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Worldline path integral representation of scalar QED

R.P. Feynman, PR 80, (1950) 440
Green's function for the operator —(0 + ieA)? + m?

1

D [A] = (x —(0+ ieA)? + m? )

We work with euclidean conventions, defined by starting in
Minkowski space with (— + ++) and performing a Wick rotation

E=K — ik

=x' = X4

We will also set i = c = 1.



Worldline representation of the propagator

We exponentiate the denominator using a Schwinger proper-time parameter T:

o [A] (x| /OOO AT exp [~ T(~(9 + ieA) + m?)] Ix')

[ am e T [ o i ar (3 e (o)
Jo Jx(0)=x"

Expanding the field in N plane waves,
N .
A = 3 et i)
i=1

and Fourier transforming the endpoints we get the “photon-dressed propagator”,

ki Dka )Jks kn

—— ——-




Worldline representation of the effective action

Similarly for the one-loop effective action:

Al = —Trin[—(0+ieA) + m’

- /ochlexp[ T(=(8 + ieA)” + m?)|

/°° o—m*T / Dx(r)e” Jo dr (%52 tiex-A(x(7)))
(0)=x(T)
Expanding the field in N plane waves,
AH (x(T) Z 5H ki x(

one gets the one-loop N - photon amplitudes.
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Higher order QED processes

Arbitrary QED processes can be constructed from these building
blocks by sewing:




From scalar to spinor QED

R.P. Feynman, PR 84 (1951) 108 (Spinor QED)

Add global factor of 7% and spin factor Spin[x, A],
i T
Spin[x, A] = trr P exp Ze[w“,’y’/]/ d1Fpy(x(7))
0

Modern way: Replace spin factor by a Grassmann path integral (E.S. Fradkin, NPB 76 (1966) 588)

Spin[x, A] — /Dw(‘r) exp |:— /OT dT(%dl ) — iE¢NF;“/¢’V>}

P(11)¥(12) —(12)(11)
P(T) = —v(0)

Advantages of the Grassmann approach:
Removal of the path ordering.

Uncovers a supersymmetry between the orbital and spin degrees of freedom of the electron.



String-inspired treatment of the worldline path integral

Polyakov 1987, Bern and Kosower 1991, Strassler 1992:
Perturbative approach to the evaluation of worldline path integrals
using worldline Green's functions G(71,72), Gr(11, 72)

(xF(m)x"(m)) = —G(71,12)"

()

G(r,m) = |mn—m|— -

W ()Y (m)) = Gp(m1,m2) 6"
Gr(m1,72) = sign(m — )
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QED photon amplitudes

Scalar QED, one loop:

© 4T T /1
e[ ol (i)
0 0

exp|- /0 "ar oA | = > /vl H / dri [x“ 7)A (x(ﬂ))}

N=0

Expand the field in N plane waves,

X(T Z 8“ iki-x(T)

and pick out the term containing every €; once.



dT o
F[{k,,a }] (_Ie) /? - Dx Vsc’xl[khgl] . Vséal[kN7€N](37 JOT I

Vbéal denotes the same photon vertex operator as is used in string

perturbation theory,

T
Vs/gal[k7 5] = /0 dre- X(T) eikx(T)

The zero mode x = + fOT d7x(7) factors out and produces the
momentum conservation factor (27)246(>° k;).
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Formally exponentiate ¢ - x(7) e*(7) = efkxtex(7) [lin(e)
“Completing the square” = Bern-Kosower master formula

M{kiei}] = (—ie)N/OOOd;_(MrT —szH/ dr;

N

1 . 1 ..
X exp{ Z [EGB,'J'k,' . kj + IGB,'jk,' “€j+ EGB,'J'E,' . é‘j] } |1in(51,...,e,\,)
ij=1
2
T — T
G(r,m) = |T1—72|—¥
G.(7'17 ) = sign(m — ) — 2LTT2)
.. 2
G(T17T2) = 25(7‘1—7’2)—7

D
2

(47 T)™ 2 = free path integral determinant.



11

Highly compact generating function for the N - photon
amplitudes, valid off-shell.

No need to fix the ordering of the photons along the loop.

Simple pattern-matching rules for putting on spin or color
(Bern-Kosower).

The quartic vertices contained in the §(7; — 7;) can be easily
removed by integration by parts, which at the same time leads
to the appearance of photon field strength tensors (Strassler).



N=4 (Scalar or Spinor QED)

After a large number of integrations by parts:

fo= O L@ L pO LB O

F1) ) (1) g 1) 1) @)
r = T123a) Ti23a) * M(1243) T(1243) T r(1324) (1324)
2 _ @ (2) #(2) (2) ~(2) (2)
B = T T<12)(34> e Tases + r<14><23) Taaes)
€ _ ~(3) 3 #3)
(e = _ﬂz; s Fa2s)i T (123 + Z (234)i 234): + Z (341)i 341 it Z
4 (4)
r - Z u)u u)ll+zru11 (

i<j
) (5)
r - Z 4 ()i T (if) / + Z fG

i<j i<j



Tensor basis for the off-shell four-photon amplitudes

The basis of five tensors T(/) is identical with the one found in 1971 by Costantini, De Tollis and Pistoni using the

QED Ward identity:

(12)12

pv
f,
Z(if)

Z(iy - . - in)

Z(1234)
Z(12)Z(34),
rg - fa -k
z(123) 220 (1=1,2,3),
rg - kg
kB fa -k
zazfa Bl
k3 - ks
ky - f3 - fa - ke
Z(z) 3R
k3 - kg
Kie? — chKY

1
Sr(fif) =ei- ke -

n(ﬁ f,-j) (n>3)
j=1

ki — €; - iki - k;



Optimized worldline parameter integrals for N = 4

; o dT 4 D _2p (14 . 4Gk
Fo = / 7T4 2 ™ T/ T[T cui 39 (Gy) e ii= Citkick
0 0 :
i=1

where, for spinor QED,

'7(1234) = G12G23G34Ga1 — Gr12Gr23Gr3a Grar
W((f;)(u) = (G12Go1 — GF12Gra1) (G34Gaz — Gr3aGras)

7523), = (612623631 — Gr12Gr23Gr31) Gai

“7((3)11 = (612621 — Gr12GF21) G136m

'7((5;)12 = (612621 — Gr12GF21) G136

(plus permutations thereof). The coefficient functions for scalar QED are obtained from these simply by deleting
all the Ggj;.



Work in progress

N. Ahmadiniaz, C. Lopez-Arcos, C. Lopez-Lopez and C. Schubert, in preparation:
First calculation of the four-photon amplitudes fully off-shell.
With general kinematics, as well as with one or two photons taken in the low-energy limit.

Tensor reduction is done on the amplitude as a whole, without fixing an ordering.

Should become useful for high-order calculations in QED with four-photon sub-diagrams,

as well as for photonic processes in external fields.



On to multiloop

Dealing with the amplitude as a whole becomes important when one uses the one-loop amplitudes to construct
higher-loop amplitudes by sewing:

From the four-photon amplitude we can construct the two-loop quenched photon propagator,

(D e+l

From the one-loop six-photon amplitude we get the three-loop quenched propagator

This type of sums of diagrams is known to suffer from extensive cancellations...

etcetera



The sad story of the quenched QED beta function

The quenched QED beta function 3 was a big topic at the Multiloop Workshop at Aspen 1995 (D. Kreimer, D.
Broadhurst, K. Chetyrkin, ...). The coefficients known at the time (up to four loops in spinor QED, up to three
loops in scalar QED) were all rational:

spin
BPm = 2

after a complete cancellation of (3s between diagrams, and

ijin - _ua6

after a complete cancellation of ¢3s and (ss. And in scalar QED,

29
scal

psea _ <7
3 2

Thus everybody believed at the time that the quenched coeffcients would stay rational to all loop orders (and
David, Dirk and Bob Delbourgo even had a knot-theoretical explanation.....) but then at five loops (3 refused to

cancel out in 3;‘"“ (Baikov et al. JHEP 1207 (2012) 017). The Lord sometimes can be malicious. Still, although
incomplete the cancellations are remarkable and ought to find an explanation!



The fundamental problem of worldline integration

Returning to the one-loop level, using that Ggj;s can always be eliminated by
GrijGEjk Grri = —(Gjj + Gjx + Gii)

the most general integral that one will ever have to compute in the worldline approach to QED (or any abelian
theory) is of the form

1 . N 26
/ duyduy - - dupy Pol(Gy) e=i<i=1 %%
J0

with arbitrary N and polynomial Pol(G,-j), where

2
Gy = |ui — uj| — (u; — )", G = sgn(u; — u;) — 2(u; — uj)

Without decomposing the integrand into ordered sectors!



Some examples of worldline integrals

Chain integrals:

1 o ) on
/0 duy ... dupnGi2Go3 ... Gypyyy = 7FBn(\u1 — upy1])sign” (v — upy1)
1 2n71
/0 duy ... dunGr13GFo3 - - - GFp(ny1) = mEn—l(‘Ul — Upy1])sign”(ug — upy1)

(Bn(x), En(x) Bernoulli and Euler polynomials.)

3-point integral:
1 . . . . . .
/0 du G(u, u1)G(u, up)G(u, u3) = —E(G12 — G23)(G23 — G31)(G31 — G12)

General n-point integral of a polynomial in G:

k:

/Qld"é(u,ul)klaumzﬁz---Gwn)k” = ZHZUG;M,;O(?)

"=t i =0 ;

0 (56 )T i (1) T

1+ Z" )nZJ 1 J#i J#i

This formula settles all polynomial integrals by recursion



Bernoulli numbers and polynomials

Worldline integration naturally relates to the theory of Bernoulli numbers and polynomials. The path integral was
performed in the Hilbert space H,'3 of periodic functions orthogonal to the constant functions (because of the
elimination of the zero mode). In this space the ordinary nth derivative 9p is invertible, and the integral kernel of
the inverse is given essentially by the nth Bernoulli polynomial Bj(x):

<up | 95" | upy1 >

1
—;Bn("—’l — tpy1l)sen”(ug — upy1) (n>1)

~0
(uilo™|uj) = 6(up —uj) — 1
Related to the well-known Fourier series
l Q2mikx
Bax) = — S
(2mwi)n ) kn

but here it is usually assumed that 0 < x < 1.



All 4 helicity N - photon amplitudes in the low-energy limit

Low-energy limit of the “all +" amplitudes in scalar or spinor QED, at one and two loops:

(1,2)(EH)[ _+. +..= . e
Mepin [e1i - exicgyqiiey]
(1,2)(EH) [ _+. - .

ool [e7:- - ex Exqric s eyl

<zpin (0)
o (n:0)

where n = N /2.

°P‘“( 0 = 2n(2n — 2)

- () A M i
; ]
oo ()" (55 ko

m2

(-1)" By, 1)
CUT B _ ) (n,0)

2n—3 B B
an—z+3z 2k Bon—2k }

2n — 2 =1 2k (2n —2k)

2n—3 3 By Bonax
Bop2t+ =

2n — 2 2 =1 2k (2n —2k)



The Miki and Faber-Pandharipande-Zagier identities

Calculating the two-loop self-dual Euler-Heisenberg Lagrangian in two ways (with G.V. Dunne in 2002)

1 (2n—3 3" 1B,y B
2 2k 2n—2k
P = 2{7an72+*2f7" }

(2m)2 \2n -2 2 £ 2k (2n — 2k)
o 1 (2n—3 2 1B
T @l T 3[wi@n+1) 1 1] 2n

+3§ <2n - 2) Bak Ban—ok }
= \2k — 2/ 2k 2n— 2k

Equivalence? Ask Richard Stanley ...
Theorem: (Miki 1977): For integer n > 2,

—1 -1
S BokBon—2k nz: BokBap—2k (2") Bap Hy
- - n

kz:‘; (2k)(2n — 2k)  £= (2K)(2n — 2k) \2k

Here H; denotes the ith harmonic number,
1 .
H = =i+ 4y
J

(x) = I"(x)/T(x), v is Euler's constant.
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Similarly, from a string theory calculation:

Theorem: (Faber and Pandharipande 1998, proof by Zagier) For integer n > 2,

1 = 3 - _
— BaBan—2k _ 1~ BuBonak (2'1) N &Hz
£ (2K)(2n — 2k) ni (2K \ek n 21
_ 1—2nt
where Bp = (?)Bn

Corresponds to a certain identity between Hodge integrals.
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Generalizations

C.V. Dunne and C.S., CNTP 7 (2013) 225: Used the worldline
formalism as a guiding principle to

Unify the proofs of the Miki and FPZ identities.
Generalized them at the quadratic level.
Generalized them to the cubic level.

Outlined the construction of even higher-order identities.



General worldline integral in ¢° theory

Worldline representation of the one-loop N-point amplitude for scalar qb?’-theory in D dimensions (Polyakov 1987)

N
1 —D/2,5 D -
In(pr:--opn) = S (4m) 2emPs (3 pi)iner. - v
i=1
i o dT _n—p/2_—m?T ! al
In(p1s - -y py) = /0 7T e /0 duy...duyexp | T Z Gjjpij
i<j=1

Gy = |uj — uj| — (uj — uj)z, pij = pj - pj- Even for a fixed ordering, off-shell these integrals are still not easy.
I contains 5 Fy
I3 contains o Fp, Fy

Iy contains 5 Fy, Fy, Lauricella — Saran
A. Davydychev, T. Riemann, O. Tarasov



The scalar effective action

Corresponding formula for the one-loop effective action in ¢3 theory:

oo dT T
/ cim T (47 T) —b/2 / dry / drp - - / dry
N! Jo

Xexp[fé Z G(rj, 7)o - a(ﬂ} w® () wM (xy

ij=1

LIy = %Z

=0

Arbitrary self-interaction U(¢), W = U’/ (¢). Heat kernel expansion:

I A T Pl DR LN
n=0
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Basic one-loop integral

Expanding all exponentials, one would have to compute

1 N
/N(n12,n13-~,'7(N1)N)E/ duydus - - - duy H Ggu
0 i<j=1

Individually trivial, but not easy to obtain a closed-form
expression....
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Expansion in inverse derivatives/Bernoulli polynomials

Abbreviate [, == fol duy - fol du,, Expand each exponential
using the following identity,

ePabGab — 1 4 2 ZP” Y2 o (@) (U027 [up)
n=1

Here the H,(x) are Hermite polynomials,
(al0=2"[b) = (ua|l0™?" up) — (ual0 ™" |us)
By integration, this also gives

oo
NZS 2 ~
~—erf(x)e =1+ 22" By, x?" L Hp 1 (x
2% ( ) Z 2n 2n 1( )

n=1
(én = B”) Curiously, we have not been able to find this series
representation of the error function in the mathematical literature.



In the three-point case one can use this to write

oo .1 /D1y ; o
P20 PGS PG {1+2Zp122”2"*1( 512)[<u1\a*2’|u2>+32:}}
i=1

oo 1
=5 P13 —2j A

X {1+22P13 2 Hpj_y ( ) ) [(Ul\a Y |us) +sz}}
j=1
S k-3 VP23 —2k 5

X {1+2ZP23 2H2k—1(T) [<U2V3’ |U3>+sz}
k=1

Since .[01 du,-yj<u,-|872’.\uj-> = 0, the three (u,'|872"|uj) must go together, and then by .[01 dulu)(u| = 1,

/m<u1\8*2”|uz><uz\a*2k|u3><u3\a*2f\u1> = Te(@ 2y = By



N = 3 coefficients

In this way we get a closed form-expression for the N = 3 coefficients,
b a c b R R . R
I(a, b, ¢) = / GLGhGEy = alblel S > S i (BoiboiBok — Bagisiiny)
123 i=[14a/2] j=[1+b/2] k=|1+c/2]

Here we have assumed that a, b, c are all different from zero, and the coefficients h/? are found from the
rearrangement

i1 VX 2 R
23 N T IHy ( )Bz, Z,\ > KBy
i=1

a=1 i=[14a/2]

From the explicit formula for the Hermite polynomials

2(2i — 1)1
(2i —a—1)1(2a — 2i + 1)!

b = (-1)°"




N =14

Starting from N = 4, we encounter the “cubic worldline vertex”

. 1 . .
k - - —k
o= [ o ) 1o lus) w0~ us)
which can be eliminated by integration by parts:

. 1 . .
vk = /0du<u|0"\u1><u\a‘f\uz><u|a‘*\u3>

i+j—1 _ 1 L
= (I [ ot im wom ) o= )
a=i = 0
Hi e jyu & w}
ij—1 a1 .
= 2 (T [l ) (wfo= )

— i
a=i

') r1 ')
—(—1)’*’*'3/0 dufuz 0~ "7 ) w0 D |ug) | + (i Jyur >}
i+j—1

a—1 L L L
= 2 (00 ) [lo o™ ua) = (-1 ualo )]

a=i

i+j—1 i i
AP ( )[wa 7 uy) (] 0~ fug) — (=1) 7 (g |0~y |
J =
=j
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Outlook

Will get closed formulas for the coefficients Iy(ni2,...) for
moderate M.

How to make contact with the description in terms of
hypergeometric functions?

Might be useful for asymptotic purposes.. for large n,

N (2n)!
Ban ~ (_1) +12(2ﬂ.)2n

Generalize to gauge theory....
Get back to multiloop....



