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Introduction

The holographic principle or AdS/CFT correspondence states that certain
QFTs, conformal field theories (or CFTs), have a completely equivalent
description in terms of gravity in AdS space.

Objective: To deconstruct the holographic principle to learn more about
gravity.

Questions:
Which theories have a holographic description?
What restrictions do physical consistency conditions impose?
Can we learn something about black holes?
· · · · · ·
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Holographic CFTs: Large N, or large c , CFTs with an infinite gap in the
spectrum of operators for spin s ≥ 2.

Current progress:

The study of the crossing equation reveals the structure of a local
gravity theory.

Unitarity (causality) imply that Einstein’s theory of general relativity
is the only consistent description.

Computation of feynman diagrams in gravity via CFT techniques

· · ·
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Introduction

Next: black holes physics ?
First step: emergence of black hole geometry from CFT correlation
functions.

1 Thermal CFT correlators (canonical ensemble).

2 Correlation functions involving two “heavy” operators, OH |0〉
(microcanonical ensemble).

∆H

c
= fixed when c →∞.

In the dual gravitational description:

µ ≡
r 2
H

R2
AdS

=
MBH`

3
p

R3
AdS

= (MBHRAdS)
`3
p

R3
AdS

∼ ∆H

c
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Introduction

The correlator

〈OH(∞)OL(1)OL(z , z̄)OH(0)〉 ∼ 〈OL(1)OL(z , z̄)〉T

can be studied analytically in the following regimes:

Regge/eikonal limit

z → z e2πi , (z , z̄)→ (1, 1) with
1− z

1− z̄
= fixed ,

[MK, Ng, Parnachev][Karlsson, MK, Parnachev, Tadic][Fitzpatrick,Huang, Li][Karlsson]

Lightcone limit
z̄ → 1, z ≤ 1

[MK, Ng, Parnachev][Karlsson, MK, Parnachev, Tadic][Fitzpatrick, Huang][Li]
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Outline

CFT basics

Holographic CFTs: assumptions

HHLL correlator

Results

Summary and open questions
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CFT: general aspects

CFTs are ordinary quantum field theories which are invariant under the
conformal group. This includes the d-dimensional Poincare group and:
The dilatation D and the special conformal transformations generator Kµ.

The dilatation operator D scales the coordinates of spacetime:

D : x → λx , λ ≥ 0.

Operators of the theory, are eigenstates of D with eigenvalue ∆.

Together with the special conformal transformations Kµ and the
d-dimensional Poincare group, they form a group isomorphic to SO(d , 2).
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CFT: general aspects

The operators of a CFT are classified by their spin s and conformal
dimension ∆. The basic building blocks are primary operators Os

∆:

KµOs
∆ = 0 .

All other operators are descendants: they can be obtained from the
repeated action of the translation generator Pµ on the primary ones.

Conformal symmetry determines the form of the two- and three-point
correlation functions up to a few independent parameters.
Example: (scalar operators)〈

Oi (x1)Ok(x2)
〉

=
δik

x2∆
12

, xik = xi − xk

〈O1(x1)O2(x2)O3(x3)〉 =
λ123

x∆12
12 x∆23

23 x∆13
13

, ∆ik = ∆i −∆k
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CFT: general aspects

A special example is the stress-energy tensor Tµν(x).

2-point function:

〈Tµν(x)Tρσ(0)〉 = c
Iµν,ρσ(x)

x2d

3-point function:

〈Tµν(x3)T ρσ(x2)T τκ(x1)〉 =
af µνρστκ1 (x) + cf µνρστκ2 (x) + bf µνρστκ3 (x)

|x12|d |x13|d |x23|d
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CFT: general aspects

A conformal field theory is characterized by:

Its spectrum. A set of primary operators Ot
s with spin s and twist

t ≡ ∆− s.

The coefficients of the Operator Product Expansion (OPE):

Example:

O1(x)O2(0) =
∑
s, t

λ12O
|x |∆1+∆2−∆3+s

Ot
µ1···µs xµ1 · · · xµs

Clearly, the undetermined parameters in the three-point functions and the
OPE coefficients represent the same set of data.

Manuela Kulaxizi (Trinity College Dublin) CFT and Black Holes 12-02-2020 10 / 33



CFT: general aspects

The four point function is fixed by conformal invariance to be of the form:

〈O1(x4)O2(x3)O2(x2)O1(x1)〉 =
A(u, v)

x2∆1
14 x2∆2

23

with (u, v) the conformal cross ratios:

zz̄ = v ≡ x2
12x2

34

x2
13x2

24

, (1− z)(1− z̄) = u ≡ x2
14x2

23

x2
13x2

24

and A(u, v) an undetermined function.

Manuela Kulaxizi (Trinity College Dublin) CFT and Black Holes 12-02-2020 11 / 33



CFT: general aspects

Using the “T-channel” OPE, O1O1 → Os
t , the four-point function is

expanded as:

A(u, v) =
∑
Os

t

λ11Oλ22OgO(u, v)

with gO(u, v) known as the conformal block.

Due to conformal symmetry, the conformal block satisfies a 2nd order
differential equation, the Casimir differential equation. Solutions are
explicitly known in any even d and as integral representations or power
series in odd d .
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CFT: general aspects

Similarly, using the “S-channel” OPE O1O2 → O`∆,

A(u, v) =
∑
O`∆

λ12Oλ21Og ∆12
O (u, v)

with ∆12 = ∆1 −∆2.

This leads to the crossing equation:∑
Oj

∆

λ11Oλ22OgO(u, v) =
∑
O`∆

λ12Oλ21Og ∆12
O (u, v)

Combined with other consistency conditions, e.g., unitarity, these
properties allow us to solve or constrain theories significantly.
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Holographic CFTs

To examine CFTs which may have a gravity dual description, we consider
the following general assumptions:

The CFT has a stress-tensor operator Tµν and two large paramaters:

1 Large number of degrees of freedom N.

At N =∞ the CFT correlations functions factorize:

〈O1O1O2O2〉 = 〈O1O1〉 〈O2O2〉+
1

N2
(· · · )

2 A characteristic scale ∆gap.

When ∆gap =∞ the CFT contains only a finite number of primary
single-trace operators with spin j ≤ 2.

Manuela Kulaxizi (Trinity College Dublin) CFT and Black Holes 12-02-2020 14 / 33



Holographic CFTs

“single-trace” primaries: O1,O2, · · · , Jµ, · · · ,Tµν .

“double-trace” primaries:

M2 : O1∂µ1···∂µ`(∂
2)nO2, O1∂µ1···∂µ`(∂

2)nJµ, · · ·

“multi-trace” primaries:

Mn>2 : O1∂µ1···∂µa(∂2)nO2∂µ1···∂µb(∂2)mO1∂µ1···∂µc (∂2)kJµ, · · ·

〈O1O1〉 ∼ 1 + · · · , 〈M2M2〉 ∼ 1 + · · ·〈
O2O2MO2O2

2

〉
∼ 1 + · · · , 〈O1O1M2〉 ∼

1

N2
+ · · · ,

〈O1O1 T 〉 ∼ 1

N
+ · · ·
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HHLL in the lightcone limit

Objective: Study the correlator by solving the crossing equation order by
order in the parameter µ ≡ ∆H

c and in the lightcone limit 1− z̄ � 1.

G(z , z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z , z̄)OH(0)〉 =

A(z , z̄)

[(1− z)(1− z̄)]∆L

Note: In effect our focus is on the stress-tensor sector of the correlator.

Manuela Kulaxizi (Trinity College Dublin) CFT and Black Holes 12-02-2020 16 / 33



HHLL in the lightcone limit

Method: Establish the leading contributions by studying the correlator in
both the T- and S- channels.

OL ×OL → 1 + µ(Tµν + · · · ) + · · · → OH ×OH , T-channel

OH ×OL → [OHOL]`,n → OH ×OL, S-channel
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HHLL in the lightcone limit: T-channel

G(z , z̄) =
1

[(1− z)(1− z̄)]∆L

∑
t,s

PHHLL
t,s gt,s(1− z , 1− z̄)

s=spin, t = (∆− s)=twist

In the lightcone limit, the T-channel blocks behave as follows:

gt,s(1− z , 1− z̄) ' (1− z̄)
t
2 f t

2
+s(z)

where

f t
2

+s(z) ≡ (1− z)
t
2

+s
2F1

[ t

2
+ s,

t

2
+ s, t + 2s, 1− z

]

Operators with lowest twist dominate the sum.
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HHLL in the lightcone limit: T-channel

Lowest twist t = 0 corresponds to the Identity operator, responsible
for the disconnected contribution to the correlator 〈OHOH〉〈OLOL〉.
In the absence of additional symmetries, Tµν provides the next
significant contribution.

t ≥ 2, s ≥ 1

t ≥ 1, s = 0

This contribution is completely determined from a Ward Identity

PHHLL
T = #

∆H

c

∆L

4
= #µ

∆L

4
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HHLL in the lightcone limit: T-channel

The correlator admits an expansion in powers of µ.

PHHLL
t,s =

∑
k

P
(k)
t,s µ

k

In the T-channel the contribution of composite stress-tensor exchanges is
enhanced due to ∆H as opposed to that of other operators suppressed in
the 1

c expansion. New operators contribute at each order.

O(µ) Tµν t = 2

O(µ2) : Tµ1µ2∂µ5∂µ6 · · · ∂µs Tµ3µ4 : t = 4

· · · · · · · · · · · · · · · · · ·
O(µk) : Tµ1µ2Tµ3µ4 · · · ∂µ2k+1

∂µ2k+2
· · · ∂µs Tµ2k−1µ2k

: t = 2k
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HHLL in the lightcone limit: T-channel

To obtain the leading contribution to the correlator at each order in µ
requires summing over the contributions of an infinite number of operators.

O(µ2):

A handful of OPE coefficients P4,s were computed holographically

P4,s =
∆L

∆L − 2
a2
s (∆2

L + bs∆L + cs) .

What are the functions as , bs , cs?

Can we evaluate the sums,

∞∑
s=4

P4,s f2+s(z) =?
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HHLL in the lightcone limit:T-channel

We find the explicit form of the P4,s by combining their form with:

Geodesic computation at large ∆L.

lim
∆L→∞

〈OH |OLOL|OH〉 ' e−∆Lσ(0)×

×
(

1−∆Lµσ(1) + µ2

(
1

2
σ2

(1)∆2
L +O(∆L)

)
+O(µ3)

)

T : µ∆L f3(z) ⇒ µ2∆2
L

∞∑
s=4

a2
s f2+s(z) = f3(z)2

Identity for product of hypergeometrics.

Information from the S-channel computation.
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HHLL in the lightcone limit: S-channel

G(z , z̄) = (zz̄)−
∆H+∆L

2

∑
τ,`

PHL,HL
τ,` g ∆HL

τ,` (z , z̄)

The contribution to the correlator comes from corrections in µ to the
mean field theory OPE data of operators

: OH∂
2n∂µ1 · · · ∂µ`OL :

τ = ∆H + ∆L + 2n + γn,`(µ),

γn,` =
∑

µkγ
(k)
n,` , PHL,HL

n,` =
∑

µkPHL,HL
n,`
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HHLL in the lightcone limit: S-channel

We analyse the S-channel in the lightcone limit and for z << 1.
The lightcone limit correponds to ` >> n:

g ∆HL
τ,` ' (zz̄)

∆H+∆L+γn,`
2

P
(k)
` = P

(0)
`

P(k)

`
k(d−2)

2

, P
(0)
` ∼ `∆L−1

Γ(∆L)
γ

(k)
` =

γ(k)

`
k(d−2)

2

At O(µ0) we verify the crossing equation:

G(z , z̄)
∣∣∣
µ0
'
∫ `

0
d`P`x̄

` = −(ln z̄)∆L '
z̄→1 z→0

1

(1− z̄)∆L
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HHLL in the lightcone limit: S-channel

At O(µ):

G(z , z̄)
∣∣∣
µ

'
z̄→1 z→0

1

(1− z̄)∆L−1

(
P(1)

∆L − 1
+

γ(1) ln z

2(∆L − 1)

)
,

we determine the unknown data from the contribution of the stress-tensor
in the T-channel expansion:

P(1) =
3

2
γ(1), γ(1) = −∆L(∆L − 1)

2

This completely determines the O(µ2 ln2 z) data and precisely matches the
result from the T-channel expansion for z << 1

G(zz̄)
∣∣∣
µ2
' ∆L

(1− z̄)∆L−2(∆L − 2)

[
∆L(∆L − 1)

32
ln2 z +

3∆2
L − 7∆L − 1

16
ln z

]
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HHLL in the lightcone limit: check

Check against the large impact parameter region in the Regge limit:

z = 1− σeρ, z̄ = 1− σe−ρ, z → ze−2πi , σ << 1

G(z , z̄)
∣∣∣
µ2
' 1

σ2∆L
{#∆L(∆L + 1)(∆L + 2)

∆L − 2
e

−2ρ

σ2 +i#
∆L(∆L + 1)

∆L − 2

e−5ρ

σ
+· · · }
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HHLL in the lightcone limit

Performing the infinite sums

G(z , z̄)
∣∣∣
µ2, `.c.

∝ 1

[(1− z)(1− z̄)]∆L
(1− z̄)2×

× ∆L

∆L − 2

(
(∆L − 4)(∆L − 3)f 2

3 +
15

7
(∆L − 8)f2f4 +

40

7
(∆L + 1)f1f5

)
.

where
fa(z) = (1− z)a 2F1[a, a, 2a, 1− z ]

An interesting observation... : 3 + 3 = 2 + 4 = 1 + 5
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Further Results - Comments

Example O(µ3):

G(z , z̄)
∣∣∣
µ3

=
(1− z̄)3

((1− z)(1− z̄))∆L

{
a333f 3

3 + a112f 2
1 f7 + a126f1f2f6+

+a135f1f3f5 + a225f 2
2 f5 + a234f2f3f4 + a114f1f 2

4

}

a333 =
∆5

L + · · ·
(∆L − 2)(∆L − 3)

, a234, a135 =
∆4

L + · · ·
(∆L − 2)(∆L − 3)

,

a117, a126,a225 =
∆3

L + · · ·
(∆L − 2)(∆L − 3)

Products of fa functions are not all independent of one another.
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The two-dimensional case.

The structure is very similar to the 2d Virasoro vacuum block

〈OH |OLOL|OH〉 ∼ e∆Lg(z)e∆Lg(z̄)

g(z) = −1

2
ln z − ln

(
2 sinh

(√
1− µ

2
ln z

))
+ ln

√
1− µ

An earlier observation [MK, Ng, Parnachev]:

g(z) ∼− ln (1− z) +
µ

24
f2(z) +

µ2

242

(
−f 2

2 +
6

5
f1f3

)
+

+
µ3

243

(
4

3
f 3
2 −

14

5
f1f2f3 +

54

35
f 2
1 f4

)
+ · · ·
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Further results - Comments

Claim 1: The stress-tensor sector of the HHLL correlator is

G(z , z̄) =
∑
G(k)(z , z̄)µk

with

G(k)(z , z̄) ≈
z̄→1

(1− z̄)k( d
2
−1)

[(1− z)(1− z̄)]∆L

∑
{ip}

ai1...ik fi1(z)...fik (z),

and where
k∑

p=1

ip = k
(d + 2

2

)
, ip ∈ N

Claim 2: The correlator exponentiates similarly to what happens in two
dimensions.
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Further results - Comments

We have shown that this solves the crossing equation in principle.
All logk z-terms can be determined from the S-channel expansion in
terms of OPE data of O(µk).
Have computed OPE coefficients with the Lorentzian inversion
formula (up to O(µ3)).

[Li][Karlsson, MK, Parnachev, Tadic]

Explicitly determined the relevant coefficients ai1i2···ik to O(µ6).
We have also determined the relevant OPE coefficients (e.g. triple
stress-tensors).
Established exponentiation:

G(z , z̄) = [(1− z)(1− z̄)]−∆L e∆LF(z,z̄)

where

F(z , z̄) =
∞∑
k=1

µk(1− z̄)kFk(z), with Fk(z) '∆L→∞ O(1)

where Fk(z) is again given by products of fa functions.
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Open Questions

What underlies this structure?

Can we resum the series as in 2d?

What if ∆L is an integer?

Beyond the lightcone limit?

Include the contribution of operators with subleading twists

O(µ2) : Tµ1µ2∂µ5∂µ6 · · · ∂µs Tµ3µ4 : + contractions.

e.g . : Tµ1µ2∂µ5∂µ6 · · · ∂µs∂2nTµ2
µ4 : t = 6 + 2n

Similar structure persists up to sub-sub-subleading order in the
lightcone limit. [Karlsson, MK, Parnachev, Tadic]

Quasi-normal modes.

Beyond large CT .

Address the physics close to the horizon.
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Thank you !
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