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Euler characteristic and heat equation

The Euler characteristic

e X compact Riemannian manifold.

e Euler characteristic x (X) =¥ (=1) dim H' (X, R).
e g € Diff (X)) acts on H (X, R).

o Lefschetz number L (g) = Tr, 5R) [4].
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The heat equation method

° (Q (X,R),d* ) de Rham complex, whose cohomology
is H (X,R).

o ¢'X Riemannian metric, d** formal adjoint of d*¥,
DX = d* + d** Dirac operator.

o D*? = [d¥, d**] Hodge Laplacian.

o McKean-Singer: For s > 0,
L(g) = Try [gexp (—sD*?)] (does not depend on
s> 0).

o As s — 0, Lefschetz fixed point formula

L) = [ #e(rX,).
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Euler characteristic and heat equation

The heat operator of X

e X compact Riemannian manifold.
e AX Laplacian on X.

e Fort >0, g=-exp (tAX/Z) heat operator acting on
C>*(X,R).
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Euler characteristic and heat equation

Four questions

Q Is Tr“" ¥R [g] an Euler characteristic?

@ Can I write a formula of the type
TyC™ (XR) lg] = Tr? [g exp (—D%’b/Q)} )

@ By making b — +o00, do we obtain Selberg’s trace
formula 7 (extension of Poisson formula).

@ Is Selberg trace formula a Lefschetz formula?
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L(9) |s=to0 » Fixed point formula |s—o.
global local
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Euler characteristic and heat equation

The analogy

Trg [g exp(—sDX’2)] [s>0

L(9) |s=to0 » Fixed point formula |s—o.
global local

Trs[gexp(—Dy%)lb>0
Tr [g],—0 » Selberg t.f.[y— o -
——

NV
global local via closed geodesics
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e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

exp (—t/8)
2—m\/ol (2)

v~ J/

Laplacian o~
geodesic flow

Tr [exp (tAY/2)] =
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Selberg’s trace formula

e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

Tr [exp (tAY/2)] = WVO] (2)

Laplacian o~
geodesic flow

2 y/2 dy
e (/20) e

Vol, exp ( 62/275—25/8)
Z V2rt  2sinh (¢,/2)
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Euler characteristic and heat equation

Selberg’s trace formula

e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

Tr [exp (tAY/2)] = WVO] (2)

Laplacian o~
geodesic flow

2 y/2 dy
e (/20) e

Vol, exp ( 62/275—25/8)
Z V2rt  2sinh (¢,/2)

770
e Right-hand side orbital integrals.
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The symmetric space X

@ ( real reductive group, K maximal compact subgroup,
X = G/K symmetric space.

e g =p @ t Cartan splitting equipped with bilinear form
B>0onp, <Oon¢t...

@ ...descends to bundle of Lie algebras TX & N on X.

G =SLy (R), K = S', X upper half-plane, TX @& N of

dimension 3.
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Hypoelliptic Laplacian and orbital integrals

The analysis on G X g

@ The analysis will be done on G' Xk g...

@ ...which is the total space X of TX ® N over
X =G/K.

e Two separate constructions on G and on g.
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Casimir and Kostant

C? = =) efe; Casimir (differential operator on G),
positive on p, negative on &.

e ¢(g) Clifford algebra of (g, —B) acts on A" (g*).

e U (g) enveloping algebra (left-invariant differential
operators on G).

o DX ¢ ¢(g) ® U (g) Dirac operator of Kostant.
o k9 (U V,W)=B([UV],W) closed 3-form.

o DX° =2(er)e; + 3¢ (—~").
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A formula of Kostant

Theorem (Kostant)

DK¥e? = —C9 + B” (¢, ).
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Hypoelliptic Laplacian and orbital integrals

A formula of Kostant

Theorem (Kostant)

D2 = —C®+ B* (p*, ")

Remark

DX acts on C™ (G, A’ (g*)), while C% acts on C* (G, R).
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The operator 2,

e 9, combination of Dirac operators on G and g.
e 9, acts on C* (G x g, A" (g9¢))-

0D, = DKo +ic ([YE,YPD + % (d% + d%).

e %, K-invariant.

o The quadratic term is related to the quotienting by K.
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The hypoelliptic Laplacian

o Set £, =1 (—EKO’Q + @5).
@ Quotient the construction by K.

o g=p®dtdescends on X toTX @ N.
o T:X — X total space of TX & N.
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o Set £, =1 (—EKO’Q + @5).
@ Quotient the construction by K.

o g=p®dtdescends on X toTX @ N.

o T:X — X total space of TX & N.
o L =1 <—Z5K°’2 - 332(2> acts on

i (2? FA(T"X @ N*)) .
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Hypoelliptic Laplacian and orbital integrals

The hypoelliptic Laplacian

o Set £, =1 (—EKO’Q + @5).
@ Quotient the construction by K.

o g=p®dtdescends on X toTX @ N.
o T:X — X total space of TX & N.

o LX = % <—Z5K°’2 + ”Dim) acts on
i (2? FA(T"X @ N*)) .

Using the fiberwise Bargmann isomorphism, £ acts on

C™(X,S (T*X ® N) @ A (T*X & N*)).
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The hypoelliptic Laplacian as a deformation

1 1
rx — 5 | [YN’}/TX] |2+ﬁ (_ATXEBN + |Y|2 - n) i

TV
Harmonic oscillator of TX®N

NA(T*X®NY)

b2

J/

—_

+g< &/,T_X/ +¢ (ad (Y™))—c (ad (Y"¥) + ifad (YN)))

geodesic flow
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The hypoelliptic Laplacian as a deformation

1 1
EX — § | [YN,YTX] |2+ﬁ (_ATXEBN + |Y|2 - n) +

TV
Harmonic oscillator of TX®N

NA(T*X®NY)

b2

J/

b

geodesic flow

_|_1 < &/T_X/ —i—E(ad (YTX))—C (ad (YTX) + 1fad (YN))) .

Remark

e L looks like a Fokker-Planck operator.
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The hypoelliptic Laplacian as a deformation

1 1
EX — § | [YN,YTX] |2+ﬁ (_ATXEBN + |Y|2 - n) +

TV
Harmonic oscillator of TX G N

NA(T*X®NY)

b2

J/

b

geodesic flow

_|_1 < &/T_X/ —i—E(ad (YTX))—C (ad (YTX) + 1fad (YN))) .

Remark

e L looks like a Fokker-Planck operator.
b — 0, L = 5 (C%* —c¢): X collapses to X (B. 2011)

e b — +00, geodesic f. Vyrx dominates = closed geodesics.
Jean-Michel Bismut Hypoelliptic Dirac operators 16 / 36
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The case of locally symmetric spaces

o I' C G cocompact torsion free.
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Fort > 0,0 > 0,

= @B [exp (—t (CE’Z — c) /2)] = Try [exp (—tﬁbz)] .
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Remark

oThis is exactly what we wanted!
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For ¢t > 0, b > Oa
T [exp (=t (O — ¢) /2)] = T, [exp (—tLF)] -

Remark
oThis is exactly what we wanted!

e C™ (Z,R) has been replaced by a Witten complex over
Z, whose cohomology is just C*° (Z,R).
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Hypoelliptic Laplacian and orbital integrals
A fundamental identity

Theorem

For t > 0,b > 0,
T [exp (=t (O — ¢) /2)] = T, [exp (—tLF)] -

Remark

oThis is exactly what we wanted!

e C™ (Z,R) has been replaced by a Witten complex over
Z, whose cohomology is just C*° (Z,R).

e There is a supersymmetric interpretation involving G¢.
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Splitting the identity

@ Each side splits as an infinite sum indexed by
conjugacy classes in I'.
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Splitting the identity

@ Each side splits as an infinite sum indexed by
conjugacy classes in I'.

© The above identity splits as an identity of orbital
integrals.
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Semisimple orbital integrals

@ 7 € (G semisimple, [v] conjugacy class.

e For ¢t > 0, Tl [exp (—t (C’g’X — c) /2)] orbital integral
of heat kernel on orbit of ~:
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Geometric description of the orbital integral

o) = [ b )] p(v) ay.
Nx(yy/x

Jacobian

X0 X(’Y) Yo

Y Y

d(Y,vY) > ClY| - ¢
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Geometric description of the orbital integral

o) = [ b )] p(v) ay.
Nx(yy/x

Jacobian

X0 X(’Y) Yo

Y Y

d(Y,vY) > ClY| - ¢

p;&X (ZE, wl) < C’exp(—C"dz(z, I/))
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Theorem (B. 2011)
For b > 0,t > 0,

Tl [exp (—t (CE’X ) /2)] = T, [eXp (—tﬁi()} :
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A second fundamental identity

Theorem (B. 2011)
For b > 0,t > 0,

Tl [exp (—t (C’g’X ) /2)] = T, [exp (—tﬁi()} :

Remark

The proof uses the fact that Tt is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.
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The limit as b — 400

o After rescaling of Y7X YV as b — 400,
4 2
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e After rescaling of Y7X YV as b — 400,
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Hypoelliptic Laplacian and orbital integrals

The limit as b — 400

e After rescaling of Y7X YV as b — 400,
Ly S| [YNYTX] P+ LY = Vyrx
——
geodesic flow
o As b — +o0, the orbital integral localizes near a
manifold of geodesics in X associated with ~.

e vy=ckLaep ke K Ad(k)a=a.

e Z () centralizer of 7y, 3 (v) = p (y) ® € (v) Lie algebra
of Z (7).
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Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function 7, (Y{), Yy € it (7), such that

exp (— |al? /2
T [exp (— (CmX —c)/2)] = p((27r1|5)1|’/2/ 2

[, 7 08 [ (172e7)]

exp (— |Y(ﬂ2 /225)

dYy
(2mt)4/?
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Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function 7, (Y{), Yy € it (7), such that

exp (— |al? /2
T [exp (— (CmX —c)/2)] = p((27r1|5)1|’/2/ 2

[, 7 08 [ (172e7)]

exp (— |Y(ﬂ2 /225)

dYy
(2mt)4/?

Note the integral on (7). ..

Jean-Michel Bismut Hypoelliptic Dirac operators 24 /36



Euler characteris
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algeb:
Hypoelliptic Laplacian, math, and ‘physics’
References

The function J,, (Y{) , Yy

ic and heat equation

Jean-Michel Bismut

€ it (7)

Hypoelliptic Dirac operators

25 / 36



Hypoelliptic Laplacian and orbital integrals

The function 7, (Y§) , Y € i€ (v)

1 A (ad (Y) l))
12 —~
Jact (1 - ad () 5] A (2 (8)y)

Iy (YOE) -

1
[det (1 — Ad (k’il>) |5é(’7)

det (1 - Ad (k717 |y ]
det (1 — Ad (k—1e¥7)) lod( ] .

20)
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e U (g) enveloping algebra.
e Z (g) center of U (g) commutative algebra.
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The center of the enveloping algebra

(g) enveloping algebra.
(g) center of U (g) commutative algebra.

U
A
S (g) algebra of polynomials on g*.
I

(g) invariant polynomials on g*.

Jean-Michel Bismut Hypoelliptic Dirac operators 26 /36



Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
Orbital integrals and the center of the enveloping algeb
Hypoelliptic Laplacian, math, and ‘physics’
References

The Duflo isomorphism



Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
Orbital integrals and the center of the enveloping algeb:

Hypoelliptic Laplacian, math, and ‘physics

References

The Duflo isomorphism

@ There is a filtered canonical isomorphism of algebras
I (g) ~ Z(g).

Jean-Michel Bismut Hypoelliptic Dirac operators 27 /36



Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algeb:
Hypoelliptic Laplacian, math, and ‘physics
References

The Duflo isomorphism

@ There is a filtered canonical isomorphism of algebras
I (g) ~ Z(g).
o 7,'C% = —B* + B* (p*, p°).
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Orbital integrals and the center of the enveloping algeb:

Center and enveloping algebras

o LeZ(g), 'L el (g)
o 75, L € I' (g) restricts to an element of I" (3 (7)).

o I3 associated differential operator on 3 () with
constant coeflicients.
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1 c Seven (R)
Theorem (B., Shu SHEN 2019)
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The formula for general orbital integrals

1 c Seven (R)
Theorem (B., Shu SHEN 2019)

Tl [Lu (\/CG:X + Aﬂ
_ Lg(’y),u< (Cg)z(‘r) —i—A)

|7, (v8) T |2 (k778 | 6] (0).
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e We start from the formula with L = 1.

e When v € G is regular, the formula of B. 2011
simplifies dramatically, and can be differentiated in ~.
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e We start from the formula with L = 1.

e When v € G is regular, the formula of B. 2011
simplifies dramatically, and can be differentiated in ~.

e Use fundamental results of Harish-Chandra to evaluate
the action of a differential operator on B. 2011, and
obtain our formula for v regular.
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Principle of the proof

e We start from the formula with L = 1.

e When v € G is regular, the formula of B. 2011
simplifies dramatically, and can be differentiated in ~.

e Use fundamental results of Harish-Chandra to evaluate
the action of a differential operator on B. 2011, and
obtain our formula for v regular.

o If v € G semisimple arbitrary, use the previous result
for v regular and limit results of Harish-Chandra to
obtain the general formula.
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The function 7, (Y§) , Y € i€ (v)

1 A (ad (Y) l))
12 —~
Jact (1 - ad () 5] A (2 (8)y)

Iy (YOE) -

1
[det (1 — Ad (k’il>) |5é(’7)

det (1 - Ad (k717 |y ]
det (1 — Ad (k—1e¥7)) lod( ] .

20)
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The function J, for v regular

Theorem (B., Shu SHEN)

i

(D)1 ep (9) Macme €8 (571
Dy ()
Meceyy (7 (72) =622 (™)
[lacr, (687 (k71emm) — 72 (hm1e))

jv (hf) =
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The function J, for v regular

Theorem (B., Shu SHEN)

i

(D)1 ep (9) Macme €8 (571
Dy ()
Meceyy (7 (72) =622 (™)
[lacr, (687 (k71emm) — 72 (hm1e))

The function (v, he) € H™® x ihy — T, (he) € C is smooth.

jv (hf) =
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The function J, for v regular

Theorem (B., Shu SHEN)

i

N 2
(=D ep () [aepre &'~ (K7)
Dy (7)
HQER?:L ( é/2 (k*le*he) _ ga—lﬂ (k,flefhe)>
Macry, (6 (i) — &7 (1))
The function (v, he) € H™® x ihy — T, (he) € C is smooth.

Remark

Cancellations between p and € parts of .7..
Jean-Michel Bismut Hypoelliptic Dirac operators 32/36
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e In 1908, on R3, Langevin introduced the Langevin
equation m& = —& + w. ..

@ ...to reconcile Brownian motion # = w and classical
mechanics: & = 0.
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The Langevin equation

e In 1908, on R3, Langevin introduced the Langevin
equation m& = —& + w. ..

@ ...to reconcile Brownian motion # = w and classical
mechanics: & = 0.

e In the theory of the hypoelliptic Laplacian, m = b® is a
mass.
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Langevin (C.R. de I’Académie des Sciences 1908)

Une particule comme celle que nous considérons, grande par rapport & la distance
moyenne des molécules du liquide, et se mouvant par rapport a celui-ci avec la vitesse £
subit une résistance visqueuse égale 4 — 6rp.az d’aprés la formule de Stokes. En réalité,
celte valeur n’esl qu'une moyenne, et en raison de Pirrégularité des chocs des molé-
cules environnantes, 'action du (luide sur Ia particule oscille autour de la valeur
précédente, de sorte que 'équation du mouvement est, dans la direction «,

d’x dr .
(3) nlgﬁ-:——ﬁﬁyam_}_)‘_

Sur la force complémentaire X nous savons qu'elle est indifféremment positive et néga-
live, et sa grandeur est telle qu’elle maintient Pagitation de la particule que, sans elle,
la résistance visqueuse finirait par arréter.
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Happy birthday, Samson!
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