On the Enumerative Structures in QFT

Ali Assem Mahmoud

Mathematics and Statistics University of Ottawa

Outline

- Chord diagrams, and their asymptotics.
- Applications in Quenched QED and Yukawa theory.

Chord Diagrams

- The generating series for chord diagrams, counted by the number of chords, is denoted by D(x). Note that there are (2n-1)!! chord diagrams on n chords.
- C(x) will denote the generating series for **connected chord diagrams**, and starts as $C(x) = x + x^2 + 4x^3 + 27x^4 + 248x^5 + \cdots$.
- If D(x) is the generating series of all rooted chord diagrams then one can show that $D(x) = 1 + C(xD(x)^2)$.
- Another useful identity is that

$$2C(x)C'(x) = C(x)(1 + C(x)) - x.$$

• Below is a chord diagram and its linear representation

2-Connected Chord Diagrams

- **Definition:** A chord diagram on n chords is k-connected if **no** set S of **consecutive** endpoints with size |S| < 2n k is paired with **less** than k endpoints out of S.
- The generating series for **2-connected** chord diagrams will be denoted here by $C_{\geq 2}(x)$, whereas the generating series of **connectivity-1** diagrams will be denoted by $C_1(x)$. In particular, $C(x) = C_1(x) + C_{\geq 2}(x)$.
- The first terms read as $C_{>2}(x) = x^2 + x^3 + 7x^4 + 63x^5 + 729x^6 + \cdots$
- The diagram below is **2-connected** but not **3-connected**. A **cut**, and a **reason for connectivity-2** are illustrated.

• In [Kleit], D. Kleitman gives an argument that for large n, the **proportion** of k-connected chord diagrams approaches e^{-k} .

• As mentioned earlier, in **[MBor1]** it is shown that $\left(\mathscr{A}_{\frac{1}{2}}^2C\right)(x) = \frac{x}{\sqrt{2\pi}C(x)} e^{-\frac{1}{2x}(2C(x)+C(x)^2)}$. This is then used to get

asymptotic information for connected chord diagrams. The e^{-1} from Kleitman's result stands for the first term in the obtained asymptotic expansion.

• It is tempting to try doing the same thing for higher connectivity chord diagrams, we will focus on **2-connected** chord diagrams. The major **difficulty** lies in obtaining a functional equation that relates for example 2-connected chord diagrams to connected chord diagrams.

The situation is resolved by the next result ...

• **Proposition 2.2:** The following functional relation holds for connected and 2-connected chord diagrams:

$$C = \frac{C^2}{x} - C_{\geq 2} \left(\frac{C^2}{x}\right).$$

Factorially Divergent Power Series

• Notation and definition [MBor1]: For real numbers α and β with $\alpha>0$, $\mathbb{R}[[x]]^{\alpha}_{\beta}$ will denote the set of all formal power series f for which there exists a sequence $(c_k^f)_{k\in\mathbb{N}}$ of real numbers such that

$$f_n = \sum_{k=0}^{R-1} c_k^f \Gamma_\beta^\alpha(n-k) + \mathcal{O}(\Gamma_\beta^\alpha(n-R)), \text{ for all } R \in \mathbb{N}_0.$$

• The modified gamma function above is defined to be $\Gamma^{\alpha}_{\beta}(n) := \alpha^{n+\beta}\Gamma(n+\beta)$, where $\Gamma(z) = \int_0^\infty x^{z-1}e^{-x}dx$ for $\mathrm{Re}(z) > 0$ is the standard gamma function.

- Excluding the "factorial divergence" captured by the gamma functions, we will focus on the corresponding coefficients (c_k) .
- The idea in [MBor1] was to encode this characteristic information in the form of a power series via the map

$$(\mathscr{A}^{\alpha}_{\beta}f)(x) = \sum_{k=0}^{\infty} c_k^f x^k,$$

defined over $\mathbb{R}[[x]]^{\alpha}_{\beta}$. Then it is shown in **[MBor1]** that $\mathbb{R}[[x]]^{\alpha}_{\beta}$ is a **subring** of $\mathbb{R}[[x]]$ and that the map $\mathscr{A}^{\alpha}_{\beta}$ is a **derivation**.

• Such maps are referred to as **alien derivatives** in the context of resurgence theory.

• In **[MBor1]** it is shown that $\left(\mathscr{A}_{\frac{1}{2}}^2C\right)(x)=\frac{x}{\sqrt{2\pi}C(x)}\,e^{-\frac{1}{2x}(2C(x)+C(x)^2)}$. This is then used to get the **asymptotic** information of connected chord diagrams.

Asymptotic Analysis

- By the properties of factorially divergent power series and alien derivatives we can verify that $C_{\geq 2}(x) \in \mathbb{R}[[x]]_{\frac{1}{2}}^2 \subset \mathbb{R}[[x]]_{\frac{3}{2}}^2$.
- Applying the alien derivative $\mathcal{A}_{\frac{3}{2}}^2$ to the functional equation in **Proposition 2.2**, we eventually get

$$\left(\mathscr{A}_{\frac{1}{2}}^{2}C_{\geq 2}\right)(x) = \frac{1}{\sqrt{2\pi}} \cdot \frac{x^{2}}{\left(\frac{C_{\geq 2}}{(1 - C_{\geq 2}/x)}\right)} \cdot e^{\frac{-1}{2x}\left[\left(\frac{1}{(1 - C_{\geq 2}/x)} + x\right)^{2} - 1\right]}.$$

• If we set $S(x)=1/\Big(1-\frac{C_{\geq 2}(x)}{x}\Big)$, the series of sequences of 2-connected chord diagrams counted by one less chord, then we can write

$$\left(\mathscr{A}_{\frac{1}{2}}^{2}C_{\geq 2}\right)(x) = \frac{1}{\sqrt{2\pi}} \cdot \frac{x^{2}}{C_{\geq 2}S} \cdot e^{\frac{-1}{2x}\left[(S+x)^{2}-1\right]}.$$

• By the definition of the map $\mathcal{A}_{\frac{1}{2}}^2$ one can work out the details to find that

$$(C_{\geq 2})_n = \sum_{k=0}^{R-1} [x^k] \left(\mathcal{A}_{\frac{1}{2}}^2 C_{\geq 2} \right) (x) \cdot \Gamma_{\frac{1}{2}}^2 (n-k) + \mathcal{O}(\Gamma_{\frac{1}{2}}^2 (n-R))$$

$$= \sqrt{2\pi} \sum_{k=0}^{R-1} [x^k] \left(\mathcal{A}_{\frac{1}{2}}^2 C_{\geq 2} \right) (x) \cdot (2(n-k)-1)!! + \mathcal{O}((2(n-R)-1)!!)$$

$$= e^{-2} (2n-1)!! \left(1 - \frac{6}{2n-1} - \frac{4}{(2n-3)(2n-1)} - \frac{218}{3} \frac{1}{(2n-5)(2n-3)(2n-1)} - \frac{890}{(2n-7)(2n-5)(2n-3)(2n-1)} - \frac{196838}{15} \frac{1}{(2n-9)\cdots(2n-1)} - \cdots \right).$$

- The result by Kleitman [Kleit] corresponds to the first term in this expansion. By the above approach, any precision can be achieved and an arbitrary number of terms can be produced.
- This also shows that a randomly chosen chord diagram on *n* chords is 2-connected with a probability of

chords is 2-connected with a probability of
$$\frac{1}{e^2} \left(1 - \frac{3}{n} \right) + \mathcal{O}(1/n^2).$$

Zero-dimensional QQED and Yukawa Theories

Yukawa Theory

- We will be interested in interpreting the Yukawa theory diagrams in terms of connected chord diagrams.
- In [MBor3], M. Borinsky calculated the observables in the table below and studied their asymptotics using singularity analysis.

		\hbar^0	\hbar^1	\hbar^2	\hbar^3	\hbar^4	\hbar^5	\hbar^6
1	$\left \left. \partial_{\phi_c}^0 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\mathrm{Yuk}} \right _{\phi_c = \psi_c = 0} \right $	0	0	1/2	1	9/2	31	283
2	$\left. \partial_{\phi_c}^1 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\text{Yuk}} \right _{\phi_c = \psi_c = 0}$	0	1	1	4	27	248	2830
3	$\left \left. \partial_{\phi_c}^2 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\mathrm{Yuk}} \right _{\phi_c = \psi_c = 0} \right $	-1	1	3	20	189	2232	31130
4	$\left. \partial_{\phi_c}^0 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^1 G^{\text{Yuk}} \right _{\phi_c = \psi_c = 0}$	-1	1	3	20	189	2232	31130
5	$\left \partial_{\phi_c}^1 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^1 G^{\text{Yuk}} \right _{\phi_c = \psi_c = 0}$	1	1	9	100	1323	20088	342430

. For example $[\hbar^4]\partial_{\phi_c}^1(\partial_{\psi_c}\partial_{\bar{\psi}_c})^0G^{\mathsf{Yuk}}\Big|_{\substack{\phi_c=\psi_c=0}}$ counts **27** 1PI

Yukawa **tadpole** graphs with **loop number** 4. The fact that this agrees with **connected chord** diagrams with 4 **chords** is no coincidence as we shall see. Below are the 27 tadpoles:

• Theorem 3.2: The number of Yukawa 1PI tadpole graphs with loop number n is equal to the number of connected chord diagrams on n chords. In other words

$$[\hbar^n] \partial_{\phi_c}^1 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\mathsf{Yuk}} \bigg|_{\substack{\phi_c = \psi_c = 0}} = C_n$$

• Theorem 3.2: The number of Yukawa 1PI tadpole graphs with loop number n is equal to the number of connected chord diagrams on n chords. In other words

$$[\hbar^n] \partial_{\phi_c}^1 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\mathsf{Yuk}} \bigg|_{\phi_c = \psi_c = 0} = C_n.$$

Sketch of proof:

- We will show that the generating series T(x) for the class \mathcal{U}_{10} of **1PI Yukawa theory tadpoles**, counted by the **loop number** is equal to C(x) by showing that $2xT(x)T'(x) = T(x)^2 + T(x) x$, the **recurrence** for connected chord diagrams.
- The first step is to set a standard for the graphs so that we no longer worry about the direction of the fermion loops: we assume that all fermion loops are counter-clockwise, compensated with crossings of boson edges.

Two tadpoles may differ due to the relative orientation of fermion loops.

- Then we can prove that, in these graphs, the number of independent cycles is the **same** as the number of all boson edges. So, our generating series T(x) now **counts** with the number of **boson** edges.
- We devise a **reversible** algorithm to get a bijection $\Psi: (\mathcal{U}_{10} \times \mathcal{U}_{10}^{\bullet}) \longrightarrow (\mathcal{U}_{10} \times \mathcal{U}_{10}) \bigcup (\mathcal{U}_{10} \{\mathcal{X}\})$, which is what we need to satisfy the recurrence.
- We will use the following notation:

Algorithm Ψ : $(\mathcal{U}_{10} \times \mathcal{U}_{10}^{\bullet}) \longrightarrow (\mathcal{U}_{10} \times \mathcal{U}_{10}) \bigcup (\mathcal{U}_{10} - \{\mathcal{X}\})$

Input: $(T_1, (T_2, d)) \in (\mathcal{U}_{10} \times \mathcal{U}_{10}^{\bullet})$, with notation as described above.

- (a) If $d = u_2$ just **return** (T_1, T_2) .
- (b) If $d \neq u_2$, do the following:

Move (counter-clockwise) along Loop(v_1) in T_1 , determine Fermion(v_1) and let w be the first vertex met on the loop. Note that w may be v_1 itself.

- 1. If $w = v_1$, i.e. T_1 contains no internal boson edges, **return** the tadpole T obtained as follows:
 - (i) Insert vertex v_1 together with the leg r_1 into Fermion(d) in T_2 by making a subdivision of Fermion(d).
 - (ii) Insert u_2 into the new Fermion (v_1) on Loop(d).
- 2. If $w \neq v_1$, **return** the tadpole T obtained as follows:
 - (i) Insert u_2 into Fermion (v_1) in T_1 .
 - (ii) Detach w from Loop (v_1) and insert it into Fermion(d) in T_2 .

• Examples:

• This algorithm is **reversible**, why? The idea involves repeating a search for bridges in the component not containing the root till we determine d.

• Theorem 3.3: A bijection $\Lambda:\mathcal{U}_{10}\longrightarrow\mathcal{C}$ can be defined recursively as follows: $\Lambda(T)=\nabla^{-1}\big(\Lambda(T_1),(\Lambda(T_2),\psi(d))\big),$ where $\Psi^{-1}(T)=(T_1,(T_2,d)).$

• The function $\psi:V(T)\to\mathbb{N}$ is an order defined to simulate the interval linear ordering for chord diagrams in a way that respects root share decomposition. Here is an example:

- As a consequence of the previous, it also follows that the green function for **vacuum** diagrams satisfies $[\hbar^{n+1}]\partial_{\phi_c}^0(\partial_{\psi_c}\partial_{\bar{\psi}_c})^0G^{\text{Yuk}}(\hbar,\phi_c,\psi_c)\Big|_{\phi_c=\psi_c=0}=[x^n]\frac{C(x)^2}{2x}$.
- Also for the graphs with 2 external bosons

$$[\hbar^n] \partial_{\phi_c}^2 (\partial_{\psi_c} \partial_{\bar{\psi}_c})^0 G^{\mathsf{Yuk}}(\hbar, \phi_c, \psi_c) \bigg|_{\phi_c = \psi_c = 0} = [x^n] \left. \frac{C(x)^2}{x} \left[\frac{C_{\geq 2}(t)}{t^2} \right|_{t = C(x)^2/x} \right], \text{ or equivalently}$$

$$U_{20}(x) = C(x)^{2} \left[\frac{C_{\geq 2}(t)}{t^{2}} \right|_{t=C(x)^{2}/x} .$$

Yukawa Graphs $\partial_{\phi_c}^1(\partial_{\psi_c}\partial_{\bar{\psi}_c})^1G^{\text{Yuk}}(\hbar,\phi_c,\psi_c)\Big|_{\phi_c=\psi_c=0}$

• **Theorem 3.4:** Let \mathcal{U}_{11} be the class of Yukawa 1PI graphs generated by $\partial_{\phi_c}^1(\partial_{\psi_c}\partial_{\bar{\psi}_c})^1G^{\text{Yuk}}(\hbar,\phi_c,\psi_c)\Big|_{\substack{\phi_c=\psi_c=0}}$ and let $U_{11}(x)$ be their generating series, counted by the number of all boson edges. Then $C_{\geq 2}(t)$

Yukawa Graphs $\partial_{\phi_c}^1(\partial_{\psi_c}\partial_{\bar{\psi}_c})^1G^{\text{Yuk}}(\hbar,\phi_c,\psi_c)\Big|_{\phi_c=\psi_c=0}$

Note also that the following is not considered as it is not 1PI:

 Again one can prove that the loop number for these graphs is equal to the number of internal boson edges.

Yukawa Graphs $\partial_{\phi_c}^0(\partial_{\psi_c}\partial_{\bar{\psi}_c})^1G^{\mathsf{Yuk}}(\hbar,\phi_c,\psi_c)\Big|_{\phi_c=\psi_c=0}$

• Theorem 3.5: A Yukawa 1PI tadpole graph can be decomposed as a boson leg together with a list of graphs from \mathcal{U}_{01} . In particular, on the level of generating functions we will have $T(x) = \frac{x}{1 - U_{01}(x)}$. Then

$$T(x) = \frac{x}{1 - U_{01}(x)}. \quad \text{Then}$$

$$U_{01}(x) = 2xC'(x) - C(x) = C(x)^2 \left[\frac{C_{\geq 2}(t)}{t^2} \bigg|_{t = C(x)^2/x} \right] = U_{20}(x).$$

• Theorem 3.1: The generating series $z_{\phi_c|\psi_c|^2}(\hbar_{\text{ren}})$ and $z_{|\psi_c|^2}(\hbar_{\text{ren}})$ count 2-connected chord diagrams. More precisely, $[\hbar_{\text{ren}}^{n-1}] \; z_{\phi_c|\psi_c|^2}(\hbar_{\text{ren}}) = [\hbar_{\text{ren}}^n] \; z_{|\psi_c|^2}(\hbar_{\text{ren}}) = [x^n] \; C_{\geq 2}(x)$.

Sketch of proof:

- First note that, by the previous slides, $z_{\phi_c|\psi_c|^2}(\hbar_{\rm ren})$ counts 1PI **primitive** QED graphs with **no** fermion loops. The power of $\hbar_{\rm ren}$ is the loop number.
- One shows that the loop number for such graphs is the same as the number of internal photon edges.
- Finally, we will need to prove that subdivergences exactly correspond to reasons for connectivity-1.

• By obtaining the previous relations, we can readily get the asymptotic information using what we know about chord diagrams.

References

- [MBor1] M. Borinsky, Generating asymptotics for factorially divergent sequences, 2016, arXiv preprint arXiv:1603.01236.
- [MBor2] M. Borinsky, *Algebraic lattices in QFT renormalization*, 2016, Letters in Mathematical Physics, Volume 106, Issue 7, pp 879-911.
- [MBor3] M. Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, 2017, arXiv: 1703.00840v2.
- [Frab] A. Frabetti and D. Perrot, *Renormalization Hopf algebras and combinatorial groups*, 2018, arXiv:0805.4385v2.
- [Kleit] D. Kleitman, *Proportions of irreducible diagrams*, Studies in Applied Mathematics 49.3, pp. 297–299, 1970.
- [Krei] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, 1998", Adv. Theor. Math. Phys. 2(2), 303-334.
- [DJBr] D. J. Broadhurst, Four-Loop Dyson Schwinger-Johnson anatomy, 1999, arXiv:hep-ph/9909336v1

- [JeGe] J.-L. Gervais and A. Jevicki, *Point canonical transformations in the path integral*, Nuclear Physics B, Volume 110, Issue 1, 12 July 1976, Pages 93-112.
- [KrVe] D. Kreimer and Andrea Velenich, *Field diffeomorphisms and the algebraic structure of perturbative expansions*, 2013, Lett. Math. Phys., 103:171–181.
- [KrKa] D. Kreimer and Karen Yeats, *Diffeomorphisms of quantum fields*, 2017, Math. Phys. Anal. Geom.
- [Cvij] D. Cvijovic, New identities for the partial Bell polynomials. Appl. Math. Lett. 24(9):1544-1547.

Thank you!

Quenched QED

- We will calculate the asymptotics of $z_{\phi_c|\psi_c|^2}(\hbar_{ren})$ in quenched **QED** using the results we have about **2-connected** chord diagrams and without any reference to singularity analysis.
- The partition function for QED-type theories is generally of the

form
$$Z(\hbar, j, \eta) = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar} \left(-\frac{x^2}{2} + jx + \frac{|\eta|^2}{1-x} + \hbar \log \frac{1}{1-x}\right)} dx.$$

Quenched QED is an approximation of QED where fermion **loops** are **not** present. So the term $\hbar \log \frac{1}{1-x}$ does not appear in the partition function.

• The theory has a unique vertex type, which is cubic: ~~~

- In this case the partition function becomes an ordinary integral.
- The amplitude for every diagram is 1. The Feynman rules are represented by the character ϕ that sends $\Gamma \mapsto \hbar^{\ell(\Gamma)}$.
- The benefit of this model lies in the interpretation of observables as combinatorial generating functions, and has been extensively studied since the 1950's.

• We will set (where the sign is for edge-type residues):
$$X^r = 1 \pm \sum_{\substack{1 \text{PI graphs } \Gamma \\ \text{with residue } r}} \frac{1}{\text{Sym }\Gamma} \Gamma.$$

• It can be shown that (see [MBor3]), in this case, the counter-terms $z_r := S^{\phi}\{X^r\}$ satisfy

$$z_r(\hbar_{\text{ren}}) = \frac{1}{g^r(\hbar(\hbar_{\text{ren}}))}$$
,

where $g^r(\hbar)$ is the proper green function for residue r, and \hbar_{ren} is called the **renormalized expansion parameter**, which we need not define here.

• Theorem ([MBor2]): In a theory with a cubic vertex-type, the numeric coefficients of $z_r(\hbar_{ren})$ count the number of **primitive** diagrams if r is vertex-type.

• As is customary in QFT, to move to the quantum effective action G, which generates 1PI diagrams, one takes the Legendre transform of the free energy $W(\hbar, j)$:

$$G(\hbar, \varphi_c) := W - j\varphi_c,$$

where $\varphi_c := \partial_j W$. The coefficients $[\varphi_c^n]G$ are the (proper) Green functions.

- The order of the derivative $\left.\partial_{\varphi_c}^n G\right|_{\varphi_c=0}=[\varphi_c^n]G$ determines the number of external legs.
- If **residue** r is the k external legs residue, then $g^r = \partial_{\varphi_c}^k G |_{\varphi_c = 0}$.