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Operators from mirror curves

• M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C.
Vafa (2003) have studied mirror symmetry for local toric CY
threefolds.

• Typical example — the total space X of the canonical bundle
on a toric del Pezzo surface S,

X = ωS → S,

where S = P2 or (i) a Hirzerbruch surface Fn, n = 0, 1, 2; (ii)
P2 blown up at n points, n = 0, 1, 2, 3; (iii) non-smooth
weighted projective spaces P(1,m, n), m,n ∈ Z>0.

• Corresponding mirror CY is given by

zw −WX(ep, eq) = 0,

where the mirror curve is an elliptic curve

WX = 0.
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• Specifically, for S = F0 = P1 × P1,

WX = ep + e−p + eq + ζe−q + κ,

where ζ > 0 is a ‘mass’ parameter and κ is the modulus, and

WX = ep + eq + e−mp−nq + κ

for S = P(1,m, n).

• It was proposed by M. Mariño and coauthors that the
quantization of the mirror curve — replacing p and q by QM
momentum and position operators P and Q — gives the
functional-difference operators on L2(R) with the following
remarkable properties.

(i) Their spectral properties are encoded in the enumerative
geometry of the toric CY threeford X.

(ii) Their spectral theory provides a non-perturbative definition of
the topological string theory on X.



• Specifically, for S = F0 = P1 × P1,

WX = ep + e−p + eq + ζe−q + κ,

where ζ > 0 is a ‘mass’ parameter and κ is the modulus, and

WX = ep + eq + e−mp−nq + κ

for S = P(1,m, n).

• It was proposed by M. Mariño and coauthors that the
quantization of the mirror curve — replacing p and q by QM
momentum and position operators P and Q — gives the
functional-difference operators on L2(R) with the following
remarkable properties.

(i) Their spectral properties are encoded in the enumerative
geometry of the toric CY threeford X.

(ii) Their spectral theory provides a non-perturbative definition of
the topological string theory on X.



• Specifically, for S = F0 = P1 × P1,

WX = ep + e−p + eq + ζe−q + κ,

where ζ > 0 is a ‘mass’ parameter and κ is the modulus, and

WX = ep + eq + e−mp−nq + κ

for S = P(1,m, n).

• It was proposed by M. Mariño and coauthors that the
quantization of the mirror curve — replacing p and q by QM
momentum and position operators P and Q — gives the
functional-difference operators on L2(R) with the following
remarkable properties.

(i) Their spectral properties are encoded in the enumerative
geometry of the toric CY threeford X.

(ii) Their spectral theory provides a non-perturbative definition of
the topological string theory on X.



• Specifically, for S = F0 = P1 × P1,

WX = ep + e−p + eq + ζe−q + κ,

where ζ > 0 is a ‘mass’ parameter and κ is the modulus, and

WX = ep + eq + e−mp−nq + κ

for S = P(1,m, n).

• It was proposed by M. Mariño and coauthors that the
quantization of the mirror curve — replacing p and q by QM
momentum and position operators P and Q — gives the
functional-difference operators on L2(R) with the following
remarkable properties.

(i) Their spectral properties are encoded in the enumerative
geometry of the toric CY threeford X.

(ii) Their spectral theory provides a non-perturbative definition of
the topological string theory on X.



Weyl operators

• P and Q — QM momentum and position operators on the
Hilbert space L2(R), satisfying

[P,Q] = iI.

• U = e−bP and V = e2πbQ, where b > 0 — unbounded
self-adjoint Weyl operators, satisfying

UV = q2V U, q = eπib
2
.

• (Uψ)(x) = ψ(x+ ib), (V ψ)(x) = e2πbxψ(x).

• They have domains

D(U) = {ψ ∈ L2(R) : e−2πbξ ψ̂(ξ) ∈ L2(R)},
D(V ) = {ψ ∈ L2(R) : e2πbx ψ(x) ∈ L2(R)}.

• Similarly,
(U−1ψ)(x) = ψ(x− ib), (V −1ψ)(x) = e−2πbxψ(x).
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The functional-difference operators

Corresponding operators have the form

• For S = P1 × P1,

H(ζ) = U + U−1 + V + ζV −1

— a self-adjoint in L2(R) pseudo-differential operator of
infinite order with the symbol 2 cosh(2πbξ) + 2 cosh(2πbx) for
ζ = 1. Corresponding eigenvalue problem is

(H(ζ)ψ)(x) = ψ(x+ ib) + ψ(x− ib) + 2 cosh(2πbx)ψ(x).

The massless operator H = H(0) = U + U−1 + V first
appeared in the study of the quantum Liouville model on the
lattice (L.D. Faddeev – L.T., 1982), and plays an important
role in representation theory of the non-compact quantum
group SLq(2;R). In quantum Teichmüller theory it is the
Dehn twist operator (R. Kashaev, 2000).



• For S = P(1,m, n),

Hm,n = U + U−1 + V + q−mnU−mV −n

is a self-adjoint operator in L2(R).

• The operators H(ζ) for ζ > 0 and Hmn have a pure discrete
spectrum and H(ζ)−1 and H−1mn are of trace class. Moreover,
for the eigenvalue counting function N(λ) we have

N(λ) ∼ log2 λ

(πb)2
for the operator H(ζ)

N(λ) ∼ cm,n
log2 λ

(2πb)2
for the operator Hm,n,

where cm,n = (m+ n+ 1)2/2mn. The proof of H. Weyl law
(A. Laptev, L. Schimmer & L.T., Geometric and Functional
Analysis (GAFA), 26:1 (2016), 288–305) is based on the
following ingredients.
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• The coherent state transform L2(R) 3 ψ 7→ ψ̃ ∈ L2(R2)

ψ̃(x, ξ) =
1
4
√
π

∫ ∞
−∞

ψ(y)e−2πiyξe−(x−y)
2/2dy

• Remarkable identity for the quadratic form (here H = H(1))

(Hψ,ψ) = ((U + U−1)ψ,ψ) + ((V + V −1)ψ,ψ)

= 2

∫∫
R2

(d1 cosh 2πbξ + d2 cosh 2πbx)|ψ̃(x, ξ)|2dxdξ,

where d1 = e−b
2/4 and d2 = e−(πb)

2
.

• Upper and lower bounds for the Riesz means

Rj(λ) =
∑
j≥1

(λ− λj)+ =
∑
λj<λ

(λ− λj)

obtained using Jensen’s inequality and representations∫∫
R2

∑
j

(λ−λj)+|ψ̃j(x, ξ)|2dxdξ = Rj(λ) =
∑
j

(λ−(Hψj , ψj))+
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The massless (ζ = 0) operator

H = U + U−1 + V

is a self-adjoint operator in L2(R) with a simple absolutely
continuous spectrum filling [2,∞), and the eigenfunction
expansion theorem for H generalizes Kontorovich-Lebedev
transform in the theory of Bessel functions (L.D. Faddeev – L.T.,
Izvestiya: Mathematics, 79:2 (2015), 388–410). Specifically,

• The resolvent R0
λ = (H0 − λI)−1 of the free operator

H0 = U + U−1 is an integral operator in L2(R),

(R0
λψ)(x) =

∫ ∞
−∞

R0
λ(x− y)ψ(y)dy,

where

R0
λ(x) =

i

2b sinh(2πbk)

(
e−2πikx

1− e2πx/b
+

e2πikx

1− e−2πx/b

)
and λ = 2 cosh(2πbk).



• Equation (H0 − λI)R0
λ = I follows from Sokhotski-Plemelj

formula
θb(x− i0)− θb(x+ i0) = ibδ(x),

where

θb(x) =
1

1− e−2πx/b
.

• The equation

ψ(x+ib−i0)+ψ(x−ib+i0)+e2πbxψ(x) = 2 cosh(2πbk)ψ(x)

admits a scattering solution ϕ(x, k) — Fourier transform of
the product of two Faddeev’s quantum dilogarithm functions
Φb(z) — and Jost solutions f±(x, k) with the asymptotics

f±(x, k) = e±2πikx + o(1) as x→ −∞,
satisfying

ϕ(x, k) = M(k)f+(x, k) +M(−k)f−(x, k),

where
|M(k)|−2 = 4 sinh(2πbk) sinh(2πb−1k).
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• The resolvent Rλ = (H − λI)−1 is an integral operator in
L2(R) with the kernel

Rλ(x, y) =
i

2b sinh(2πbk)M(k)

× [f−(x, k)ϕ(y, k)θb(y − x) + f−(y, k)ϕ(x, k)θb(x− y)] ,

and equation (H − λI)Rλ = I follows from Sokhotski-Plemelj
formula.

• The operator U : L2(R)→H0 = L2([0,∞), |M(k)|−2dk),

(U ψ)(k) =

∫ ∞
−∞

ϕ(x, k)ψ(x)dx, ψ(x) ∈ L2(R),

is an isometry.

• The operator U HU −1 is a multiplication by the function
2 cosh(2πbk) operator in H0, i.e., H has simple absolutely
continuous spectrum [2,∞). The eigenfunction expansion
theorem for the operator H is a q-analogue of the classical
Kontorovich-Lebedev transform in the theory of special
functions.
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The trace identities
Expressing asymptotic expansion of

log det(H − λI) as λ→∞

for a self-adjoint operator H in terms of its coefficients.

• Basic example:

H = − d2

dx2
+ v(x), x ∈ I ⊆ R,

with appropriate boundary conditions.

• Sturm-Liouville operator H on I = [0, π] with smooth
potential v(x)— celebrated Gelfand–Levitan–Dikii trace
identities.

• Schrödinger operator H on I = R≥0 with rapidly decreasing
potential v(x) — Buslaev–Faddeev trace identities.

• Schrödinger operator H on I = R with rapidly decreasing
potential v(x) — Faddeev–Zakharov trace identities.
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Pure discrete spectrum
Suppose the operator H > 0 in the Hilbert space L2(I) has a pure
discrete spectrum with eigenvalues λn →∞. Two cases:
• H−1 is of trace class,

det(H − λI)

detH
=
∏
n=1

(
1− λ

λn

)
.

• H−1−ε is of trace class for some 0 < ε < 1,

det(H − λI)

detH
=
∏
n=1

(
1− λ

λn

)
e
λ
λn .

• Using

log
det(H − λI)

detH
=

1

2i

∫ σ+i∞

σ−i∞

ζH(s)

s sinπs
(−λ)sds,

where

ζH(s) =

∞∑
j=1

1

λsj
,

one gets asymptotic expansion as λ→ −∞.
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• Coefficients of this expansion in terms of v(x) are obtained by
the Liouville-Green method — asymptotics as λ→ −∞,
uniform in x, for the decaying as x→ +∞ solution of the
eigenvalue equation

Hψ = λψ

for λ < 0. Converting it to the Riccati equation gives these
coefficients recursively.

• The basic examples — classical (XIX century) mathematics.

• The case v(x) = x2. Solutions of the eigenvalue equation are
Weber functions (parabolic cylinder functions),

det(H − λI)

detH
=

√
π (
√

2)λ

Γ(1−λ2 )
,

trace identities give Stirling formula for the gamma function.

• The case v(x) = e2x on the half-line, ψ(0) = 0. Solutions —
modified Bessel functions of the second kind.
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det(H − λI)

detH
=

√
π (
√

2)λ

Γ(1−λ2 )
,

trace identities give Stirling formula for the gamma function.

• The case v(x) = e2x on the half-line, ψ(0) = 0. Solutions —
modified Bessel functions of the second kind.
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•
det(H − λI)

detH
=
Ki
√
λ(1)

K0(1)
,

used by G. Pólya as a simple model for Riemann zeros. Trace
identities — large order asymptotics of modified Bessel
functions — regularized sums of positive integer powers of
zeros of Ki

√
λ(1) = 0.

• The case v(x) = 2 cosh 2x as a semiclassical limit of

H = U + U−1 + V + V −1

— trace identities should express the mirror symmetry and
possible relation to the Gopakumar-Vafa invariants. One
needs to develop Liouville-Green method for the
functional-difference operators.
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Happy Birthday, Samson!


