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Scattering amplitudes are the fundamental
tools for making contact between quantum field
theory description of nature and experiments

I Comparing particule physics model against datas from accelators
I Post-Minkowskian expansion for Gravitational wave physics
I Various condensed matter and statistical physics
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Physics arguments indicate that any quantum field theory amplitude
can be expanded on a finite basis of integral functions

AL−loop
n−part. =

∑
i∈B(L)

coeffi Integrali + Rational function

I What is the dimension of the basis B(L)?
I What are the functions in the basis?

Feynman integrals are highly transcendental functions with a lot
singularities

I We still do not understand completely two-loop amplitudes !

We want to design a method based on the geometry of the graph that
gets an intrinsic meaning to the differential equation and the basis of
master integrals
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Motives for Feynman Graph
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Feynman Integrals: parametric representation

The integral functions in the basis are Feynman integrals with L-loop
and n internal edges ω =

∑
i νi −

LD
2

IΓ (ν, s,m) = Γ (ω)

∫
∆n

ΩΓ ; ΩΓ :=
UΓ (x)ω−D

2

FΓ (x)ω

n−1∏
i=1

dxi

x1−νi
i

The domain of integration is the positive quadrant

∆n := {x1 > 0, . . . , xn > 0|[x1, . . . , xn] ∈ Pn−1}

The integral is an analytic function of the space-time dimension D with
the Laurent expansion near Dc ∈N∗

IΓ (s,m) =
∑

r>−m

(D − Dc)
r I(r)
Γ (s,m) D = Dc − 2ε; 0 6 ε� 1

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 5 / 48



Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in Pn−1

FΓ (x) = UΓ (x)×

(
n∑

i=1

m2
i xi

)
− VΓ (s, x)

UΓ (x) =
∑

a1+···+an=L
06ai61

ua1,...,an

n∏
i=1

xai
i , VΓ (x) =

∑
a1+···+an=L+1

06ai61

Sai ,··· ,an

n∏
i=1

xai
i

ua1,...,an ∈ {0,1} and Sai ,··· ,an are linear combination of the kinematic
variables
From FΓ we can reconstruct the associated Feynman graph Γ
I the number of edges is n
I the loop order is L = deg(FΓ ) − 1
I Number of vertices v = 1 + n − L from Euler characteristic of the

planar graph
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Feynman Integrals: parametric representation

IΓ (s,m) = Γ

(
n −

LD
2

) ∫
∆n

ΩΓ ; ΩΓ := ResXΓ

(
UΓ (x)n− (L+1)D

2

FΓ (x)n− LD
2

n−1∏
i=1

dxi

)

Algebraic differential form ΩΓ ∈ Hn−1(Pn−1\XΓ ) on the complement
of the graph hypersurface

XΓ := {UΓ (x) = 0&FΓ (x) = 0, x ∈ Pn−1}

I All the singularities of the Feynman integrals are located on the
graph hypersurface

I Generically the graph hypersurface has non-isolated singularities
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Feynman integral and periods

∆n < Hn−1(Pn−1\XΓ ) because

∂∆n ∩ XΓ = {(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)}

we have to look at the relative cohomology H•(Pn−1\XΓ ;Dn\Dn ∩XΓ )

The normal crossings divisor Dn := {x1 · · · xn = 0} and XΓ are
separated by performing a series of iterated blowups of the
complement of the graph hypersurface [Bloch, Esnault, Kreimer]
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Differential equation

The Feynman integral are periods of the relative cohomology after
performing the appropriate blow-ups

M(s,m2) := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Since ΩΓ varies with the kinematic variables s and internal mass m
one needs to study a variation of (mixed) Hodge structure

The Feynman integrals inhomogenous differential equation

LPF IΓ = SΓ

Generically there is an inhomogeneous term SΓ , 0 due to the
boundary components ∂∆n

Deriving this differential equation is difficult in general and requires a
lot of computer resources and is still a major question in QFT
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When physics and mathematics meet

The central questions about amplitudes in QFT can be reformulated as
Riemann-Hilbert problem for periods
I Compute period explicitly

Numerically or by series expansion in the physical region
I Derive the local monodromy

unitarity of the S-matrix
I Construct a complete system of differential equations

Relate this to the integration-by-part method used in QCD
I Understand the new class of special functions that are needed

What is needed beyond beyond elliptic multiple polylogarithm?
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The [Gel’fand, Zelevinsky, Kapranov] approach

GKZ have shown that the integrals with appropriate cycle σ∫
σ

∏
i

Pi(z1, . . . , zr )
mi

n−1∏
i=1

xβi
dxi

xi
, Pi(x1, . . . , xn) =

∑
a∈A⊂Zn

zaxa

satisfy the differential system of equations
I for every (`1, . . . , `r ) ∈ {(`1, · · · , `r ) ∈ Zr |

∑r
i=1 `iai = 0} there is

one differential operator2` :=
∏
`i>0

∂
`i
zi
−

∏
`i<0

∂
−`i
zi

Φ = 0

I a system of n differential equation (includes the Euler operator)(
a1z1

∂

∂z1
+ · · ·+ ar zr

∂

∂zr
− c
)
Φ = 0
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The GKZ approach: consequences

1 The generic solution of GKZ system are the hypergeometric series

ΦL,γ(z1, · · · , zr ) =
∑

(`1,...,`r )∈L

r∏
j=1

zγj+`j
j

Γ(γj + `j + 1)

with L = {(`1, . . . , `r ) ∈ Z|
∑r

i=1 `iai = 0} with `1 + · · ·+ `r = 0 and
(γ1, . . . ,γr ) ∈ Cr

2 One solution is the maximal unitarity cut integral

πΓ =
1

(2iπ)n

∫
|x1|=···=|xn−1|=1

ΩΓ

given by the same integrand as the Feynman integral IΓ but with
cycle of integration the torus around the origin
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Gelfand-Kapranov-Zelevinsky approach

The GKZ approach considers the (generic) toric polynomial

Ftoric
∆(Γ)(x) =

∑
a∈∆(Γ)∩Zn+1

fa xa

The physical graph polynomial FΓ (x) is a specialisation of the toric
deformation parameters to the physical locus fa 7→ (s,m). The map is
linear

The Feynman graph hypersurface is highly non generic
I The system often resonant and reducible
I Obtaining the minimal order Picard-Fuchs operator this way is not

an easy task as one must restrict the D-module
I The Feynman integrals are relative periods so one needs to

extend the GKZ approach (cf. [Hosono, Lian, Yau; Klemm et

al.])
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Differential equations for
Feynman Graphs
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We want to derive the differential equation

LPF

∫
Γ

ΩΓ = SΓ

The differential form ΩΓ is functions of the kinematics parameters
s = {pi · pj } and the internal masses m = {m1, . . . ,mn} which are all non
vanishing.
For a given subset of kinematic parameters z := (z1, . . . , zr ) ⊂ s ∪m
we want to construct a differential operator Tz such that

TzΩΓ = 0

such that

Tz = LPF (s,m,∂z) +

n∑
i=1

∂xi Qi(s,m,∂z ; x ,∂x)
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where the finite order differential operator

LPF (s,∂z) =
∑

06ai6oi
16i6r

pa1,...,ar (s,m)

r∏
i=1

(
d

dzi

)ai

Qi(s,m2,∂z) =
∑

06ai6o ′i
16i6r

∑
06bi6õi
16i6n

q(i)
a1,...,ar (s,m, x)

r∏
i=1

(
d

dzi

)ai n∏
i=1

(
d

dxi

)bi

I The orders oi , o ′i , õi are positive integers
I pa1,...,ar (s,m) polynomials in the kinematic variables

I q(i)
a1,...,ar (s,m, x) rational functions in the kinematic variable and the

projective variables x .
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Integrating over a cycle γ gives

0 =

∮
γ

TzΩΓ = LPF (s,m,∂z)

∮
γ

ΩΓ +

∮
γ

dβΓ

For a cycle
∮
γ dβΓ = 0 (e.g. maximal cut) we get

LPF (s,m,∂z)

∮
γ

ΩΓ = 0

For the Feynman integral IΓ we have

0 =

∫
∆n

TzΩΓ = LPF (s,m,∂z)IΓ +
∫
∆n

dβΓ

since ∂∆n , ∅
LPF (s,m,∂z)IΓ = SΓ
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This can done using the creative telescoping method introduced by
Doron Zeilberger (1990) and the algorithm by F. Chyzak

�x

�y

�z

Algorithmes E�caces
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A Fast Approach to Creative Telescoping

Christoph Koutschan

Abstract. In this note we reinvestigate the task of computing creative telescoping relations in
differential-difference operator algebras. Our approach is based on an ansatz that explicitly includes
the denominators of the delta parts. We contribute several ideas of how to make an implementation
of this approach reasonably fast and provide such an implementation. A selection of examples
shows that it can be superior to existing methods by a large factor.

Mathematics Subject Classification (2010). Primary 68W30; Secondary 33F10.
Keywords. holonomic functions, special functions, symbolic integration, symbolic summation,
creative telescoping, Ore algebra, WZ theory.

1. Introduction
The method of creative telescoping nowadays is one of the central tools in computer algebra for
attacking definite integration and summation problems. Zeilberger with his celebrated holonomic
systems approach [17] was the first to recognize its potential for making these tasks algorithmic for
a large class of functions. In the realm of holonomic functions, several algorithms for computing
creative telescoping relations have been developed in the past. The methodology described here is
not an algorithm in the strict sense because it involves some heuristics. But since it works pretty
well on nontrivial examples we found it worth to be written down. Additionally we believe that
it is the method of choice for really big examples. Our implementation is contained in the Mathe-
matica package HolonomicFunctions as the command FindCreativeTelescoping. The
package can be downloaded from the RISC combinatorics software webpage:

http://www.risc.uni-linz.ac.at/research/combinat/software/

Throughout this paper we will work in the following setting. We assume that a function f to
be integrated or summed satisfies some linear difference-differential relations which we represent in
a suitable operator algebra (Ore algebra). We use the symbol Dx to denote the derivation operator
w.r.t. x and Sn for the shift operator w.r.t. n. Such an algebra can be viewed as a polynomial ring
in the respective operators, with coefficients being rational functions in the corresponding variables,
subject to the commutation rules Dxx = xDx +1 and Snn = nSn +Sn. Ideally, all the relations for f
generate a @-finite left ideal, i.e., a zero-dimensional left ideal in the operator algebra. If addition-
ally f is holonomic (a notion that can be made formal by D-module theory), then the existence of
creative telescoping relations is guaranteed by theory (i.e., by the elimination property of holonomic
modules). Chyzak, Kauers, and Salvy [6] have shown that creative telescoping is also possible for
higher-dimensional ideals under certain conditions. We tacitly assume that any input to a creative

supported by NFS-DMS 0070567 as a postdoctoral fellow, and by the Austrian Science Fund (FWF): P20162-N18
The final publication is available at www.springerlink.com, DOI: 10.1007/s11786-010-0055-0.
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1 This works in all case even when the graph hypersurface does not
have isolated singularities (which is the generic case)

2 This algorithm gives immediately the minimal order differential
operator no need for reducing the system

3 From the Picard-Fuchs operators one can reads off information
about the geometry of the motive

For the order of the minimal Picard-Fuchs operator we have an
indication of the underlying controlling geometry
The regular singularities of the operators should coincide with the
thresholds
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How to find the motives for
Feynman Graph?
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Geometry for Feynman graph motives

The Feynman integral are periods of H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Sometime the geometry can be read directly from the graph
polynomial FΓ (x1, . . . , xn) = 0 in Pn−1

For the n − 1-loop sunset graph we have
deg(FΓ ) = n and defines a Calabi-Yau
n − 2-fold

In general the geometry is more intricate and being controlled by the
singularity structure of the graph hypersurface

For the kite, F�(x1, . . . , x5) = 0 with
deg(FΓ ) = 3 in P4

This cubic 3-fold actually defines actually
an elliptic curve
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Geometry for Feynman graph motives

In some cases the question is connected to deep and still open
question in algebraic geometry

The graph polynomial
XΓ := {Ftardigrade(x1, . . . , x6) = 0} defines a
singular cubic in P5

The middle cohomology of H4(XΓ ,C) of
smooth cubic is of K 3 type 0 1 21 1 0 (cf [Bourjailly

et al.]).

The Feynman graph polynomials has singularities and we need to work
hard to understand the geometry (the singularities lower the genus)
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A conjecture [Doran, Novoseltsev, Vanhove (to appear)]

For graph with more edge the graph polynomial does not define a
Calabi-Yau but based on in depth-analysis of the graph polynomial
geometry we can make the following conjecture

Conjecture (Motivic Mirror Conjecture (short version))
I Feynman integrals satisfy irreducible Fuchsian systems over

momentum space
I ODE are are inhomogeneous differential equations whose

homogeneous part is the Picard-Fuchs equation of a pencil of
Calabi-Yau varieties

I These pencils can be interpreted as Landau-Ginzburg models, for
which the internal mass parameters are complex structure
deformations, mirror to weak Fano varieties, for which the internal
mass parameters are deformations in the Kähler cone.
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The sunset graphs family
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The sunset family of graph

The graph polynomial for the n − 1-loop sunset

F�n (x) = x1 · · · xn

(
1
x1

+ · · ·+ 1
xn

)(
m2

1x1 + · · ·+ m2
nxn
)

︸                                                ︷︷                                                ︸
=:φ�n (x)

The Feynman integral in D = 2

I�n (p
2,m2) =

∫
x1>0,...,xn>0

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi
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The sunset integrals and L-function values

For m2
1 = · · · = m2

n = 1 and special values of p2 the sunset Feynman
integral becomes a pure period integral [Bloch, Kerr, Vanhove]

I�n (p
2, . . . ,1) =

∫
xi>0

∏n−1
i=1 d log xi

p2 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

Using impressive numeric experimentations [Broadhust] found that
I�n (p2,1, . . . ,1) for special p2 is given by L-function values in the critical
band. For large n the L-function are from moments Kloosterman sums
over finite fields
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The sunset integrals and L-function values

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

I�n (p
2, . . . ,1) =

∫
xi>0

∏n−1
i=1 d log xi

p2 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

n = 3: elliptic curve case : I�3 (1, . . . ,1) =
1
2ζ(2)

n = 4: K 3 Picard rank 19 : I�4 (1, . . . ,1) =
12π√

15
L(fK 3,2) [Bloch, Kerr, Vanhove]

I L(fK3 , s) is the L-function of H2(K 3,Q`)
I Functional equation L(fK 3, s) ∝ L(fK 3,3 − s)
I fK 3 = η(τ)η(3τ)η(5τ)η(15τ)

∑
m,n qm2+4n2+mn
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The sunset integrals and L-function values

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

I�n (p
2, . . . ,1) =

∫
xi>0

∏n−1
i=1 d log xi

p2 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

n = 5: Rigid 3-fold Barth-Nieto quintic X3
I I�5 (1, . . . ,1) = 48ζ(2)L(f ,2) [Broadhurst]

I f weight 4 and level 6 modular form f = (η(τ)η(2τ)η(3τ)η(6τ))2

I This L-series is precisely the one for H3(X3,Q`) [Verrill]

I Functional equation L(f , s) ∝ L(f ,4 − s)
[Candelas, de La Ossa, Elmi, van Straten] showed that the attractor equation for the
N = 2 supergravity (type II compactified on CY 3-fold) leads to the
following equation for the 1-parameter CY 3-fold

1 −ϕ(x1 + x2 + x3 + x4 + x5)

(
1
x1

+
1
x2

+
1
x3

+
1
x4

+
1
x5

)
= 0

Pierre Vanhove (IPhT & HSE) Mirror Symmetry and Feynman Integrals 14/02/2020 28 / 48



Sunset Calabi-Yau
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Sunset graphs toric variety Xp2(An) [Verrill]

The sunset graph polynomial

F�n = x1 · · · xn

((
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2

)

is a character of the adjoint representation of An−1 with support on the
polytope generated by the An−1 root lattice
I The Newton polytope ∆n for F�n is reflexive with only the origin as

interior point
I The toric variety X (An−1) is the graph of the Cremona

transformations Xi → 1/Xi of Pn−1

X (An−1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . ,(0, . . . ,0,1) in Pn−1
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Two-loop Sunset toric variety X (A2)

(m2
1x1 + m2

2x2 + m2
3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3

I The toric variety is X (A2) = Bl3(P2) = dP6 blown up at 3 points
I The subfamily of anticanonical hyperspace is non generic

The combinatorial structure of the NEF partition describes
precisely the mass deformations

I True for all n
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Sunset graphs pencils of variety Xp2(An) [Verrill]

For p2 ∈ P1 we define the pencil in the ambient toric variety X (An−1)

Xp2(An−1) = {(p2, x) ∈ P1 × X (An−1)|x1 · · · xn

(
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2x1 · · · xn = 0}

The fiber at p2 = ∞ is Dn = {x1 · · · xn = 0}

Since Dn is linearly equivalent to the anti-canonical divisor of X (An−1)
the family has trivial canonical divisor: We have a family of (singular)
Calabi-Yau n − 2-fold

This is specific to this family of associated with root lattice of An
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The Iterative fibration
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The Iterative fibration

The sunset family
(∑n

i=1 m2
i xi
) (∑n

i=1
1
xi

)
− p2 = 0 is birational to

generic complete intersection variety in Pn

1
x0

+

n∑
i=1

1
xi

= 0; p2x0 +

n∑
i=1

m2
i xi = 0

Obviously X (An−1) is obtained from X (An−2) with the substitutions

1
xn−1

→ 1
xn−1

+
1
xn

; m2
n−1xn−1 → m2

n−1xn−1 + m2
nxn

X (An−1) is fibrered over X (A1) = P
1 with generic fibers X (An−2)

X (An−2)→ X (An−1)→ X (A1) = P
1
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The two-loop sunset graph [Bloch, Kerr, Vanhove]

The pencil of sunset elliptic curve
Xp2(A2) = {(p2, x) ∈ P2 ×X (A2)|(m2

1x1 + m2
2x2 + m2

3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3}

The fibers types are
I Generic case m1 , m2 , m3

I2(0) + I6(∞) + I1(µ1) + · · ·+ I1(µ4); µi = (±m1 ±m2 ±m3)
2

I single mass m1 = m2 = m3 , 0 : modular curve X1(6)

I2(0) + I6(∞) + I3(m2) + I1(9m2)

The Feynman integral is an elliptic dilogarithm [Bloch, Kerr,Vanhove]

H2(P2\{x1x2x3 = 0},X�,Q(2))
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The 3-loop case : pencil of K 3

Xp2(A3) := {(p2, x) ∈ P1×X (A3)|
(
m2

1x1 + m2
2x2 + m2

3x3 + m2
4x4
)( 1

x1
+ · · ·+ 1

x4

)
= p2}

Generic anticanonical K 3 hypersurface in the toric threefold X∆◦ has
Picard rank 11
The physical locus for the sunset has at least Picard rank 16

masses fibers Mordell-Weil Picard rank
(m4,m1,m2,m3) 8I1 + 2I2 + 2I6 2 16
(m4 = m1,m2,m3) 8I1 + I4 + 2I6 2 17
(m4,m1,m2 = m3) 4I1 + 4I2 + 2I6 1 17
(m4 = m1,m2 = m3) 4I1 + 2I2 + I4 + 2I6 1 18
(m4 = m1 = m2,m3) 8I1 + I4 + 2I6 3 18
(m4,m1 = m2 = m3) 4I1 + 4I2 + 2I6 2 18
(m4 = m1 = m2 = m3) 4I1 + 2I2 + I4 + 2I6 2 19

|Pic| = 19 motive of an elliptic 3-log H3(P3\D4,X4,Q(3)) [Bloch, Kerr, Vanhove]
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The Picard-Fuchs operator: three loop sunset

L3

L4

m4=m1

??

L4

m4=m1

__

L5

m3=m1

``
m3=m4

>>

L6

m2=m1

OO

Lr = (α
d

dp2 + β) ◦ Lr−1

The Picard-Fuchs operators for the
Feynman integral for general parameters
m4 , m1 , m2 , m3

L6 =

6∑
r=0

qr (s)
(

d
dp2

)r

is order 6 and degree 25

q6(p2) = q̃6(p2)×∏
εi=±1

(p2 − (ε1m1 + ε2m2 + ε3m3 + ε4m4)
2)

with q̃6(p2) degree 17 contains the
apparent singularities
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The 4-loop case : pencil of CY 3-fold

Xp2(A4) := {(p2, x) ∈ P1 × X (A4)|
(
m2

1x1 + · · ·+ m2
5x5
)( 1

x1
+ · · ·+ 1

x5

)
= p2}

This gives a pencil of nodal Calabi-Yau 3-fold

For a (small or big) resolution Ŵ is
I h12(Ŵ ) = 5 for the 5 masses case : 30 nodes
I h12(Ŵ ) = 1 for the 1 mass case m1 = · · · = m5 : 35 nodes
I h12(Ŵ ) = 0 for p2 = m1 = · · · = m5 = 1: rigid case birational to

the Barth-Nieto quintic
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The Picard-Fuchs operator : 4 loop sunset

L4

L6

>>

L6

``

L8

OO 66

L8

hh OO

L10

`` >>

L12

OO

Lr =

(
α

(
d

dp2

)2

+ β
d

dp2 + γ

)
◦Lr−2

The Picard-Fuchs operators for the
Feynman integral for general parameters
m1 , m2 , m3 , m4 , m5

L12 =

12∑
r=0

qr (s)
(

d
dp2

)r

is order 12 and degree 121

q12(p2) = q̃12(p2)×

(p2)12
∏
εi=±1

(p2 − (ε1m1 + · · ·+ ε5m5)
2)

with q̃12(p2) degree 98 contains the
apparent singularities
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Sunset Mirror Symmetry
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Sunset local Gromov-Witten invariants

The sunset Feynman integral takes the expression [Bloch, Kerr, Vanhove]

I�3 (p
2) = π�3 (p

2)

3R2
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1 − `R0)N loc.
`1,`2,`3

3∏
i=1

Qi
2`i

 .

I The Kähler parameters are Qi = m2
i eR0

I With π�3 (p
2) = d

dp2 R0

R0 :=

∫
|x1|=|x2|=|x3|=1

log(p2 − φ�3 )

3∏
i=1

d log xi

2πi

I The classical period is

π�3 (p
2,m2) =

∫
|x1|=|x2|=|x3|=1

1
p2 − φ�3

3∏
i=1

d log xi

2πi
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Sunset local Gromov-Witten invariants

Considering the Yukawa coupling for the sunset elliptic curve

Y� =

∫
E�
Ω� ∧∇p2 d

dp2
Ω�; Ω� := ResX�

(
1

F�(x)
dx1dx2

x1x2

)
This descends from the local Yukawa coupling Hori-Vafa 3-fold
obtained as the total space of the anticanonical line bundle on del
Pezzo dP6 for the sunset

Y�3 := {p2−(ξ2
1x1+ξ

2
2x2+ξ

2
3x3)(x−1

1 +x−1
2 +x−1

3 )+uv = 0, (x ,u, v) ∈ P2×(C∗)2}

Leading to this generating series for the local Gromov-Witten
invariants N loc.

`∑
i,j

didj

∫
Y
Ω∧∇3

0,i,jΩ ∼
Y�(p2)

π�2 (p
2)3

= 6 −
∑

`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`3N loc.
`1,`2,`3

3∏
i=1

Q`i
i
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Sunset local Gromov-Witten invariants

N` are given by the BPS counting integer number of rational curves

N loc.
`1,`2,`3

=
∑

d |`1,`2,`3

1
d3 n `1

d ,
`2
d ,
`3
d
.

I Agree with the BPS invariants computed using the refined
holomorphic anomaly [Huang, Klemm, Poretschkin]

I Unfortunately for higher n these local Gromov-Witten invariants
are difficult to compute

The mirror map between CY treat all the Kähler on the same footing
but the p2 is special as a physical variables as the base parameter for
the pencils construction
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Sunset relative Gromov-Witten invariants

Luckily they are totally equivalent to relative degree d Gromov-Witten
invariants N rel.

β (dP6,D) where D a smooth NEF anti-canonical divisor
[Van Garrel, Graber, Ruddat]

N rel.
β (dP6,D) = (−1)β·D(β · D)N loc.

β β ∈ H2(dP6,Z)

By virtue of the particular nature of our family of sunset integral this
relation holds to all loop orders and the mirror symmetry can be
recasted as a manifestation to the Fano / Landau-Ginzburg mirror
symmetry
The advantage is that the relative invariants have a purely algebraic
expression

We can use the localisation technique of [Tseng, You] for genus 0
invariant case. Details to appear in [Doran, Novoseltsev ,Vanhove]
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Fano/ LG mirror symmetry I

Mirror symmetry predicts that the mirror of a Fano n − 1-fold V is a pair
(Y ,w) called a Landau-Ginzburg model where Y is an n − 1-fold and
the superpotential w ∈ Γ(Y ,OY ) is a regular function

The Gromov-Witten theory of V should be related to the Hodge theory
of the fibers of w : Y → A1 as follows : the regularised quantum period
ĜV of V

ĜV (t) = 1 +
∑

β∈H2(V ,Z)

|− KV · β|!〈[pt ]ψ−KV ·β−2〉V0,1,βtKV ·β

(〈[pt ]ψ−KV ·β−2〉V0,1,β is a 1-pointed genus 0 Gromov–Witten invariant with descendants
for anticanonical degree KV · β curves on V )
coincides with the classical period πw defined by

πw (t) =
∫
Γ

dx1 · · ·dxn

1 − tw(x1, . . . , xn)
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Sunset Landau-Ginzburg mirror symmetry

The LG superpotential is the sunset graph polynomial

w = F�n (x) = x1 · · · xn

(
p2 − φ�n (x)

)
is homogeneous of degree n in Pn−1 therefore the central charge is

c = 3(n − 2) in agreement with the statement that Xp2(An−1) is a
Calabi-Yau n − 2-fold

We can know use the mirror symmetry between Landau-Ginzburg
model and Fano varieties
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The mirror sunset theorem [Doran, Novoseltsev, Vanhove

(to appear)]

Theorem (LG/Fano mirror)
The pencils of sunset Calabi-Yau (n − 1)-folds form Landau-Ginzburg
models mirror to weak Fano n-folds. Specifically, the “all equal
masses” case is known to be mirror to the toric Fano variety whose
N-lattice polytope is the Newton polytope of the n-loop sunset
Feynman graph hypersurfaces. This is just the type (1,1, . . . ,1)
hypersurface in P1 × . . .× P1 (n + 1 factors).
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Conclusion

� We have put forward the new relation between Feynman integrals
and mirror symmetry between Fano / LG model

� It is a new result that all the sunset Feynman integrals compute
the genus 0 relative Gromov-Witten invariants

Generic Feynman graphs is more intricate

# For Feynman graph with deg(F)Γ = L in Pn with n > L + 1 we do
not have a Calabi-Yau geometry but a motivic Calabi-Yau can be
at work
� The iterative fibration works for families of graphs obtained by

adding multiloop sunset on an edge

. . .

<latexit sha1_base64="yQ50HesEUnagtl/pTl6pZsjufU4="></latexit>
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