deriving this differential equation is difficult in general and requires a
lot of computer resources and is still a major question in QFT
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When physics and mathematics meet

The central questions about amplitudes in QFT can be reformulated as
Riemann-Hilbert problem for periods

» Compute period explicitly
X Numerically or by series expansion in the physical region
> Derive the local monodromy

17 unitarity of the S-matrix
> Construct a complete system of differential equations

I Relate this to the integration-by-part method used in QCD
> Understand the new class of special functions that are needed

I What is needed beyond beyond elliptic multiple polylogarithm?
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The approach

GKZ have shown that the integrals with appropriate cycle o

T @ dX
LHP,-(Z1 ..... zr)’”'Hxﬁ'Ti’, Pi(xq,..., Xn) = Z ZaX?3

acAczn

satisfy the differential system of equations
» forevery ({y,.. ., 0) e {(ty, - 0)ez'|y | ta =0} thereis
one differential operator

oe=Jo5— ][]0z |®=0

¢;>0 £;<0
> a system of n differential equation (includes the Euler operator)

0 0
<a1Z1az1++arZraZ—C>CDO
r
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The GKZ approach: consequences

@ The generic solution of GKZ system are the hypergeometric series

r ZVITY

Op (21, ,2) = Z Hm

with I = {(¢4,...,0,) € Z| S [ t;a; =0} with {; + -+, = 0 and
(v1,-- -, vr)eC’

© One solution is the maximal unitarity cut integral

: J
r = - Qr
(2I7)" Jixy | = =10y =1

given by the same integrand as the Feynman integral /- but with
cycle of integration the torus around the origin
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Gelfand-Kapranov-Zelevinsky approach

The GKZ approach considers the (generic) toric polynomial

Z fa x?

acA(IN)nzn+t

TR ()

The physical graph polynomial 5 (x) is a specialisation of the toric
deformation parameters to the physical locus f; — (s, m). The map is
linear

The Feynman graph hypersurface is highly non generic
» The system often resonant and reducible

» Obtaining the minimal order Picard-Fuchs operator this way is not
an easy task as one must restrict the D-module

» The Feynman integrals are relative periods so one needs to
extend the GKZ approach (Cf [Hosono, Lian, Yau; Klemm et
al.])
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Differential equations for
Feynman Graphs
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We want to derive the differential equation

Lpr L Qr = Sr

The differential form Qr is functions of the kinematics parameters

s ={p; - pj} and the internal masses m ={my, .. ., mp} which are all non
vanishing.
For a given subset of kinematic parameters z := (z, .. ., Z)Ccsum

we want to construct a differential operator T, such that

such that

T;=Lpr(s,m,9,) + Z 0x,Qi(s,m,9,; x,0,)
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where the finite order differential operator

) r ai n b,'
Qs o)=Y qéi),...,a,(s,m,x)]_[<cg> H(d_>
=1

0<a;<o/ 0<b;<o; i=1
1<igr 1<i<n

» The orders 0;, 0/, 0; are positive integers

> Da, .2 (s, m) polynomials in the kinematic variables

> qé: _____ 4 (s, m, x) rational functions in the kinematic variable and the
projective variables x.
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Integrating over a cycle v gives
O:J; T:Qr = Lpr(s, m z]i; Qr-l-jg dBr
Y Y Y
For a cycle SEY dpr = 0 (e.g. maximal cut) we get
L,D/:(§, m, Z)% _O.r =0
Y
For the Feynman integral /i we have

O:J TZQF:LPF(SvmvaZt)IF‘FJ’ dBr
n Arl

since 0A, # ()
Lpr(s,m,0;)lr = Sr
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This can done using the creative telescoping method introduced by
Doron Zeilberger (1990) and the algorithm by F. Chyzak

A Fast Approach to Creative Telescoping

Algorithmes Efficaces
en Calcul Formel

Alin Bostan
Frédéric Crvzak
Marc Grustt
Romain LesreToN
Grégoire Lecerr
Bruno SaLvy

Eric Scrost
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@ This works in all case even when the graph hypersurface does not
have isolated singularities (which is the generic case)

© This algorithm gives immediately the minimal order differential
operator no need for reducing the system
© From the Picard-Fuchs operators one can reads off information
about the geometry of the motive
o For the order of the minimal Picard-Fuchs operator we have an
indication of the underlying controlling geometry

e The regular singularities of the operators should coincide with the
thresholds
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How to find the motives for
Feynman Graph?
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Geometry for Feynman graph motives

The Feynman integral are periods of H* (P~ 1\ Xz 11,\ /i, N X)

Sometime the geometry can be read directly from the graph
polynomial fr X1,..., Xp) =0 in P

For the n— 1-loop sunset graph we have
” deg(Fr) = nand defines a Calabi-Yau
n — 2-fold

In general the geometry is more intricate and being controlled by the
singularity structure of the graph hypersurface

For the kite, F, (x4
deg(Fr) = 3 in P4
This cubic 3-fold actually defines actually
an elliptic curve

..... X5) = 0 with

D2
N

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 PANE )



Geometry for Feynman graph motives

In some cases the question is connected to deep and still open
question in algebraic geometry

The graph polynomial

Xr = {?mrdigrade(x1 ----- Xg) = 0} defines a
singular cubic in IP°

The middle cohomology of H*(Xr, C) of
smooth cubic is of K3 type 0 1 21 1 0 (cf [ouriaily

et al.]).

The Feynman graph polynomials has singularities and we need to work
hard to understand the geometry (the singularities lower the genus)
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A conjecture

For graph with more edge the graph polynomial does not define a
Calabi-Yau but based on in depth-analysis of the graph polynomial
geometry we can make the following conjecture

Conjecture (Motivic Mirror Conjecture (short version))
» Feynman integrals satisfy irreducible Fuchsian systems over
momentum space
» ODE are are inhomogeneous differential equations whose
homogeneous part is the Picard-Fuchs equation of a pencil of
Calabi-Yau varieties

» These pencils can be interpreted as Landau-Ginzburg models, for
which the internal mass parameters are complex structure
deformations, mirror to weak Fano varieties, for which the internal
mass parameters are deformations in the Kéhler cone.
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The sunset graphs family
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The sunset family of graph

L m "
v
The graph polynomial for the n — 1-loop sunset
1 1
Fa(X) =X Xn <+-~-+> (MiExy + -+ mixp)
Xq Xn
=:$5 (x)
The Feynman integral in D = 2
n—1
dx;
/@( 2’ m2) _ J YA
nip x>0, xn>op—¢@ o Xi
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The sunset integrals and / -function values

For m12 — ... =m? = 1 and special values of p? the sunset Feynman
integral becomes a pure period integral sioch, kerr, vanhove]

I@(pZ 1) :J H?:_11 d|OgX,'
AR x,->0p2—<‘+---+Xln)(x1+---+xn)

X1

Using impressive numeric experimentations [Broadhust] found that
Pp?1,..., 1) for special p? is given by L-function values in the critical
band. For large n the L-function are from moments Kloosterman sums
over finite fields
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The sunset integrals and / -function values

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

n—1 )
/,?(PZ _____ 1) _ J' ]._[i:1 d|0g Xi
x,->0p2—<;—1+~-+xln) (X1 + -+ Xp)
n = 3: elliptic curve case : [5(1, ..., 1) =1¢(2)
n= 4: K3 Picard rank 19 . lf(1 ..... 1) — %L(f[(g, 2) [Bloch, Kerr, Vanhove]

> L(fk,, s) is the L-function of H?(K3, Qq)
» Functional equation L(fxs3, s) o L(fx3,3 — 5)

> fig =n(tNBON(5TN(157) 3, , g7 AT

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 27/48



The sunset integrals and / -function values

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

(PP 1)J 7= d1og x
" , , Xi?O,DZ—(*—I—”--i-1>(X1+-~+Xn)

% %
n = 5: Rigid 3-fold Barth-Nieto quintic X3
> /?(1 ..... 1) = 48C(2)L(f, 2) Broadhurst
> f weight 4 and level 6 modular form 7 = (1(7)n(27)n(31)n(67))?
» This L-series is precisely the one for H* (X5, Q) werin
» Functional equation L(f, s) o< L(f, 4 — s)
[Candelas, de La Ossa, Elmi, van Straten] ShOWed that the attractor equation for the
N = 2 supergravity (type Il compactified on CY 3-fold) leads to the
following equation for the 1-parameter CY 3-fold

1—@(X1 + X2 + X3 + X4 + X5) l+l+l+l+l =0
<P12345X1X2X3X4X5—
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Sunset Calabi-Yau

LeLy
B a+3 o, LL,
LiL,
S
-~ - - - i3 L-L,
1 2 3 n ¢ @
LiL \Ls'lu
LI-L:
L L,
-a-B -B \
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Sunset graphs toric variety

The sunset graph polynomial

oo (£e) (£.2) )

is a character of the adjoint representation of A, 1 with support on the
polytope generated by the A,_4 root lattice
» The Newton polytope A, for F¢ is reflexive with only the origin as
interior point
» The toric variety X(A,_1) is the graph of the Cremona
transformations X; — 1/X; of P
X(An—_1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0,..., 0), (0,1,0,..., 0),...,(0,..., 0,1)inP"*
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Two-loop Sunset toric variety

(Maxy + Maxa + M3X3) (X1 X2 + X1 X3 + XoX3) = PPX1X2X3

LyL,

» The toric variety is X(As) = Bl3(IP?) = dPg blown up at 3 points
» The subfamily of anticanonical hyperspace is non generic
The combinatorial structure of the NEF partition describes
precisely the mass deformations

» True for all n

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 31/48



Sunset graphs pencils of variety

For p? « IP" we define the pencil in the ambient toric variety X (A, 1)

n

X2 (A1) ={(P?, X) € P! x X(An_1)IX1 - Xn <Zm x,> (Z ;) — PPy -+ Xp = 0}

i=1

The fiber at p* = oo is I, = {x; - - x, = 0}

Since 11, is linearly equivalent to the anti-canonical divisor of X(A,_1)
the family has trivial canonical divisor: We have a family of (singular)
Calabi-Yau n— 2-fold

This is specific to this family of associated with root lattice of A,
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The lterative fibration
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The lterative fibration

The sunset family (37, m2x;) (Z,’-’:1 %) — p? = 0 is birational to
generic complete intersection variety in IP”

1 &1 4
7+Z;:O, p2X0—|—Zm,'2X,':O
0 =7 i=1

Obviously X (A, 1) is obtained from X(A, ») with the substitutions

1 1 l 2 2 2
— + y mn_1Xn,1 — mn_-Ian'] + man
Xn—1 Xn—1  Xn

X(A,_1) is fibrered over X(A) = P! with generic fibers X(A,_5)

X(An—2) = X(Ap1) = X(A)) =P
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The two-loop sunset graph

mg
m1

The pencil of sunset elliptic curve
Xpe(Az) = {(P?, X) € P? x X(A)|(Mix1 + Mbxz + M Xs) (X1 Xz + X1 X3 + XaX3) = P° X1 Xo X3}

The fibers types are
> Generic case my # Mo # s

k(0) + ls(o0) + h () + - -+ h(ua); W = (£my £ mp + mg)?
> single mass my; = m» = my # 0 : modular curve X;(6)
I (0) + ls(00) + l(m?) + Iy (9m?)

The Feynman integral is an elliptic dilogarithm sioch, kerrvanhove]
H?(IP?\{x1 x2X3 = 0}, Xo, Q(2))
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The 3-loop case : pencil of

1
Dsz(Aa) = {(,02,5) c P! x X(Asz)] (m12X1 + m§x2 + m§x3 + m§X4) (7 +---+ *)
1

m4

1
X4

P}

Generic anticanonical K3 hypersurface in the toric threefold Xa- has

Picard rank 11

The physical locus for the sunset has at least Picard rank 16

masses fibers Mordell-Weil | Picard rank
(m4,m1,m2,m3) 8/1 +2Ig+2l6 2 16
(m4:m1,m2,m3) 8l + Iy + 2 2 17
(m4 my, My = m3) 4/1 +4I2 + 2’6 1 17
(m47m1 ms = mg) 4l + 2 + Iy + 215 1 18
(m47m1 mg,mg) 8/1 +l4+2/6 3 18
(M4, My = My = ms) 4l + 4l + 215 2 18
(m 7m1:m2:m3) 4/1+2/2+l4+2/5 2 19

|P/C| — 19 m0t|Ve Of an e||lptIC 3'|Og H3 UPS\II4, X4, Q(S)) [Bloch, Kerr, Vanhove]
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The Picard-Fuchs operator: three loop sunset

The Picard-Fuchs operators for the
Ls Feynman integral for general parameters
My # My # Mo + M3

AN
Ly Ly r

m\s—fm msfé Z arls < dp2 >

Ls is order 6 and degree 25
e Gs (%) = Gs(P?)
L6 H (PZ* (ermy +€2m2+€3m3+€4m4)2)
ej==+1
Ly = (oci +B)olL, 4 with gg(p?) degree 17 contains the

2
dp apparent singularities
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The 4-loop case : pencil of CY 3-fold

1
X2 (As) ={(P? X) € P x X(A4)| (mixs + - -+ + mixs) (71 +o X—5> =p%}

This gives a pencil of nodal Calabi-Yau 3-fold

For a (small or big) resolution I/ is
> h'2(W) = 5 for the 5 masses case : 30 nodes
> h'2(W) = 1 for the 1 mass case my = --- = ms : 35 nodes
> h'2(W) =0for p? = my =--- = ms = 1: rigid case birational to
the Barth-Nieto quintic
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The Picard-Fuchs operator : 4 loop sunset

L4

The Picard-Fuchs operators for the
Feynman integral for general parameters
my # Mo # M3 + My + Ms

Zq’ (dp2>r

is order 12 and degree 121

G12(P?) = Gr2(p®) x
P2 T (0= (esmy+--

€j==+1

+ esmMs)?)

with §y2(p?) degree 98 contains the
apparent singularities
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Sunset Mirror Symmetry
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Sunset local Gromov-Witten invariants

The sunset Feynman integral takes the expression sioch, kerr, vanhove]

3
B(P?) =n5(p%) [3RE+ ) (1 — RN, [T QP
i=1

04 +0p+03=0>0
(€4.85.,83)€N3\(0,0,0)

> The Kahler parameters are Q; = m?ef®

> With 75 (p?) = dipzﬂo

K dlog x;
2mi

Ro = | l0g(p? — ¢5)
[x1|=[x2|=|x3]=1 i—1

» The classical period is

1 2 dlog Xx;
(2. ) = | X
’ Ix1|=Ix2|=|x3]=1 p? — &F Il_I 27
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Sunset local Gromov-Witten invariants

Considering the Yukawa coupling for the sunset elliptic curve

1 dX1dX2
J JEo oM Vip g o ° eSXC’(?o(X) X1X2>

This descends from the local Yukawa coupling Hori-Vafa 3-fold

obtained as the total space of the anticanonical line bundle on del
Pezzo dPg for the sunset

YS = {pP—(Efxi+E5%+E5x3) (X '+x5 ' +x3 1 )+uv =0, (x, u, v) € P?x(C*)?}
Néoc.

Yo(P?)
d-d-J QNAVE, .0~ 2202
iZj I~ v 0,ij ﬂg(pZ)S

3
o 3 pfloc. ¢
=6- Z ¢ Nf«ez,ﬁs l l Q;
04 +lp+l3=>0 i=1
(£4.25,03)€N3\(0,0,0)
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Sunset local Gromov-Witten invariants

N, are given by the BPS counting integer number of rational curves

1
loc. o
N = D @Myt

9.9.9
dley,L2,03

» Agree with the BPS invariants computed using the refined
hOIOmorphiC anomaly [Huang, Klemm, Poretschkin]

» Unfortunately for higher n these local Gromov-Witten invariants
are difficult to compute

The mirror map between CY treat all the K&hler on the same footing

but the p? is special as a physical variables as the base parameter for
the pencils construction
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Sunset relative Gromov-Witten invariants

Luckily they are totally equivalent to relative degree d Gromov-Witten
invariants Ngl-(dPg, D) where D a smooth NEF anti-canonical divisor

[Van Garrel, Graber, Ruddat]

Ng"(aPs, D) = (—1)PP(B - D)N B € Ha(dPs, Z)

By virtue of the particular nature of our family of sunset integral this
relation holds to all loop orders and the mirror symmetry can be
recasted as a manifestation to the Fano / Landau-Ginzburg mirror
symmetry

The advantage is that the relative invariants have a purely algebraic
expression

We can use the localisation technique of [Tseng, vou] for genus 0
invariant case. Deta”s ’[O appear in [Doran, Novoseltsev ,Vanhove]
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Fano/ LG mirror symmetry |

Mirror symmetry predicts that the mirror of a Fano n— 1-fold V is a pair
(Y, w) called a Landau-Ginzburg model where Y is an n — 1-fold and
the superpotential w € T'(Y, Oy) is a regular function

The Gromov-Witten theory of V should be related to the Hodge theory
of the fibers of w: Y — A as follows : the regularised quantum period
G\/ of V

Gui)=1+ Y |—Ky-BlN(pthpy B2 tKvb
peH,(V.Z)

((lptlp=Kv-B=2)", o is a 1-pointed genus 0 Gromov-Witten invariant with descendants
for anticanonical degree Ky - 3 curves on V)
coincides with the classical period 7, defined by

r1—tw(xq, ..., Xn)

() =J

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 45/48



Sunset Landau-Ginzburg mirror symmetry

The LG superpotential is the sunset graph polynomial
w=F50) =1+ xn (PP = 03 (x))
is homogeneous of degree nin P"~! therefore the central charge is

¢ = 3(n—2) in agreement with the statement that fXJpz(An,ﬂ is a
Calabi-Yau n — 2-fold

We can know use the mirror symmetry between Landau-Ginzburg
model and Fano varieties
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The mirror sunset theorem

Theorem (LG/Fano mirror)

The pencils of sunset Calabi-Yau (n — 1)-folds form Landau-Ginzburg
models mirror to weak Fano n-folds. Specifically, the “all equal
masses” case is known to be mirror to the toric Fano variety whose
N-lattice polytope is the Newton polytope of the n-loop sunset
Feynman graph hypersurfaces. This is just the type (1,1, ..., 1)
hypersurface inIP" x .. < IP' (n+ 1 factors).
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Conclusion

3% We have put forward the new relation between Feynman integrals
and mirror symmetry between Fano / LG model

3% Itis a new result that all the sunset Feynman integrals compute
the genus 0 relative Gromov-Witten invariants

Generic Feynman graphs is more intricate

& For Feynman graph with deg(F) = L in IP” with n > L + 1 we do
not have a Calabi-Yau geometry but a motivic Calabi-Yau can be
at work

¥ The iterative fibration works for families of graphs obtained by
adding multiloop sunset on an edge

O
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Conclusion

3* We have put forward the new relation between Feynman integrals
and mirror symmetry between Fano / LG model

3% It is a new result that all the sunset Feynman integrals compute
the genus 0 relative Gromov-Witten invariants

Generic Feynman graphs is more intricate

& For Feynman graph with deg(7) = L in IP” with n > L + 1 we do
not have a Calabi-Yau geometry but a motivic Calabi-Yau can be
at work

¥ The iterative fibration works for families of graphs obtained by
adding multiloop sunset on an edge
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Conclusion

3% We have put forward the new relation between Feynman integrals
and mirror symmetry between Fano / LG model

3% Itis a new result that all the sunset Feynman integrals compute
the genus 0 relative Gromov-Witten invariants

Generic Feynman graphs is more intricate

& For Feynman graph with deg(F) = Lin IP” with n > L + 1 we do
not have a Calabi-Yau geometry but a motivic Calabi-Yau can be

at work

¥ The iterative fibration works for families of graphs obtained by
adding multiloop sunset on an edge
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