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Motivation

e Kreimer-Connes:

[perturbative|] QFT renormalisation «— Hopf algebra stucture

= enables perturbative computations to very high order

e Ecalle: resurgent asymptotics

[perturbative| series — [perturbative + nonperturbative| transseries

= nonperturbative physics encoded in perturbative physics
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IDEA: use resurgent trans-series to decode nonperturbative
properties of QFT from their perturbative Hopf algebra
structure




Resurgent Trans-Series

e Ecalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)

e common basic trans-series in QM & QFT applications:
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e transmonomial elements: x, e~ =, In(x), familiar in QFT
e new: analytic continuation encoded in trans-series
e new: trans-series coefficients ¢y, are highly correlated

e explored in ODEs, PDEs, difference egs., QM, matrix models,
QFT, string theory, ...



“Resurgence”

resurgent functions display at each of their singular points a
behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - in
a slightly different guise, as it were - at their singularities
J. Ecalle

fluctuations about different singularities are quantitatively related




Resurgence in QFT ? review: GD & M. Unsal (1603.04924)

e 7 many resurgence examples in matrix models and QM, but
many results still await rigorous foundation

e renormalisation makes resurgence in quantum field theory
more interesting

e recent progress for regularised QFTs and lattice QFT
e here: invoke Hopf algebra structure of perturbative QFT
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e 7 many resurgence examples in matrix models and QM, but
many results still await rigorous foundation

e renormalisation makes resurgence in quantum field theory
more interesting

e recent progress for regularised QFTs and lattice QFT
e here: invoke Hopf algebra structure of perturbative QFT

Q1: do the Dyson-Schwinger equations contain all the
information (perturbative & non-perturbative) about a QFT 7

Q2: how can one decode the non-perturbative information 7

Q3: is there a natural Hopf algebraic formulation of the “bridge
equations” which relate the perturbative and non-perturbative
features ?


http://inspirehep.net/record/1428681

Nonlinear ODEs from Dyson-Schwinger Equations

Combinatoric explosion of renormalization tamed by Hopf
algebra: 30-loop Padé-Borel resummation
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Nonlinear ODEs from Dyson-Schwinger Equations
e Broadhurst/Kreimer 1999/2000; Kreimer/Yeats 2006:

for certain QFTs the renormalisation group equations can be
reduced to coupled nonlinear ODEs for the anomalous
dimension in terms of the renormalised coupling

e resurgence is deeply understood for (nonlinear) ODEs
(Ecalle, Costin, Kruskal, Ramis, Sauzin, Fauvet, ...)

e 5o this is a natural place to start

e some paradigmatic cases: Wess-Zumino model (Bellon,
Schaposnik, Clavier, 2008, 2016, 2018); 4 dim. Yukawa
(Borinsky, GD, 2020); 6 dim. ¢* theory (Bellon & Russo, 2020),
(Borinsky, GD, Meynig, 2020)

e also related: Maiezza, Vasquez (2019, 2020)

e future goal: gauge theories



Resurgence for Nonlinear ODEs (O. Costin, 1998)
n'" order nonlinear ODE: y' = f(z,y) , zeC , yeC"
e normal form:
y' =fo(2) — Ay - %By +8(2,y)

= resurgent trans-series

Yy =yo+ Z af] .. .JfL” e~ (kN2 —kf Z ak; 2t
k l

e discontinuities of singularities of Borel transform Byy at N A;
are all related by a network of algebraic “bridge equations”

“.. a surprising upshot: given one formal solution,

(generically) an n-parameter family of solutions can be
constructed out of it”



4 dimensional massless Yukawa theory Broadhurst/Kreimer, 1999

e renormalised fermion self-energy

S(q) = = ¢2(¢%)

e Dyson-Schwinger equation

=0 + 4D + ... — subtractions

e anomalous dimension y(a) (o = renormalised coupling):

v(a) In (1 -%(¢%))

q

dln g2 .

_/J,Q

e renormalisation group = non-linear ODE

d
2y=—a—7"+ 20757



Perturbative Solution (rescale: y(a) :==2C (—2))

o) (222 1) 1] et =

e perturbative solution: C'(x) = Y7, Cpa™ (oEIs: A000699)
C, =[1,1,4,27,248, 2830, 38232, 593859, 10401712, 202601898, . . . ]

e combinatorics: generating function for “connected chord
diagrams”

e large order asymptotics
1 =
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e large order asymptotics
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e missing boundary condition parameter ?
oo
Ecalle: formal series — trans-series : C(z) = Z o C®) ()
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Trans-series Solution M. Borinsky & GD, 2005.04265
e expand C(z) = CO(z) + o CW(e) + 02 CP(z) + ...
e CO(z) = previous formal perturbative series solution
e linear inhomogeneous equations for C*) () for k > 1

(CO(z) + 1)2
2x

cW(z) = 1 vz

e~ 1/(22) 1 5 43 5, 579 4
——r— - — T — ...
2 8 16

e resurgence: C(M(z) expressed in terms of C'©)(x)
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CO(y) = VT

e resurgence: C(M(z) expressed in terms of C'©)(x)
e characteristic signature of resurgent structure:
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e combinatorics of C\: Mahmoud & Yeats, 2020
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Resurgent structure

e large order asymptotics of C’,(Ll) coefficients
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e next nonperturbative solution (£(x) = ﬁ e~1/(2)).
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Resurgent structure

C ~

e large order asymptotics of C’,(Ll) coefficients
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e next nonperturbative solution (£(x) = ﬁ e~1/(2)).
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e continues to all orders = all-orders summation

C(z) = [exp (aax)f(w, ) ;’y) -y] o

= \ﬁ [—1y(y+2)}

e also follows from Borinsky’s alien derivative on the ring of

generating function : f(z,y) =

formal power series

)_...)



Resurgence in the 4 dimensional massless Yukawa Model

e trans-series: the (asymptotic) perturbative solution to the
nonlinear ODE for the anomalous dimension can be extended to
a trans-series which resums all nonperturbative orders

e non-perturbative terms C¥)(z) (k > 1) +— singularities of
the Borel transform of the perturbative series

e resurgence: all non-perturbative terms are expressed explicitly
in terms of the original formal series C(%)(z)

fluctuations about different singularities are quantitatively related




Resurgence in the 6 dim. Scalar ¢® Theory
e physically more interesting quantum field theory

92

1 2 9 3 -
5—5(8“,(1)) _g(b ) Q= (471')3

e asymptotically free; d = 6 critical dimension; Lipatov
instanton; renormalons; — non-perturbative physics
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Resurgence in the 6 dim. Scalar ¢® Theory
e physically more interesting quantum field theory

g2

1 2 9 3 -
£_§(8u¢) _g(b ) Q= (47T)3

e asymptotically free; d = 6 critical dimension; Lipatov
instanton; renormalons; — non-perturbative physics

e Broadhurst/Kreimer: 3rd order ODE (with quartic
nonlinearity) for anomalous dimension (rescale aw = 3x)

d d d
[C’ <2mdx—1> —1] [C(Q:de—1> —2] [C<2xdx_l> —3} C =3z
e perturbative solution: C(z) =6 .0°, (—3)" Cpa™

C, = {1,11,376,20241, 1427156, 121639250, 12007003824, . .. }
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e Broadhurst/Kreimer: 3rd order ODE (with quartic
nonlinearity) for anomalous dimension (rescale aw = 3x)

d d d
[C’ <2mdx—1> —1] [C(Q:de—1> —2] [C<2xdx_l> —3} C =3z
e perturbative solution: C(z) =6 .0°, (—3)" Cpa™

C, = {1,11,376,20241, 1427156, 121639250, 12007003824, . .. }

e no known combinatorial interpretation of C,: oris aosise2


https://oeis.org/A051862

Trans-series Analysis

e Broadhurst/Kreimer:  C,, ~ 12"T' (n + 2)

e with more data

Borinsky, GD, Meynig, 2020, to appear

97 2 05917
CnN12nF<n—|—23><1_ 3144 _ 3 124416
12 (n+3) (n+i3) (-

e there are 3 “missing” b.c. parameters !

i)



Tl"ans—series AnalySiS Borinsky, GD, Meynig, 2020, to appear

e Broadhurst/Kreimer:  C,, ~ 12"T' (n + 2)

e with more data
32 05917

23 39
Cp~12"T <n+ > 1— 144 _ 124416
12 ( n+5%) (+BH) (-1

e there are 3 “missing” b.c. parameters !

e transseries ansatz: C(z) ~ 2% e M (14...)

23
A=1 & fp= 15
A=2 & 5:+1
11
A=3 & fB= -

= three resonant Borel singularities at ¢t = —1, -2, —3



Trans-series Analysis: full three-term trans-series

e
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e compute fluctuation coefficients from ODE: e.g. C
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Trans-series Analysis: full three-term trans-series

C(z) ~ Cpert(z) + ZG < zs/u) ZC
+ ;%]( 1/6) 20[2
+ kza[] <x11/4> ZC l:n
=1
(k=1)

e compute fluctuation coefficients from ODE: e.g. 0[1] "
e [y T T
[Hm " 144’ 124416’
e resurgence relation:
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Borel Analysis of Perturbative Series

e non-perturbative information = location and nature of Borel
singularities, and associated Stokes constants Sj;

e decoding this non-perturbative information from a finite
amount of perturbative data requires new methods: Borel-Padé
& conformal /uniformizing maps (costin, GD: 2003.07451, 2009.01962)

LY
CM"'(/HMAL
wep
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™
“hidden "

e Borel4+-Padé — approximate information
e Borel+conformal map+Padé — resurgent singularities

e Borel4uniformizing map+Padé — optimal  (2009.01962)
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Borel Analysis of Fluctuation Series

e uniformization map in Borel plane enables (optimal) high
precision extraction of Stokes constants:

t
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e conformal map [blue|; uniformizing map [gold|



Borel Analysis of Fluctuation Series

e uniformized Borel analysis — large order growth

e fluctuations about ¢ = —2 have interference terms
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Borel Analysis of Fluctuation Series

e uniformized Borel analysis — large order growth

=D _0.350382 -

o fluctuations about ¢ = —2 have interference terms
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Resurgence in the 6 dimensional Scalar ¢* Theory

e richer non-perturbative structure than Yukawa model
e 3rd order ODE with 4th order non-linearity

o 3 different non-perturbative structures, with different
fluctuation powers

e large order/low order resurgence relations

e non-perturbative terms expressed in terms of formal
perturbative series




Conclusions

perturbative Hopf algebra renormalisation

resurgent |} analysis

’ non-perturbative completion

e does there exist a “natural” Hopf algebraic non-perturbative
(trans-series) structure ?

e functional relation & Borinsky’s “alien derivation” ?
e multi-component fields ? (Gracey, 2015; Giombi et al ...)
e relation with instantons and renormalons ?

e other renormalisation schemes ?

e 2d 0 models, Chern-Simons, SUSY, QED, QCD, ... ?



Happy Birthday Dirk !

(and thank you for your inspirational scientific ideas and leadership)
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