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e Take a group G
e An automorphism of G, p € Aut(G) is a bijection

p:G—G
such that p(x - y) = p(x) - p(y) for all x,y € G

e Normal subgroup: Inn(G) < Aut(G), the inner automorphisms.
e We have, pp € Inn(G)
Ph G — G,
g+— h~1igh

for each h € G.
e Outer automorphisms: Out(G) = Aut(G)/ Inn(G)
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Automorphisms of the free group

e Consider the free group with n generators

Fn=1{(a1,...,an)

E.g. ala3_532 € [
e The group Out(F,) is our main object of interest.

e Generated by

dl — aiar ar — an a3 — as

and alr—>al_1 ar — an as — as

and permutations of the letters.
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Mapping class group

e Another example of an outer automorphism group:
the mapping class group

e The group of homeomorphisms of a closed, connected and
orientable surface S, of genus g up to isotopies

MCG(Sg) := Out(m1(Sg))



Example: Mapping class group of the torus

MCG(T?) = Out(m(T?))

The group of homeomorphisms T? — T? up to an isotopy:
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For the mapping class group: Teichmuller space

Let S be a closed, connected and orientable surface.
= A point in Teichmiiller space T(S) is a pair, (X, )

o A X.
e A marking: a uw:S— X.
_/_)
rA i
C J _J
R
X
S

MCG(S) on T(S) by composing to the marking:
(X, 1) — (X, puog™t) for some g € MCG(S).
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For Out(F,): Outer space

ldea: Mimic previous construction for Out(F,).
Culler, Vogtmann (1986)
Let R, be the rose with n petals.

R, =

= A point in Outer space O, is a pair, (G, u)
e A connected graph G with a length assigned to each edge.
e A marking: a homotopy 11 : R, — G.

fr
Out(F,) acts on O, by composing to the marking:
(6, 11) — (G, o g™ 1) for some g € Out(F,) = Out(m(Ry)).







Examples of applications of Outer space

e The group Out(F,)

e Moduli spaces of punctured surfaces
e Tropical curves

e Invariants of symplectic manifolds

e Classical modular forms (
o (Mathematical) physics —> 0o r lo's o (lg

& g,-a(;‘q a,c..Jon«e} - "Fm(nco‘s) Fa_lk
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Algebraic invariants

° H.(OUt(Fn); Q) = Ho(on/OUt(Fn); @) — Ho(gn; Q),
as O, is contractible Culler, Vogtmann (1986).

= Study Out(F,) using G,

e One simple invariant: Euler characteristic

13
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Further motivation to look at Euler characteristic of Out(F,)

Consider the abelization map F, — Z".
= Induces a group homomorphism

1 —Tp— Out(F,) = Out(Z") —1
N——

=GL(n,Z)

e T, the ‘non-abelian’ part of Out(F,) is interesting.

e By the short exact sequence above

(Out(Fy)) = X(GL(n,Z)) X(Ta) n>3
=0

= T, does not have finitely-generated homology for n > 3 if
x(Out(Fp)) # 0.
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and |x(Out(F,))| grows exponentially for n — oc.

based on initial computations by up
to n < 11. Later strengthened by up to n < 100.

T » is not finitely presentable.
In topological terms, i.e. dim(Hx(T,)) = oo,

which implies that 7, does not have finitely-generated homology.

T, does not have finitely-generated homology. r



Results: x(Out(F,)) # 0
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Theorem A MB-Vogtmann (2019)
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Theorem A MB-Vogtmann (2019)

x(Out(F,)) <0 forall n>2

x(Out(F,)) ~ — \/127 r(70;23n/ 2

as n — o<Q.

which settles the initial conjecture by
Smillie-Vogtmann (1987). Immediate questions:

= Huge amount of unstable homology in odd dimensions.
e Only one odd-dimensional class known Bartholdi (2016).

e Where does all this homology come from?
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This Theorem A follows from an implicit expression for

x(Out(Fy,)):
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This Theorem A follows from an implicit expression for
x(Out(Fy,)):

Theorem B MB-Vogtmann (2019)

e NNV ~ Za (=D T(N+1/2 — k) as N — oo
k>0

where Z az’ = exp Zx(Out(FnH))z”

k>0 n>0

= x(Out(F,)) are the coefficients of an asymptotic expansion.

e An analytic argument is needed to prove Theorem A from
Theorem B.

e In this talk: Focus on proof of Theorem B

17
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e \We have the identity by

ZX ,2—2g—n _ } : (=1)Ve! X(6)
| Aut G|
connected graphs G

e Kontsevich proved this using a combinatorial model of M, ,

by based on ribbon graphs.
’%Oi' fwsl‘ﬂ"l & B
_——
‘L)) >
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Kontsevich’s argument

e \We have the identity by Kontsevich (1992):
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ZX »2-2g—n _ Z (’AutG‘ ZX(G)_

connected graphs G
e Kontsevich proved this using a combinatorial model of M, ,
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An algebraic viewpoint

e Let H be the Q-vector space spanned by a set of graphs:
H=Q 0 +Q0O0+Q8+...

=:1I
e Here: only connected graphs with 3-or-higher-valent vertices.

ZX 22g n:¢(X)

where

G
Y — x(G) —1
> g € M

and ¢ : H — Q, G — (—1)!Vel
= ¢ is very simple and easy to handle via topological field theory.
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e For Out(F,), we find that
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For Out(F,), we find that

> x(Out(Fay1))z™" = 7(X)

n>1

with X as before and

TH Q6 Y (-1)F

fCG

where the sum is over all forests (acyclic subgraphs) of G.

Not directly approachable with a TFT...

The necessary combinatorial model is the ‘forest collapse’
construction by Culler-Vogtmann (1986).
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The Hopf algebra of graphs

e With disjoint union of graphs
m: HRQH — H, G ® G — G1 & Gy as multiplication, the
empty graph () associated with the neutral element I,

e and the coproduct A : H — H ® H,

A:G— Z g®G/g,

gCG
bridgeless g

where the sum is over all bridgeless subgraphs,

e the vector space ‘H becomes the core Hopf algebra of graphs
Kreimer (2009), which is closely related to the Hopf algebra
of renormalization in quantum field theory.
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AR=Ygad/e=<"ol +4 <[00+

gCd

+31{ 00+ 6 <00 + Aw:
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e Characters, i.e. linear maps v : H — A which fulfill
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Yok =mo (@ p)ol
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e Characters, i.e. linear maps v : H — A which fulfill
(1) =TI 4 form a group under the convolution product,

Yok =mo (@ p)ol

bY

Theorem MB-Vogtmann (@52
The map ¢ associated to M, , and the map 7 associated to
Out(F,) are mutually inverse elements under this group:

T = ¢*_1 ¢ — 7_*—1

e That means 7 is the renormalized version of ¢.

24
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Recall that x(Mg,n) is explicitly encoded by a TFT:

X n __ _ 1 z(1+x—eX)
Z 228~ _gb(X)_Iog(m/Re a dX>

The duality between ¢ and 7 implies that x(Out(F,)) is
encoded by the renormalization of the same TFT:

/ z(14+x—e*)+3+T(— zeX)dX)

Ozlog m

where T(z) = 3,1 x(Out(Fni1))z™".
This TFT encodes the statement of Theorem 2 and gives an

implicit encoding of the numbers x(Out(F,)).
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Outlook: The naive Euler characteristic

The ‘naive’ Euler characteristic
X(Out Fp) =) "(—1)*dim H,(Out Fy; Q)
k

is harder to analyse than the rational Euler characteristic.

X(Out F),) ZX

sum over conjugacy elements of fmlte order in Out F, and C,
is the centralizer corresponding o Brown (1982).

= Preliminary investigations on C, indicate that

o X(Out F,)
n—oo x(Out F))

—c>0
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Euler characteristics of Kontsevich’s graph complexes

A missing piece:

complex rational: integral: e
associative/ Mg , Harer, Zagier 1986 Harer, Zagier 198€
commutative Kontsevich 1993 Willwacher, Zivkovié
Lie/Out(F,) Kontsevich 1993 ?

Lie/Out(F,) integral case e(Out(F,)) only known for n < 11.
Thanks to a supercomputer calculation by Morita 2014.
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Missing Euler characteristic of the Lie case

1 e(OUt(Fn_|_1))
(=)

k 22 :

H / d x ek2>1 T (Ck—%+7k—7k—(1+6k)j2>l St 'Og(1+cjk)>
\/ 2mk/zK

k>1

where ¢, = x5k + 27K and crp_1 = xox_1 for all k > 1.

= ‘Explicit’ formula for e(Out(F,)).
(Can be ‘easily’ computed up to n =40 vs 11 known values.)
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Contributions and open questions

Short summary:

e x(Out(Fp)) #0

Open questions:

e The rapid growth of x(Out(F,)) indicates that there is much
unstable homology.
Preliminary investigations into the x(Out(F,)) support this.
What generates it?

e The TFT analysis indicates a non-trivial ‘duality’ between
MCG(S;) and Out(Fp). . . Koszul duality (?)

e Can renormalized TFT arguments also be used for other
groups and for finer invariants? For instance RAAGs or
explicit homology groups.

29






Bonus: Sketch of Kontsevich’s TFT
proof of the Harer-Zagier formula




Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.
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Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 = m1(Sg,n) = MCG(S54,n+1) = MCG(Sz,0) — 1

= X(MCG(S5gn+1)) = X(Mg n+1) = 26(771(5&”)) X(Mg,n)

7

-~

=2—-2g—n

30



Step 2 of Kontsevich’s proof

e Use a combinatorial model for M, ,
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Step 3 of Kontsevich’s proof
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Step 3 of Kontsevich’s proof

B (_1)dim(a)
X(Mg,n) = 20: [Stab(o)]
(—1)vl
B ; | Aut |
ho(ar):n
x(M)=2—-2g—n

Used by Penner (1988) to calculate x(Mg) with Matrix models.
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:

n!

Z X(ngn) Z2—2g—n
g;n
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&g,n g,n ribbon graphs
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This is the perturbative series of a simple TFT:

— log (\/217T_Z/Rez(1+x—ex)dx)
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:

X(Mg,n) 2—2g—n __ (_]_)|Vr| i x(I)
Z nl ‘ _Z_ Z | Aut | n!Z
&g,n g,n ribbon graphs

ho(O)=n

x(MN=2-2g—n

(_]_)|VG| «(6)
2 Aut G| ©

graphs G

This is the perturbative series of a simple TFT:

— log (\/217T_Z/Rez(1+x—ex)dx)

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

k)
:ZC(_/()Z K

k>1
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Last step of Kontsevich’s proof

X(Mg,n) _ B
Z n! k(kkj—ll)

&g,n
2—2g—n=k
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Last step of Kontsevich’s proof

X(Mg,n) _ B
Z n! k(kkj—ll)

&g,n
2—2g—n=k

= recover Harer-Zagier formula using the identity

X(Mg,n—i—l) — (2 — 2g — n)X(Mg,n)
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Analogous proof strategy for
x(Out(F,)) using renormalized TFTs




Generalize from Out(Fj) to Ans and from O, to O, s, Outer
space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

35



Generalize from Out(Fj) to Ans and from O, to O, s, Outer
space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

1= Fp— Aps = Ans—1 — 1
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e Use a combinatorial model for G s
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forest f C G.

36



e Use a combinatorial model for G s

= graphs with a forest Smillie-Vogtmann (1987):

A point in G, s can be associated with a pair of a graph G and a
forest f C G.

(G, 1)
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( 1)dlm(0')

Z | Stab(o
(—1)IEl
Z Z | Aut G|

graphs G forests fCG
with s legs

rank(71(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(An,s) — Z |AU1tG‘ Z (—]_)'Ef‘

graphs G forests fCG
with s legs
rank(71(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(An,s) — Z |AU1tG‘ Z (—1)|Ef|

graphs G forests fCG
with s legs N ~~ «
rank(71(G))=n =:7(G)

7 fulfills the identities 7(0) = 1 and

Z T(g)(_1)|EG/g| =0 for all G # ()

gCG
g bridgeless

= 7 is an inverse of a character in a Connes-Kreimer-type

renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants x(Aps) are encoded in a renormalized TFT.
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TFT evaluation

Let T(Z7X) — Z X(An,s)zl_n_
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TFT evaluation

X
Let T(z,x) = Z X(A,,,s)z1 o
n,s>0
1
then 1= e T(z:X) gy
\/ 21z /R
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TFT evaluation

S

Let T(z,x) = Z X(An,s)zl_nx—l
n,s>0 >
then 1l = e T(2:%) gy
\V2rwz JR

Using the short exact sequence, 1 — F, = Ay, s — Aps—1 — 1

results in the action

=

z(l—l—x e)+5+T(— zeX)d
\/27r2/ 8

where T(z) = <1 x(Out(Fn+1))z™".
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TFT evaluation

S

Let T(z,x) = Z X(An,s)zl_nx—l
n,s>0 >
then 1l = e T(2:%) gy
\V2rwz JR

Using the short exact sequence, 1 — F, = Ay, s — Aps—1 — 1

results in the action

=

z(l—l—x e)+5+T(— zeX)d
\/27r2/ 8

where T(z) = <1 x(Out(Fn+1))z™".

This gives the implicit result in Theorem B.

39












