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The Euler characteristic

X compact Riemannian manifold.

Euler characteristic χ (X) =
∑

(−1)i dim H i (X,R).

g ∈ Diff (X) acts on H · (X,R).

Lefschetz number L (g) = Trs
H·(X,R) [g].
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The heat equation method

(
Ω· (X,R) , dX

)
de Rham complex, whose cohomology

is H · (X,R).

gTX Riemannian metric, dX∗ formal adjoint of dX ,
DX = dX + dX∗ Dirac operator.

DX,2 =
[
dX , dX∗

]
Hodge Laplacian.

McKean-Singer: For s > 0,
L (g) = Trs

[
g exp

(
−sDX,2

)]
(does not depend on

s > 0).

As s→ 0, Lefschetz fixed point formula

L (g) =

∫
Xg

±e (TXg) .
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The heat operator of X

X compact Riemannian manifold.

∆X Laplacian on X.

For t > 0, g = exp
(
t∆X/2

)
heat operator acting on

C∞ (X,R).
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Four questions

1 Is TrC
∞(X,R) [g] an Euler characteristic?

2 Can I write a formula of the type

TrC
∞(X,R) [g] = Trs

R
[
g exp

(
−D2

R,b/2
)]
.

3 By making b→ +∞, do we obtain Selberg’s trace
formula ? (extension of Poisson formula).

4 Is Selberg trace formula a Lefschetz formula?
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The analogy

L (g) |s=+∞︸ ︷︷ ︸
global

Trs[g exp(−sDX,2)]|s>0

−−−−−−−−−−−−→ Fixed point formula︸ ︷︷ ︸
local

|s=0.

Tr [g]b=0︸ ︷︷ ︸
global

Trs[g exp(−DR,2b )]|b>0

−−−−−−−−−−−−→ Selberg t.f.|b=+∞︸ ︷︷ ︸
local via closed geodesics

.
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Selberg’s trace formula

X Riemann surface of constant scalar curvature −2, lγ
length of closed geodesics γ.

Tr
[
exp

(
t∆X/2

)]︸ ︷︷ ︸
Laplacian

=
exp (−t/8)

2πt
Vol (Σ)︸ ︷︷ ︸

geodesic flow

∫
R

exp
(
−y2/2t

) y/2

sinh (y/2)

dy√
2πt

+
∑
γ 6=0

Volγ√
2πt

exp
(
−`2

γ/2t− t/8
)

2 sinh (`γ/2)
.

• Right-hand side orbital integrals.
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The symmetric space X

G real reductive group, K maximal compact subgroup,
X = G/K symmetric space.

g = p⊕ k Cartan splitting equipped with bilinear form
B > 0 on p, < 0 on k . . .

. . . descends to bundle of Lie algebras TX ⊕N on X.

Example

G = SL2 (R), K = S1, X upper half-plane, TX ⊕N of
dimension 3.
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The analysis on G×K g

The analysis will be done on G×K g. . .

. . . which is the total space X̂ of TX ⊕N over
X = G/K.

Two separate constructions on G and on g.
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Casimir and Kostant

Cg = −
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e∗i ei Casimir (differential operator on G),

positive on p, negative on k.

ĉ (g) Clifford algebra of (g,−B) acts on Λ· (g∗).

U (g) enveloping algebra (left-invariant differential
operators on G).

D̂Ko ∈ ĉ (g)⊗ U (g) Dirac operator of Kostant.

κg (U, V,W ) = B ([U, V ] ,W ) closed 3-form.

D̂Ko = ĉ (e∗i ) ei + 1
2
ĉ (−κg).
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A formula of Kostant

Theorem (Kostant)

D̂Ko,2 = −Cg +B∗ (ρg, ρg) .

Remark

D̂Ko acts on C∞ (G,Λ· (g∗)), while Cg acts on C∞ (G,R).
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Wick rotation and harmonic oscillator on gi

On gi = p⊕ ik, Hgi harmonic oscillator on gi.

Hgi = 1
2

(
−∆gi + |Y |2 − n

)
.

Witten operators dgi = dgi + Y ∧, dgi∗ = dgi∗ + iY acts
on C∞ (g,Λ· (g∗i ))

Dgi = dgi + dgi∗ Dirac like operator on gi.
1
2

[dgi , dgi∗] = Hgi +NΛ·(g∗i ).
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The operator Db

Db combination of Dirac operators on G and g.

Db acts on C∞ (G× g,Λ· (g∗C)).

Db = D̂Ko + ic
([
Y k, Y p

])
+ 1

b
(dgi + dgi∗).

Db K-invariant.

The quadratic term is related to the quotienting by K.
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The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.

g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .

π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .

Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to TX ⊕N .
π̂ : X̂ → X total space of TX ⊕N .

LXb = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ· (T ∗X ⊕N∗)

)
.

Remark

Using the fiberwise Bargmann isomorphism, LXb acts on

C∞ (X,S· (T ∗X ⊕N∗)⊗ Λ· (T ∗X ⊕N∗)) .
Jean-Michel Bismut Hypoelliptic Dirac operators 15 / 36



Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

Orbital integrals and the center of the enveloping algebra
Hypoelliptic Laplacian, math, and ‘physics’

References

The hypoelliptic Laplacian as a deformation

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)︸ ︷︷ ︸
Harmonic oscillator of TX⊕N

+
NΛ·(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX︸ ︷︷ ︸

geodesic flow

+ĉ
(
ad
(
Y TX

))
−c
(
ad
(
Y TX

)
+ iθad

(
Y N
)))

.

Remark

• LXb looks like a Fokker-Planck operator.

• b→ 0, LXb → 1
2

(
Cg,X − c

)
: X̂ collapses to X (B. 2011)

• b→ +∞, geodesic f. ∇Y TX dominates⇒ closed geodesics.
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.

Remark

• LXb looks like a Fokker-Planck operator.

• b→ 0, LXb → 1
2

(
Cg,X − c

)
: X̂ collapses to X (B. 2011)

• b→ +∞, geodesic f. ∇Y TX dominates⇒ closed geodesics.
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A fundamental identity

Theorem

For t > 0, b > 0,

TrC
∞(Z,E)

[
exp

(
−t
(
Cg,Z − c

)
/2
)]

= Trs

[
exp

(
−tLZb

)]
.

Remark

•This is exactly what we wanted!

• C∞ (Z,R) has been replaced by a Witten complex over
Z, whose cohomology is just C∞ (Z,R).
• There is a supersymmetric interpretation involving GC.
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Splitting the identity

1 Each side splits as an infinite sum indexed by
conjugacy classes in Γ.

2 The above identity splits as an identity of orbital
integrals.
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Semisimple orbital integrals

γ ∈ G semisimple, [γ] conjugacy class.

For t > 0, Tr[γ]
[
exp

(
−t
(
Cg,X − c

)
/2
)]

orbital integral
of heat kernel on orbit of γ:

I ([γ]) =

∫
Z(γ)\G

TrE
[
pXt
(
g−1γg

)]
dg.
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Geometric description of the orbital integral

I (γ) =

∫
NX(γ)/X

Tr
[
γpXt (Y, γY )

]
r (Y )︸ ︷︷ ︸

Jacobian

dY.

x0 γx0

Y γY

d(Y, γY ) ≥ C|Y | − C ′

X(γ)

pXt (x, x′) ≤ C exp(−C ′d2(x, x′)).
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A second fundamental identity

Theorem (B. 2011)

For b > 0, t > 0,

Tr[γ]
[
exp

(
−t
(
Cg,X − c

)
/2
)]

= Trs
[γ]
[
exp

(
−tLXb

)]
.

Remark

The proof uses the fact that Tr[γ] is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.
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The limit as b→ +∞

After rescaling of Y TX , Y N , as b→ +∞,

Lb ' b4

2

∣∣[Y N , Y TX
]∣∣2 + 1

2
|Y |2 − ∇Y TX︸ ︷︷ ︸

geodesic flow

.

As b→ +∞, the orbital integral localizes near a
manifold of geodesics in X associated with γ.

γ = eak−1, a ∈ p, k ∈ K,Ad (k) a = a.

Z (γ) centralizer of γ, z (γ) = p (γ)⊕ k (γ) Lie algebra
of Z (γ).
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Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ
(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t
(
Cg,X − c

)
/2
)]

=
exp

(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)

Jγ
(
Y k

0

)
Tr
[
ρE
(
k−1e−Y

k
0

)]
exp

(
−
∣∣Y k

0

∣∣2 /2t) dY k
0

(2πt)q/2
.

Note the integral on ik (γ). . .
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The function Jγ
(
Y k

0

)
, Y k

0 ∈ ik (γ)

Definition

Jγ
(
Y k

0

)
=

1∣∣∣det (1− Ad (γ)) |z⊥0
∣∣∣1/2

Â
(
ad
(
Y k

0

)
|p(γ)

)
Â
(

ad
(
Y k

0

)
k(γ)

)
[

1

det (1− Ad (k−1)) |z⊥0 (γ)

det
(

1− Ad
(
k−1e−Y

k
0

))
|k⊥0 (γ)

det
(
1− Ad

(
k−1e−Y

k
0

))
|p⊥0 (γ)

]1/2

.
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The center of the enveloping algebra

U (g) enveloping algebra.

Z (g) center of U (g) commutative algebra.

S· (g) algebra of polynomials on g∗.

I · (g) invariant polynomials on g∗.
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The Duflo isomorphism

There is a filtered canonical isomorphism of algebras
τD : I · (g) ' Z (g).

τ−1
D Cg = −B∗ +B∗ (ρg, ρg).
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Center and enveloping algebras

L ∈ Z (g), τ−1
D L ∈ I · (g).

τ−1
D L ∈ I · (g) restricts to an element of I · (z (γ)).

Lz(γ) associated differential operator on z (γ) with
constant coefficients.
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The formula for general orbital integrals

µ ∈ Seven (R).

Theorem (B., Shu SHEN 2019)

Tr[γ]
[
Lµ
(√

Cg,X + A
)]

= Lz(γ)µ

(√
(Cg)z(γ) + A

)
[
Jγ
(
Y k

0

)
TrE

[
ρE
(
k−1e−Y

k
0

)]
δa

]
(0) .
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Principle of the proof

We start from the formula with L = 1.

When γ ∈ G is regular, the formula of B. 2011
simplifies dramatically, and can be differentiated in γ.

Use fundamental results of Harish-Chandra to evaluate
the action of a differential operator on B. 2011, and
obtain our formula for γ regular.

If γ ∈ G semisimple arbitrary, use the previous result
for γ regular and limit results of Harish-Chandra to
obtain the general formula.
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The function Jγ
(
Y k

0

)
, Y k

0 ∈ ik (γ)

Definition

Jγ
(
Y k

0

)
=

1∣∣∣det (1− Ad (γ)) |z⊥0
∣∣∣1/2

Â
(
ad
(
Y k

0

)
|p(γ)

)
Â
(

ad
(
Y k

0

)
k(γ)

)
[

1

det (1− Ad (k−1)) |z⊥0 (γ)

det
(

1− Ad
(
k−1e−Y

k
0

))
|k⊥0 (γ)

det
(
1− Ad

(
k−1e−Y

k
0

))
|p⊥0 (γ)

]1/2

.
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The function Jγ for γ regular

Theorem (B., Shu SHEN)

Jγ (hk) =
(−1)|R

im
p,+| εD (γ)

∏
α∈Rre

+
ξ

1/2
α (k−1)

DH (γ)∏
α∈Rim

k,+

(
ξ

1/2
α

(
k−1e−hk

)
− ξ−1/2

α

(
k−1e−hk

))
∏

α∈Rim
p,+

(
ξ

1/2
α (k−1e−hk)− ξ−1/2

α (k−1e−hk)
) .

The function (γ, hk) ∈ Hreg × ihk → Jγ (hk) ∈ C is smooth.

Remark

Cancellations between p and k parts of Jγ.
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The Langevin equation

In 1908, on R3, Langevin introduced the Langevin
equation mẍ = −ẋ+ ẇ. . .

. . . to reconcile Brownian motion ẋ = ẇ and classical
mechanics: ẍ = 0.

In the theory of the hypoelliptic Laplacian, m = b2 is a
mass.
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Happy birthday, Samson!
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