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Introduction

@ In March 1998 (shortly after | started as postdoc at CPT
Marseille), a larger group of us attended a conference on
noncommutative geometry in Vietri sul Mare (ltaly).

@ Alain Connes reported on a ground-breaking result by a
physicist Dirk Kreimer who discovered in g-alg/9707029
that renormalisation in quantum field theory is encoded in
a Hopf algebra.
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Introduction

@ In March 1998 (shortly after | started as postdoc at CPT
Marseille), a larger group of us attended a conference on
noncommutative geometry in Vietri sul Mare (ltaly).

@ Alain Connes reported on a ground-breaking result by a
physicist Dirk Kreimer who discovered in g-alg/9707029
that renormalisation in quantum field theory is encoded in
a Hopf algebra.

@ Remarkably, this Hopf algebra is closely related to another
Hopf algebra which emerges in the computation of the
local index formula for transverse hypoelliptic operators
[Connes-Moscovici 98].

@ All participants understood that this is a development of
greatest importance. In Marseille we stopped all other
projects and tried to understand the results.
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Overlapping divergences

@ With Thomas Krajewski we understood the generic cases,
but had problems with overlapping divergences.
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Introduction
(o] Jelele]

Overlapping divergences

@ With Thomas Krajewski we understood the generic cases,
but had problems with overlapping divergences.

@ Dirk accepted an invitation to Marseille for the end of May
1998. As a basis for discussion, Thomas and | made our
notes available as arXiv:hep-th/9805098:

On Kreimer’'s Hopf algebra of Feynman graphs

T. Krajewski®, R. Wulkenhaar®
Centre de Physique Théorique, CNRS - Luminy, Case 907, 13288 Marseille Cedex 9, France

Received: 9 July 1998 / Revised version: 21 September 1998 / Published online: 19 November 1998

Abstract. We reinvestigate Kreimer’s Hopf algebra structure of perturbative quantum field theories with a
special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a
linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra
operations. We present a formulation where the Hopf algebra operations are directly defined on any type of
divergence. We explain the precise relation to Kreimers Hopf algebra and obtain thereby a characterization
of their primitive elements.
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Dyson-Schwinger equations

Dirk’s e-mail from 13 May 1998

‘It is actually so that the problem of
overlapping divergences can be totally
resolved using the construction as given in
g-alg/9707029, though the paper is succinct
and assumes that the reader digested the use
of the Schwinger Dyson equation as indicated
in Fig.5 in that paper. This needs reading of
section 6 of my Habil Thesis (J.Knot Th.Ram.6
(1997) 479-581) .7
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[e]e] Tele]

Dyson-Schwinger equations

Dirk’s e-mail from 13 May 1998

‘It is actually so that the problem of
overlapping divergences can be totally
resolved using the construction as given in
g-alg/9707029, though the paper is succinct
and assumes that the reader digested the use
of the Schwinger Dyson equation as indicated
in Fig.5 in that paper. This needs reading of
section 6 of my Habil Thesis (J.Knot Th.Ram.6
(1997) 479-581) .7

| cannot contribute to the Hopf algebra of Feynman graphs and
refer to talks by Walter, Alain, Thomas and others.

But | am happy to contribute to Dyson-Schwinger equations.
It is true that | hadn’t digested them in 1998. In the meantime
they became my strongest tool .. .
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INSPIRE “f a Kreimer and t Dyson”

D. Kreimer, “Dyson-Schwinger equations: Fix-point equations for quantum fields”

e WEE @ D ) EED

O. Kriiger and D. Kreimer, “Filtrations in Dyson-Schwinger equations:
Next-to{/} -leading log expansions systematically”

A. Youssef and D. Kreimer, “Resummation of infrared logarithms in de Sitter
space via Dyson-Schwinger equations: the ladder-rainbow approximation”

A. Tanasa and D. Kreimer, “Combinatorial Dyson-Schwinger equations in
noncommutative field theory”

G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, “The QCD beta-function
from global solutions to Dyson-Schwinger equations”

G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, “The QED beta-function
from global solutions to Dyson-Schwinger equations”

D. Kreimer, “Dyson Schwinger equations: From Hopf algebras to number theory”
D. Kreimer and K. Yeats, “An Etude in non-linear Dyson-Schwinger Equations”

C. Bergbauer and D. Kreimer, “Hopf algebras in renormalization theory: Locality
and Dyson-Schwinger equations from Hochschild cohomology”

D. Kreimer, “What is the trouble with Dyson-Schwinger equations?”

D. J. Broadhurst and D. Kreimer, “Exact solutions of Dyson-Schwinger equations
for iterated one loop integrals and propagator coupling duality”
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Dyson-Schwinger equations

...are quantum equations of motion for Green functions in a QFT.

@ Can be graphically understood when collecting Feynman
graph series of the same external structure into blobs:

| ~
connected 2-point fn free 2-point fn intera/ction connected 4-point fn
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Introduction
0000e

Dyson-Schwinger equations

...are quantum equations of motion for Green functions in a QFT.

@ Can be graphically understood when collecting Feynman
graph series of the same external structure into blobs:

| >SS
connected 2-point fn free 2-point fn intera/ction connected 4-point fn

@ This graphical picture relies on perturbation theory.
However, the equations between blobs can be rigorously
derived without any reference to formal power series.

Dyson-Schwinger equations thus provide a non-perturbative

definition of QFTs — provided we can solve these equations
@ Difficulty: n-point function needs (m>n)-point function

@ Can be resolved in QFT on finite-dim. approximations of
noncommutative geometries (matrix models)
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Quartic Kontsevich model
@00000

Free Euclidean fields on noncommutative geometries

Let Hy be the real vector space of self-adjoint N x N-matrices,
and (E4, ..., Ey) be (increasing) positive real numbers.

Theorem [Bochner 1933, Schur 1911]

For any inner product ( , ) on Hy there exists a unique
probability measure dyo on the dual space H), with

1 .
exp (5 (M, M) = /H Ojio(®) €0 YM=(My) € Hy .
N
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Free Euclidean fields on noncommutative geometries

Let Hy be the real vector space of self-adjoint N x N-matrices,
and (E4, ..., Ey) be (increasing) positive real numbers.

Theorem [Bochner 1933, Schur 1911]

For any inner product ( , ) on Hy there exists a unique
probability measure dyo on the dual space H), with

1 .
exp (5 (M, M) = / dpio(®) €°M)  YM=(My) € Hy .

M, M) g
Choose ¢ 2:: E+E E, and corresponding d/:£ o

@ Defines the free Euclidean scalar field on N-dimensional
approximation of a noncommutative geometry.

@ (E4,..., Ep) istruncated spectrum of the Laplacian.

@ All moments can be described explicitly.
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Quartic Kontsevich model
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The Kontsevich model and its quartic analogue

e 3 () dpugo(0)

e 3 N dpg o(d o(®)
Hj, ’

© The Kontsevich model dug \(®) =

@ Computes intersection numbers of tautological characteristic
classes on the moduli space M, , of stable complex curves
[Kontsevich 92].

@ ltis integrable via a relation (suggested by [Witten 91]) to the
KdV hierarchy. Its moments obey topological recursion.
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Quartic Kontsevich model
[o] lelelele)

The Kontsevich model and its quartic analogue

—LNTI <D3)
@ The Kontsevich model dug () = ° _MT1(¢guEO( )
e dpeo(®)
Hy
@ Computes intersection numbers of tautological characteristic

classes on the moduli space Mg , of stable complex curves
[Kontsevich 92].

@ ltis integrable via a relation (suggested by [Witten 91]) to the
KdV hierarchy. Its moments obey topological recursion.

— 2ANTr (%)

, e ¢ dueo(P)

© A quartic analogue dyug () = = :
Al®) e " dug o(o)

Hy
@ Although perturbatively far apart, we find very similar
algebraic geometrical structures. Our solutions are exact in .
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Quartic Kontsevich model
[e]e] lele]e)

Equations of motion for quartic Kontsevich model

Hy
N - N
92Z(M) 0Z(M) DZ(M)
“N(E,— Ep)S S0 =N (M
O —NE - E) — My Mg ;( P OMq = Mak OMp )
102(M) L 02z
% oE, _Z<)Mpk()/\/lkp+z / due(®)y Z"’pk“’kp

@ They allow to express >}, W in Dyson-Schwinger
equations by fewer derivatives, i.e. of same or lower order.
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Quartic Kontsevich model
[e]e] lele]e)

Equations of motion for quartic Kontsevich model

PzZ(M N 9Z(M 9Z(M
U8 :Z (M"P a/\Slkq) Max a/\flpk)>
1 02(M)

N .
02
i =3 22z m
9 N Z()Mpk()/\/lkp—'— / de(®)y Zq"’kq’kp

@ They allow to express >}, W in Dyson-Schwinger
equations by fewer derivatives, i.e. of same or lower order.

@ Eq. @ can be used for p # q, whereas p = q requires @.

@ Dyson-Schwinger equations complexify to equations for
meromorphic functions in several complex variables in which
we admit multiplicities (E;, ..., Ey) = (S8, 8 Cd)

2 Iy
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Quartic Kontsevich model
[e]e]e] lele)

Dyson-Schwinger equation for planar 2-point function

For p # g, expand Nle,V dpeA(P) PpgPap =1 Do g N™ 29 7GL9)

(9) _
Then G‘ q| - (g)(47n)‘<:ep7n:eq

d
A
(HBare + £+ + TR ex) ) ZGO) (¢, )

lpgl®
with initial equation [Grosse-W 09]

g %) (ex, ) — ZGO (¢, n)
NZ ek—C

Z, ipare: renormalisation parameters
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Quartic Kontsevich model
[e]e]e] lele)

Dyson-Schwinger equation for planar 2-point function

For p # g, expand Nle,V dpeA(P) PpgPap =1 Do g N™ 29 7GL9)

lpgl®
Then G‘(gc)” = GU)(¢,n) ‘c ey e, With initial equation [Grosse-W 09]

(/«‘IZJare +&{+n+ Z kaG(O G,k )ZG(O)(C n)

d

ZGO) gy,
_ NZ (ex;n) — (C n)

ek—C

Z, ipare: renormalisation parameters

@ In[Panzer-W 18] we solved this equation for ry = 1, g = %
in large-N limit, corresponding to A®* on 2D-Moyal space.

@ Key step was to resum perturbative results (obtained with
HyperInt) for an auxiliary function to Lambert-W.

@ In [Grosse-Hock-W 19] we understood the general solution.

Find »F4 for 4D Moyal. See Alex Hock’s talk at 15h15.
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Quartic Kontsevich model
[e]e]ele] o)

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schirmann-W 19]
Let (ek, ok) be implicitly defined by ex = R(ek), rk = R'(ek)ok
d

for Ft’(z):z—i Ok
Mo 2 e
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Quartic Kontsevich model
[e]e]ele] o)

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schirmann-W 19]
Let (ek, ok) be implicitly defined by ex = R(ek), rk = R'(ek)ok
d

Then GO(¢,n) = GO(z,w) for R(z) = ¢, R(w) =1
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Quartic Kontsevich model
[e]e]ele] o)

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schirmann-W 19]
Let (ek, ok) be implicitly defined by ex = R(ek), rk = R'(ek)ok
d

for R(z) =z — —

Then GO)(¢,n) = G©(z,w) for R(z) = ¢, R(w) = n and

d
1 o )

R(ex))(R(ek) — R(—w))
R(W) - R(-2)
29 are all solutions of R(u) = R(z).

—_
\
2| >
(]
—~
]
/\
\./
\
/\i
Q)

g(o)(z_ W) =

whereuec {z,2',...,
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Quartic Kontsevich model
[e]e]ele] o)

Solution for finite matrices
Theorem [Grosse-Hock-W 19, Schirmann-W 19]

Let (ek, ok) be implicitly defined by ex = R(ek), rk = R'(ek)ok

d
for R(z) =z — A Ok

Mo 2 e
Then GO(¢,n) = GO(z,w) for R(z) = ¢, R(w) =1 and
d j

) I /H —R A( k))

GO (2. w) — Ng — R(ex))(R ( k) — R(=w))
R( w) — R(-2)

where u € {z,27,...,29) are all solutions of R(u) = R(z).
(The symmetry G(OO(z, w)=G)(w, z) is automatic)

Thus, planar 2-point function solved by the composition of a
rational function G(© with inverse of another rational function R.
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Remarks

We succeeded in solving a non-linear (D-S) equation.

@ First (with Erik) by brute force and luck in a special case,
later by the beauty of complex analysis.

@ There must be a hidden algebraic structure which made
this possible. We are confident to find it in the affine
equations [with Johannes Branahl & Alex Hock].

Raimar Wulkenhaar (Munster) Solvable Dyson-Schwinger equations 11
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We succeeded in solving a non-linear (D-S) equation.

@ First (with Erik) by brute force and luck in a special case,
later by the beauty of complex analysis.

@ There must be a hidden algebraic structure which made
this possible. We are confident to find it in the affine
equations [with Johannes Branahl & Alex Hock].

Message to retain

Original model had spectrum (8- -, .. & €9) coupling .

ry rq
But in these variables the structure is completely obscure!

@ The structure emerges when transforming via R~", with
d
R(z) =z — § Yko1 225
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Remarks

We succeeded in solving a non-linear (D-S) equation.

@ First (with Erik) by brute force and luck in a special case,
later by the beauty of complex analysis.

@ There must be a hidden algebraic structure which made
this possible. We are confident to find it in the affine
equations [with Johannes Branahl & Alex Hock].

Message to retain

Original model had spectrum (8- -, .. & €9) coupling .

ry rq
But in these variables the structure is completely obscure!

@ The structure emerges when transforming via R~", with
A d
R(2)=z— § iy 72
@ Q: Is something analogous true in familar QFT, i.e. can we
possiby uncover some deep structure after transformation
(to discover) to more appropriate variables?
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Blobbed topological recursion
0000000

The affine equations

@ All other correlations functions satisfy affine equations.
They are always solvable, but no path seemed to exist.

@ Alex Hock: need first to look at auxiliary functions!
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Blobbed topological recursion
0000000

The affine equations

@ All other correlations functions satisfy affine equations.
They are always solvable, but no path seemed to exist.

@ Alex Hock: need first to look at auxiliary functions!

Recall that d.e , depends on given family E4,. .., Ey. Introduce
N

_ 8n_1(Nz/duE_A(q>)d>a1k¢ka1)

Z N2—29-n()(0) — k=1 Y Hy . On,2

9=0 e OEg, --- 0B, (Ea, *Eaz)z
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Blobbed topological recursion
0000000

The affine equations

@ All other correlations functions satisfy affine equations.
They are always solvable, but no path seemed to exist.

@ Alex Hock: need first to look at auxiliary functions!

Recall that d.e , depends on given family E4,. .., Ey. Introduce
N

_ 8n_1(Nz/duE_A(q>)d>a1k¢ka1)

Z N2—29-n()(0) — k=1 Y Hy . On,2

g=0 e OEg, --- 0F,, (Ea *Eaz)z

@ We derive and solve Dyson-Schwinger equations for
(meromorphic continuation of) Q(9).

@ This needs R and G(9, but no prior knowledge of its
E-derivatives and of 2-point functions of higher topology.
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Blobbed topological recursion
0000000

The affine equations

@ All other correlations functions satisfy affine equations.
They are always solvable, but no path seemed to exist.

@ Alex Hock: need first to look at auxiliary functions!

Recall that d.e , depends on given family E4,. .., Ey. Introduce
N

_ 8n_1(Nz/duE_A(q>)d>a1k¢ka1)

Z N2—29-n()(0) — k=1 Y Hy . On,2

g=0 e OEg, --- 0F,, (Ea *Eaz)z

@ We derive and solve Dyson-Schwinger equations for
(meromorphic continuation of) Q(9).

@ This needs R and G(9, but no prior knowledge of its
E-derivatives and of 2-point functions of higher topology.

Unexpected result: The Q(9) translate to differential forms
which obey blobbed topological recursion [Borot-Shadrin 15]!
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Blobbed topological recursion
(o] lelee]e]e]

Solution procedure [Branahl-Hock-W 20]

m+b
AN

®

Three types of functions involved:

° Qﬁﬁ)(uh ..., Um) objects of BTR, most difficult to compute
@ T (uy,..., um||z, w]) auxiliary functions, easy to compute

o T(g)(U1 yo s
(D)

@

., Uml|Zz|w|) auxiliary functions, easy to compute

@

20(2) & TO]|z. w])
=GO)(z,w)

x=1

0 (uy, 2) - TO(uy 1z, w])

TOW||2|wl)
x=0

A (r, 2, 2) = TO(uy, U2, W)

’:

TO(urz|wl)

—

Q"(z2) = TM(0) 2, w))

’:

o (ur,2) > T (wr |2, wi)

’;

TU(@)12|wl)

/

Raimar Wulkenhaar (Minster)

Knowing these, it is easy
to (recursively) evaluate
any moment of dug
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Blobbed topological recursion
[e]e] lele]ele]

Results

Proposition

Oy o 1 1
% (2 = R <(u— 22 (U+Z)2>

One recognises the Bergman kernel of topological recursion!
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Blobbed topological recursion
[e]e] lele]ele]

Results

Proposition

Oy o 1 1
% (2 = R <(u— 22 (U+Z)2>

One recognises the Bergman kernel of topological recursion!

Suggests wgm(z1, .., zm) = X220-mQD (2, z.\[dR(z)
k=1

Proposition (g = 0) / Conjecture (g > 0)

Z — wgm(Uy, ..., Un—1, Z) is meromorphic with poles at
ze€{0,—uy,....—Un_1, 1, .., fog} Where R/()j,) =0
(ramification points)
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Blobbed topological recursion
[e]e] lele]ele]

Results

Proposition

Oy o 1 1
% (2 = R <(u— 22 (U+Z)2>

One recognises the Bergman kernel of topological recursion!

Suggests wgm(z1, .., zm) = X220-mQD (2, z.\[dR(z)
k=1

Proposition (g = 0) / Conjecture (g > 0)

Z — wgm(Uy, ..., Un—1, Z) is meromorphic with poles at
ze€{0,—uy,....—Un_1, 1, .., fog} Where R/()j,) =0
(ramification points)

Gives residue formula for wg m into which solutions of the
Dyson-Schwinger equations for 7@ (uy, ..., um||z, w|) and
T (uy, ..., un|z|w|) are inserted. Many cancellations arise.
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Blobbed topological recursion
[e]e]e] Jelele]

Solution atlow —y =29+ m—2

wo,3(U1, U )=—§: (@ap * wise) (wsp + wogp) du due 02
03(Us, Uz, 2 R(—B)R"(B:)(z — Bi)?
wo 2(”27”1) dz
+ |:du1( (dR)( ) Rl(_u1)(z—|— U1)2) + Uy < U21|

1 RI//(BI)
ol Z B e G

R () 4 BUCBIRT(B) | (RUCB)P A
48R (5) — 38(R"(3) " HBR(—p)R"(5)

48(R'(—B))? W}
z— Bi)?

dz R”(O)c(jz
“8(R(0)22 T 16(R(0))°2
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Blobbed topological recursion
[e]e]e] Jelele]

Solution atlow —y =29+ m—2

2d 1 1
<z + , +
woa(Us, Uz, 2) = — Z ((U1—/3,)2 (U1+/3,)2)((UZ Bi)? (Uz+/3

=S R(—B)R"(5)(z - Ai?
wo.2(Us, U az
N {d"‘( (OdzR)§ ; R(—u)(z+ up)?

2 ) dus dup dz

)+U1<—>U2}

1 R///(Bi)
wi1( Z R(— R” B/){ - 8(z— B)* + 24R"(B))(z — B)3
F) ) L ORCEIRT) L (RUCB)E 1

+48Ff”(ﬁ’i) 48(R"(Bi))2 ' 48R/(=pBi))R"(Bi) ' 48(R'(—5i))? 85;2}

(z—-pBi)?

az R"(0)dz

“8(R(0))22 | T6(R(0))22
@ Reflect (convergent!) summation of infinite series of Feynman
(ribbon) graphs of fixed external structure and topology.
@ The \-series results by solving the system
R(ek) = ek, R'(ex)ox = v, R'(Bi) = 0and z = R71(()
via Taylor approach to the implicit function theorem.
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Blobbed topological recursion
[e]e]e]e] lele]

Abstract loop equations [Borot-Eynard-Orantin 13]

Proposition (g, m) € {(0,2),...,(0,5),(1,1)} / Conjecture

Let R : C — C be the ramified cover identified in the solution of
GO (z, w). A
Let 51, ..., Bog be the ramification points

of R and o, be the corresponding local
Galois involution in the vicinity of 3;.
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Abstract loop equations [Borot-Eynard-Orantin 13]

Proposition (g, m) € {(0,2),...,(0,5),(1,1)} / Conjecture

Let R : C — C be the ramified cover identified in the solution of
GO (z, w). A
Let 51, ..., Bog be the ramification points

of R and o, be the corresponding local :
Galois involution in the vicinity of 3. > R
Define wo.1(z) = —R(—z)R'(z)dz and for 2 —2g — m < 0 the
wg,m as before. Then:
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Blobbed topological recursion
[e]e]e]e] lele]

Abstract loop equations [Borot-Eynard-Orantin 13]

Proposition (g, m) € {(0,2),...,(0,5),(1,1)} / Conjecture

Let R : C — C be the ramified cover identified in the solution of
GO (z, w). A
Let 51, ..., Bog be the ramification points

of R and o, be the corresponding local :
Galois involution in the vicinity of 3. > R
Define wo.1(z) = —R(—z)R'(z)dz and for 2 —2g — m < 0 the
wg,m as before. Then:

@ linear loop equation:
wWg,m(Ut, -y Un—1, Z) + wgm(U1, ..., Un—1,0i(2)) = O(Z2—F;)dZ
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Blobbed topological recursion
[e]e]e]e] lele]

Abstract loop equations [Borot-Eynard-Orantin 13]

Proposition (g, m) € {(0,2),...,(0,5),(1,1)} / Conjecture

Let R : C — C be the ramified cover identified in the solution of
GO (z, w). A
Let 51, ..., Bog be the ramification points
of R and o, be the corresponding local

Galois involution in the vicinity of 3. > R

Define wo.1(z) = —R(—z)R'(z)dz and for 2 —2g — m < 0 the
wg,m as before. Then:

@ linear loop equation:
wWg,m(Ut, -y Un—1, Z) + wgm(U1, ..., Un—1,0i(2)) = O(Z2—F;)dZ
©@ quadratic loop equation:
Wg—1,m+1(u1a---a Umn—1,Z,0i(Z))
+ Y w1 (h, 2)wg, b1 (k, 0i(2))

/1@/2:{U1 ..... u, 71}
gi+i—g = O((z—5;)?)(dz)?
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Blobbed topological recursion
0000080

Blobbed topological recursion [Borot-Shadrin 15]

Theorem

Let {wg,m}g>0,m>0 be a family of meromorphic differential forms
which satisfy the abstract loop equations. Then their parts
Pwg,m containing the poles at ramification points are given by

Pzwgm(uhu Um 1,2)
_ z R
q%ﬁ/ wo,1(q) — wo,1(7i(q))
+ > Wg1,l1+1(/17q)wg2,|12|+1(1270i(q))>
hwh= {U17 ,Um 1}
(h 91) (@ 0)#(/2 92)

where B(u, z) = (g‘icgz is the Bergman kernel (for x : C — C).

(Wg17m+1 (U‘], ceey Umf1 ) q7 Ul(q))
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Blobbed topological recursion

000000e

A picture

“1

a(q)

ZjelNg

wgm(21, - Zm) Heywgm(21, -5 2m) P warn(21, s 2m)

wg,m = meromorphic forms on space of compactified complex
lines through the marked points on a genus-g Riemann surface.

@ The universal formula of topological recursion produces
the parts Pwgy m from the entire wy v of smaller degree.

@ The parts Hwg m are additional input at every recursion
step. We are confident to understand them soon.
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Blobbed topological recursion
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A picture

“1

a(q)

ZjelNg

wgm(21, - Zm) Heywgm(21, -5 2m) P warn(21, s 2m)

wg,m = meromorphic forms on space of compactified complex
lines through the marked points on a genus-g Riemann surface.

@ The universal formula of topological recursion produces
the parts Pwgy m from the entire wy v of smaller degree.

@ The parts Hwg m are additional input at every recursion
step. We are confident to understand them soon.

The quartic analogue of the Kontsevich model distinguishes a
unique such form wg m, for every (g, m). What is its significance?
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Discussion
[ Je]

Intersection numbers and integrability

Fact [Borot-Shadrin 15]
@ Forms wgy m Which satisfy BTR encode intersection numbers
on the moduli space Mg , of stable complex curves.

@ These are several copies of the same intersections of
1, k-classes as in the Kontsevich model, coupled via blobs.

These coupled intersections could be interesting or not.
Since the global involution z — —Z is very natural we expect
that blobs about its fixed point z = 0 could be significant.
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Discussion
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Intersection numbers and integrability

Fact [Borot-Shadrin 15]
@ Forms wgy m Which satisfy BTR encode intersection numbers
on the moduli space Mg , of stable complex curves.

@ These are several copies of the same intersections of
1, k-classes as in the Kontsevich model, coupled via blobs.

These coupled intersections could be interesting or not.
Since the global involution z — —Z is very natural we expect
that blobs about its fixed point z = 0 could be significant.

Integrability
@ Understanding better our recursion should give access to
the partition function itself, a function of A and (E;).

@ Is it a 7-function for a Hirota equation, i.e. is it integrable?
[not known in general BTR]
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Discussion
oe

Summary

@ Dyson-Schwinger equations resolve the problem of
overlapping divergences in the Hopf algebra of Feynman
graphs.

@ They are a central research topic for Dirk and for me.
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Summary

@ Dyson-Schwinger equations resolve the problem of
overlapping divergences in the Hopf algebra of Feynman
graphs.

@ They are a central research topic for Dirk and for me.

@ | have tried to convince you that, at least for some QFT toy
models, Dyson-Schwinger equations provide the best
non-perturbative approach. They can lead to a complete
understanding.
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Discussion
oe

Summary

@ Dyson-Schwinger equations resolve the problem of
overlapping divergences in the Hopf algebra of Feynman
graphs.

@ They are a central research topic for Dirk and for me.

@ | have tried to convince you that, at least for some QFT toy
models, Dyson-Schwinger equations provide the best
non-perturbative approach. They can lead to a complete
understanding.

| wish you a lot of pleasure and success with your work on
Dyson-Schwinger equations.

Happy Birthday!
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