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Introduction

In March 1998 (shortly after I started as postdoc at CPT
Marseille), a larger group of us attended a conference on
noncommutative geometry in Vietri sul Mare (Italy).

Alain Connes reported on a ground-breaking result by a
physicist Dirk Kreimer who discovered in q-alg/9707029
that renormalisation in quantum field theory is encoded in
a Hopf algebra.

Remarkably, this Hopf algebra is closely related to another
Hopf algebra which emerges in the computation of the
local index formula for transverse hypoelliptic operators
[Connes-Moscovici 98].

All participants understood that this is a development of
greatest importance. In Marseille we stopped all other
projects and tried to understand the results.
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Overlapping divergences

With Thomas Krajewski we understood the generic cases,
but had problems with overlapping divergences.

Raimar Wulkenhaar (Münster) Solvable Dyson-Schwinger equations 2



Introduction Quartic Kontsevich model Blobbed topological recursion Discussion

Overlapping divergences

With Thomas Krajewski we understood the generic cases,
but had problems with overlapping divergences.
Dirk accepted an invitation to Marseille for the end of May
1998. As a basis for discussion, Thomas and I made our
notes available as arXiv:hep-th/9805098:

On Kreimer’s Hopf algebra of Feynman graphs

T. Krajewskia, R. Wulkenhaarb

Centre de Physique Théorique, CNRS - Luminy, Case 907, 13288 Marseille Cedex 9, France

Received: 9 July 1998 / Revised version: 21 September 1998 / Published online: 19 November 1998

Abstract. We reinvestigate Kreimer’s Hopf algebra structure of perturbative quantum field theories with a
special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a
linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra
operations. We present a formulation where the Hopf algebra operations are directly defined on any type of
divergence. We explain the precise relation to Kreimers Hopf algebra and obtain thereby a characterization
of their primitive elements.
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Dyson-Schwinger equations
Dirk’s e-mail from 13 May 1998
‘It is actually so that the problem of
overlapping divergences can be totally
resolved using the construction as given in
q-alg/9707029, though the paper is succinct
and assumes that the reader digested the use
of the Schwinger Dyson equation as indicated
in Fig.5 in that paper. This needs reading of
section 6 of my Habil Thesis (J.Knot Th.Ram.6
(1997) 479-581).’

I cannot contribute to the Hopf algebra of Feynman graphs and
refer to talks by Walter, Alain, Thomas and others.

But I am happy to contribute to Dyson-Schwinger equations.
It is true that I hadn’t digested them in 1998. In the meantime
they became my strongest tool . . .
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INSPIRE “f a Kreimer and t Dyson”
D. Kreimer, “Dyson-Schwinger equations: Fix-point equations for quantum fields”

O. Krüger and D. Kreimer, “Filtrations in Dyson-Schwinger equations:
Next-to{j}-leading log expansions systematically”

A. Youssef and D. Kreimer, “Resummation of infrared logarithms in de Sitter
space via Dyson-Schwinger equations: the ladder-rainbow approximation”

A. Tanasa and D. Kreimer, “Combinatorial Dyson-Schwinger equations in
noncommutative field theory”

G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, “The QCD beta-function
from global solutions to Dyson-Schwinger equations”

G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, “The QED beta-function
from global solutions to Dyson-Schwinger equations”

D. Kreimer, “Dyson Schwinger equations: From Hopf algebras to number theory”

D. Kreimer and K. Yeats, “An Étude in non-linear Dyson-Schwinger Equations”

C. Bergbauer and D. Kreimer, “Hopf algebras in renormalization theory: Locality
and Dyson-Schwinger equations from Hochschild cohomology”

D. Kreimer, “What is the trouble with Dyson-Schwinger equations?”

D. J. Broadhurst and D. Kreimer, “Exact solutions of Dyson-Schwinger equations
for iterated one loop integrals and propagator coupling duality”
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Dyson-Schwinger equations
. . . are quantum equations of motion for Green functions in a QFT.

Can be graphically understood when collecting Feynman
graph series of the same external structure into blobs:

connected 2-point fn

=
free 2-point fn

+ •
interaction connected 4-point fn

This graphical picture relies on perturbation theory.
However, the equations between blobs can be rigorously
derived without any reference to formal power series.

Dyson-Schwinger equations thus provide a non-perturbative
definition of QFTs — provided we can solve these equations

Difficulty: n-point function needs (m>n)-point function
Can be resolved in QFT on finite-dim. approximations of
noncommutative geometries (matrix models)
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Free Euclidean fields on noncommutative geometries
Let HN be the real vector space of self-adjoint N × N-matrices,
and (E1, . . . ,EN) be (increasing) positive real numbers.

Theorem [Bochner 1933, Schur 1911]
For any inner product 〈 , 〉 on HN there exists a unique
probability measure dµ0 on the dual space H ′N with

exp
(
−1

2
〈M,M〉

)
=

∫
H′N

dµ0(Φ) eiΦ(M) ∀M=(Mkl) ∈ HN .

Choose 〈M,M ′〉E =
1
N

N∑
k ,l=1

MklM ′lk
Ek + El

and corresponding dµE ,0

Defines the free Euclidean scalar field on N-dimensional
approximation of a noncommutative geometry.
(E1, . . . ,EN) is truncated spectrum of the Laplacian.
All moments can be described explicitly.
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The Kontsevich model and its quartic analogue

3 The Kontsevich model dµE ,λ(Φ) =
e−

λN
3 Tr(Φ3)dµE ,0(Φ)∫

H′N

e−
λN
3 Tr(Φ3)dµE ,0(Φ)

Computes intersection numbers of tautological characteristic
classes on the moduli spaceMg,n of stable complex curves
[Kontsevich 92].
It is integrable via a relation (suggested by [Witten 91]) to the
KdV hierarchy. Its moments obey topological recursion.

4 A quartic analogue dµE ,λ(Φ) =
e−

λN
4 Tr(Φ4)dµE ,0(Φ)∫

H′N

e−
λN
4 Tr(Φ4)dµE ,0(Φ)

Although perturbatively far apart, we find very similar
algebraic geometrical structures. Our solutions are exact in λ.
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Equations of motion for quartic Kontsevich model
Fourier transform Z(M) :=

∫
H′N

dµE ,λ(Φ) eiΦ(M) satisfies

1 −N(Ep − Eq)
N∑

k=1

∂2Z(M)

∂Mpk∂Mkq
=

N∑
k=1

(
Mkp

∂Z(M)

∂Mkq
−Mqk

∂Z(M)

∂Mpk

)
2

1
N
∂Z(M)

∂Ep
=

N∑
k=1

∂2Z(M)

∂Mpk∂Mkp
+ Z(M)

∫
H′N

dµE,λ(Φ)
1
N

N∑
k=1

Φpk Φkp

They allow to express
∑N

k=1
Z(M)

∂Mpk∂Mkq
in Dyson-Schwinger

equations by fewer derivatives, i.e. of same or lower order.

Eq. 1 can be used for p 6= q, whereas p = q requires 2 .

Dyson-Schwinger equations complexify to equations for
meromorphic functions in several complex variables in which
we admit multiplicities (E1, . . . ,EN) = (e1, ..., e1︸ ︷︷ ︸

r1

,. . . , ed , ..., ed︸ ︷︷ ︸
rd

)
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Dyson-Schwinger equation for planar 2-point function
For p 6= q, expand N

∫
H′N

dµE ,λ(Φ) ΦpqΦqp =:
∑∞

g=0 N−2gZG(g)
|pq|.

Then G(g)
|pq| = G(g)(ζ, η)

∣∣
ζ=ep,η=eq

with initial equation [Grosse-W 09](
µ2

bare + ξ + η +
λ

N

d∑
k=1

rkZG(0)(ζ,ek )
)

ZG(0)(ζ, η)

= 1 +
λ

N

d∑
k=1

rk
ZG(0)(ek , η)− ZG(0)(ζ, η)

ek − ζ
Z , µbare: renormalisation parameters

In [Panzer-W 18] we solved this equation for rk = 1, ek = k
N

in large-N limit, corresponding to λΦ4 on 2D-Moyal space.
Key step was to resum perturbative results (obtained with
HyperInt) for an auxiliary function to Lambert-W.
In [Grosse-Hock-W 19] we understood the general solution.
Find 2F1 for 4D Moyal. See Alex Hock’s talk at 15h15.
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Solution for finite matrices
Theorem [Grosse-Hock-W 19, Schürmann-W 19]
Let (εk , %k ) be implicitly defined by ek = R(εk ), rk = R′(εk )%k

for R(z) = z − λ

N

d∑
k=1

%k

z + εk
.

Then G(0)(ζ, η) = G(0)(z,w) for R(z) = ζ, R(w) = η and

G(0)(z,w) =

1− λ

N

d∑
k=1

rk

d∏
j=1

R(w)− R(−ε̂k
j)

R(w)− R(εj)

(R(z)− R(εk ))(R(εk )− R(−w))

R(w)− R(−z)

where u ∈ {z, ẑ1, . . . , ẑd} are all solutions of R(u) = R(z).
(The symmetry G(0)(z,w)=G(0)(w , z) is automatic)

Thus, planar 2-point function solved by the composition of a
rational function G(0) with inverse of another rational function R.
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Remarks
We succeeded in solving a non-linear (D-S) equation.

First (with Erik) by brute force and luck in a special case,
later by the beauty of complex analysis.
There must be a hidden algebraic structure which made
this possible. We are confident to find it in the affine
equations [with Johannes Branahl & Alex Hock].

Message to retain

Original model had spectrum (e1, . . . , e1︸ ︷︷ ︸
r1

,. . . , ed , . . . , ed︸ ︷︷ ︸
rd

), coupling λ.

But in these variables the structure is completely obscure!

The structure emerges when transforming via R−1, with
R(z) = z − λ

N
∑d

k=1
%k

z+εk

Q: Is something analogous true in familar QFT, i.e. can we
possiby uncover some deep structure after transformation
(to discover) to more appropriate variables?
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The affine equations

All other correlations functions satisfy affine equations.
They are always solvable, but no path seemed to exist.
Alex Hock: need first to look at auxiliary functions!

Recall that dµE ,λ depends on given family E1, . . . ,EN . Introduce

∞∑
g=0

N2−2g−nΩ
(g)
a1,...,an :=

∂n−1
(
N

N∑
k=1

∫
H′N

dµE,λ(Φ)Φa1k Φka1

)
∂Ea2 · · · ∂Ean

+
δn,2

(Ea1−Ea2 )2

We derive and solve Dyson-Schwinger equations for
(meromorphic continuation of) Ω(g).
This needs R and G(0), but no prior knowledge of its
E-derivatives and of 2-point functions of higher topology.

Unexpected result: The Ω(g) translate to differential forms
which obey blobbed topological recursion [Borot-Shadrin 15]!
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Solution procedure [Branahl-Hock-W 20]

Three types of functions involved:
Ω

(g)
m (u1, ...,um) objects of BTR, most difficult to compute
T (g)(u1, ...,um‖z,w |) auxiliary functions, easy to compute
T (g)(u1, . . . ,um‖z|w |) auxiliary functions, easy to compute

Knowing these, it is easy
to (recursively) evaluate
any moment of dµE,λ

Ω
(0)
1 (z)↔ T (0)(∅‖z,w |)

= G(0)(z,w)

χ = 1

Ω
(0)
2 (u1, z)→ T (0)(u1‖z,w |)

T (0)(∅‖z|w |)
χ = 0

Ω
(0)
3 (u1,u2, z)→ T (0)(u1,u2‖z,w |)

T (0)(u1‖z|w |)
χ = −1

. . .

Ω
(1)
1 (z)→ T (1)(∅‖z,w |)

χ = −1

Ω
(1)
2 (u1, z)→ T (1)(u1‖z,w |)

T (1)(∅‖z|w |)
χ = −2

. . .

m + b
g

1

0

2

1

3

Raimar Wulkenhaar (Münster) Solvable Dyson-Schwinger equations 13
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Results

Proposition

Ω
(0)
2 (u, z) =

1
R′(u)R′(z)

( 1
(u − z)2 +

1
(u + z)2

)
One recognises the Bergman kernel of topological recursion!

Suggests ωg,m(z1, ..., zm) = λ2−2g−mΩ
(g)
m (z1, ..., zm)

m∏
k=1

dR(zi)

Proposition (g = 0) / Conjecture (g > 0)

z 7→ ωg,m(u1, ...,um−1, z) is meromorphic with poles at
z ∈ {0,−u1, ...,−um−1, β1, .., β2d} where R′(βi) = 0
(ramification points)

Gives residue formula for ωg,m into which solutions of the
Dyson-Schwinger equations for T (g)(u1, ...,um‖z,w |) and
T (g)(u1, . . . ,um‖z|w |) are inserted. Many cancellations arise.
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Solution at low −χ = 2g + m − 2

ω0,3(u1,u2, z) = −
2d∑
i=1

( 1
(u1−βi )2 + 1

(u1+βi )2

)( 1
(u2−βi )2 + 1

(u2+βi )2

)
du1 du2 dz

R′(−βi )R′′(βi )(z − βi )2

+
[
du1

(ω0,2(u2,u1)

(dR)(u1)

dz
R′(−u1)(z + u1)2

)
+ u1 ↔ u2

]
ω1,1(z) =

2d∑
i=1

dz
R′(−βi )R′′(βi )

{
− 1

8(z − βi )4 +
R′′′(βi )

24R′′(βi )(z − βi )3

+

R′′′′(βi )
48R′′(βi )

− (R′′′(βi ))2

48(R′′(βi ))2 + R′′(−βi )R′′′(βi )
48R′(−βi )R′′(βi )

+ (R′′(−βi ))2

48(R′(−βi ))2 − 1
8β2

i

(z − βi )2

}
− dz

8(R′(0))2z3 +
R′′(0)dz

16(R′(0))3z2

Reflect (convergent!) summation of infinite series of Feynman
(ribbon) graphs of fixed external structure and topology.
The λ-series results by solving the system

R(εk ) = ek , R′(εk )%k = rk , R′(βi) = 0 and z = R−1(ζ)
via Taylor approach to the implicit function theorem.
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Abstract loop equations [Borot-Eynard-Orantin 13]

Proposition (g,m) ∈ {(0,2), . . . , (0,5), (1,1)} / Conjecture

Let R : Ĉ→ Ĉ be the ramified cover identified in the solution of
G(0)(z,w).
Let β1, ..., β2d be the ramification points
of R and σi be the corresponding local
Galois involution in the vicinity of βi .

-

6
R

βiz σi (z)
..
..

..

..

..

..

..

..

..................................

..

..

..

..

..

..

..

Define ω0,1(z) = −R(−z)R′(z)dz and for 2− 2g −m ≤ 0 the
ωg,m as before. Then:

1 linear loop equation:
ωg,m(u1, ...,um−1, z) + ωg,m(u1, ...,um−1, σi(z)) = O(z−βi)dz

2 quadratic loop equation:
ωg−1,m+1(u1, ...,um−1, z, σi(z))

+
∑

I1]I2={u1,...,um−1}
g1+g2=g

ωg1,|I1|+1(I1, z)ωg2,|I2|+1(I2, σi(z))

= O((z−βi)
2)(dz)2
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Blobbed topological recursion [Borot-Shadrin 15]

Theorem
Let {ωg,m}g≥0,m>0 be a family of meromorphic differential forms
which satisfy the abstract loop equations. Then their parts
Pωg,m containing the poles at ramification points are given by

Pzωg,m(u1, ...,um−1, z)

=
2d∑
i=1

Res
q→βi

1
2

∫ q′=q
q′=σ(q) B(z,q′)

ω0,1(q)− ω0,1(σi(q))

(
ωg−1,m+1(u1, ...,um−1,q, σi(q))

+
∑

I1]I2={u1,...,um−1}
g1+g2=g

(I1,g1)6=(∅,0)6=(I2,g2)

ωg1,|I1|+1(I1,q)ωg2,|I2|+1(I2, σi(q))

)

where B(u, z) = du dz
(u−z)2 is the Bergman kernel (for x : Ĉ→ Ĉ).

Hzωg,m(..., z) := ωg,m(..., z)− Pzωg,m(..., z) is made of blobs.
Raimar Wulkenhaar (Münster) Solvable Dyson-Schwinger equations 17
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A picture

=

z1 z1 z1
...

+
+

z1

K

q

σ(q)

... ...
zm zm zm

K

q

σ(q)

zj, j ∈ J

zj, j ∈ I \ J
ωg,m(z1, ..., zm) Hz1ωg,m(z1, ..., zm) Pz1ωg,m(z1, ..., zm)

ωg,m = meromorphic forms on space of compactified complex
lines through the marked points on a genus-g Riemann surface.

The universal formula of topological recursion produces
the parts Pωg,m from the entire ωg′,m′ of smaller degree.
The parts Hωg,m are additional input at every recursion
step. We are confident to understand them soon.

The quartic analogue of the Kontsevich model distinguishes a
unique such form ωg,m for every (g,m). What is its significance?
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Intersection numbers and integrability

Fact [Borot-Shadrin 15]
Forms ωg,m which satisfy BTR encode intersection numbers
on the moduli spaceMg,m of stable complex curves.
These are several copies of the same intersections of
ψ, κ-classes as in the Kontsevich model, coupled via blobs.

These coupled intersections could be interesting or not.
Since the global involution z → −z is very natural we expect
that blobs about its fixed point z = 0 could be significant.

Integrability
Understanding better our recursion should give access to
the partition function itself, a function of λ and (Ei).
Is it a τ -function for a Hirota equation, i.e. is it integrable?
[not known in general BTR]
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Summary

Dyson-Schwinger equations resolve the problem of
overlapping divergences in the Hopf algebra of Feynman
graphs.
They are a central research topic for Dirk and for me.

I have tried to convince you that, at least for some QFT toy
models, Dyson-Schwinger equations provide the best
non-perturbative approach. They can lead to a complete
understanding.

@Dirk
I wish you a lot of pleasure and success with your work on
Dyson-Schwinger equations.

Happy Birthday!
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