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Outline 

• Chord diagrams, and their asymptotics.


• Applications in Quenched QED and Yukawa 
theory.



Chord Diagrams



• The generating series for chord diagrams, counted by the number of chords, is 
denoted by . Note that there are  chord diagrams on  chords.


•  will denote the generating series for connected chord diagrams, and starts as 
.


• If  is the generating series of all rooted chord diagrams then one can show that  
                   .


• Another useful identity is that  
                    

• Below is a chord diagram and its linear representation

D(x) (2n − 1)!! n

C(x)
C(x) = x + x2 + 4x3 + 27x4 + 248x5 + ⋯

D(x)
D(x) = 1 + C(xD(x)2)

2C(x)C′ (x) = C(x)(1 + C(x)) − x .



2-Connected Chord Diagrams



• Definition: A chord diagram on  chords is -connected if  no set  of 
consecutive endpoints with size   is paired with less than  
endpoints out of .


• The generating series for 2-connected chord diagrams will be denoted here 
by , whereas the generating series of connectivity-1 diagrams will be 
denoted by . In particular, .


• The first terms read as .


• The diagram below is 2-connected but not 3-connected. A cut, and a 
reason for connectivity-2 are illustrated.

n k S
|S | < 2n − k k

S

C≥2(x)
C1(x) C(x) = C1(x) + C≥2(x)

C≥2(x) = x2 + x3 + 7x4 + 63x5 + 729x6 + ⋯



• In [Kleit], D. Kleitman gives an argument that for large , the 
proportion of -connected chord diagrams approaches .

n
k e−k



• As mentioned earlier, in [MBor1] it is shown that 
. This is then used to get 

asymptotic information for connected chord diagrams. The  from 
Kleitman’s result stands for the first term in the obtained asymptotic 
expansion.


• It is tempting to try doing the same thing for higher connectivity chord 
diagrams, we will focus on 2-connected chord diagrams. The major 
difficulty lies in obtaining a functional equation that relates for example 
2-connected chord diagrams to connected chord diagrams.


• The situation is resolved by the next result ... 

(𝒜2
1
2
C)(x) =

x

2πC(x)
e− 1

2x (2C(x)+C(x)2)

e−1



• Proposition 2.2: The following functional relation holds for 
connected and 2-connected chord diagrams: 

                                 C =
C2

x
− C≥2 ( C2

x ) .



Factorially Divergent Power Series



•  Notation and definition [MBor1]: For real numbers  and  with ,  
  will denote the set of all formal power series  for which there exists a 

sequence  of real numbers such that   

 .


• The modified gamma function above is defined to be , 
where  for  is the standard gamma function.

α β α > 0
ℝ[[x]]α

β f
(c f

k )k∈ℕ

fn =
R−1

∑
k=0

c f
k Γα

β(n − k) + 𝒪(Γα
β(n − R)), for all R ∈ ℕ0

Γα
β(n) := αn+βΓ(n + β)

Γ(z) = ∫ ∞
0

xz−1e−xdx Re(z) > 0



• Excluding the “factorial divergence” captured by the gamma functions, we 
will focus on the corresponding coefficients . 


• The idea in [MBor1] was to encode this characteristic information in the 
form of a power series via the map                                         

                         ,  

defined over . Then it is shown in [MBor1] that   is a subring 
of  and that the map  is a derivation. 

• Such maps are referred to as alien derivatives in the context of resurgence 
theory.

(ck)

(𝒜α
β f )(x) =

∞

∑
k=0

c f
k xk

ℝ[[x]]α
β ℝ[[x]]α

β
ℝ[[x]] 𝒜α

β



• In [MBor1] it is shown that  . This is 

then used to get the asymptotic information of connected chord diagrams.

(𝒜2
1
2
C)(x) =

x

2πC(x)
e− 1

2x (2C(x)+C(x)2)



Asymptotic Analysis 



• By the properties of factorially divergent power series and alien derivatives 
we can verify that .


•  Applying the alien derivative  to the functional equation in Proposition 
2.2, we eventually get 
 

 .


• If we set  ,  the series of sequences of 2-connected chord 

diagrams counted by one less chord, then we can write 
 

                 .

C≥2(x) ∈ ℝ[[x]]2
1
2

⊂ ℝ[[x]]2
3
2

𝒜2
3
2

(𝒜2
1
2
C≥2)(x) =

1

2π
⋅

x2

(
C≥2

(1 − C≥2/x) )
⋅ e

−1
2x [( 1

(1 − C≥2/x) + x)
2

− 1]

S(x) = 1/(1−
C≥2(x)

x )

(𝒜2
1
2
C≥2)(x) =

1

2π
⋅

x2

C≥2S
⋅ e

−1
2x [(S + x)2 − 1]



• By the definition of the map  one can work out the 
details to find that 
 

𝒜2
1
2

(C≥2)n =
R−1

∑
k=0

[xk](𝒜2
1
2
C≥2)(x) ⋅ Γ2

1
2
(n − k) + 𝒪(Γ2

1
2
(n − R))

= 2π
R−1

∑
k=0

[xk](𝒜2
1
2
C≥2)(x) ⋅ (2(n − k) − 1)!! + 𝒪((2(n − R) − 1)!!)

= e−2(2n − 1)!!(1 −
6

2n − 1
−

4
(2n − 3)(2n − 1)

−
218

3
1

(2n − 5)(2n − 3)(2n − 1)
−

−
890

(2n − 7)(2n − 5)(2n − 3)(2n − 1)
−

196838
15

1
(2n − 9)⋯(2n − 1)

− ⋯) .



• The result by Kleitman [Kleit] corresponds to the first term in 
this expansion. By the above approach, any precision can be 
achieved and an arbitrary number of terms can be produced. 


• This also shows that a randomly chosen chord diagram on  
chords is 2-connected with a probability of 

                             

n

1
e2 (1 −

3
n ) + 𝒪(1/n2) .



Zero-dimensional QQED and Yukawa 
Theories



Yukawa Theory

• We will be interested in interpreting the Yukawa theory 
diagrams in terms of connected chord diagrams. 


• In [MBor3], M. Borinsky calculated the observables in the 
table below and studied their asymptotics using singularity 
analysis.



• For example counts 27 1PI 

Yukawa tadpole graphs with loop number 4. The fact that 
this agrees with connected chord diagrams with 4 chords is 
no coincidence as we shall see. Below are the 27 tadpoles: 

[ℏ4]∂1
ϕc

(∂ψc
∂ψ̄c

)0GYuk
ϕc=ψc=0



• Theorem 3.2: The number of Yukawa 1PI tadpole graphs with loop number  is 
equal to the number of connected chord diagrams on  chords. In other words 

                                 

n
n

[ℏn]∂1
ϕc

(∂ψc
∂ψ̄c

)0GYuk
ϕc=ψc=0

= Cn .



• We will show that the the generating series  for the class    
of 1PI Yukawa theory tadpoles, counted by the loop number is 
equal to  by showing that   the 
recurrence for connected chord diagrams.


• The first step is to set a standard for the graphs so that we no longer 
worry about the direction of the fermion loops: we assume that all 
fermion loops are counter-clockwise, compensated with crossings 
of boson edges. 

T(x) 𝒰10

C(x) 2xT(x)T′ (x) = T(x)2 + T(x) − x,

• Theorem 3.2: The number of Yukawa 1PI tadpole graphs with loop number  is 
equal to the number of connected chord diagrams on  chords. In other words 

                                 

n
n

[ℏn]∂1
ϕc

(∂ψc
∂ψ̄c

)0GYuk
ϕc=ψc=0

= Cn .

Sketch of proof:





• Then we can prove that, in these graphs, the number of independent 
cycles is the same as the number of all boson edges. So, our 
generating series  now counts with the number of boson edges.


• We devise a reversible algorithm to get a bijection 
, which is 

what we need to satisfy the recurrence.


• We will use the following notation:

T(x)

Ψ : (𝒰10 × 𝒰∙
10) ⟶ (𝒰10 × 𝒰10) ⋃ (𝒰10 − {𝒳})





• Examples:



• This algorithm is reversible, why? The idea involves repeating a 
search for bridges in the component not containing the root till we 
determine .d



• Theorem 3.3: A bijection   can be defined recursively as follows: 
                          
where .

Λ : 𝒰10 ⟶ 𝒞
Λ(T ) = ∇−1(Λ(T1), (Λ(T2), ψ(d))),

Ψ−1(T ) = (T1, (T2, d))

• The function  is an order defined to 
simulate the interval linear ordering for chord 
diagrams in a way that respects root share 
decomposition. Here is an example:

ψ : V(T) → ℕ





• As a consequence of the previous, it also follows that the green function for vacuum 

diagrams satisfies 


• Also for the graphs with 2 external bosons

[ℏn+1]∂0
ϕc

(∂ψc
∂ψ̄c

)0GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0

= [xn]
C(x)2

2x
.

[ℏn]∂2
ϕc

(∂ψc
∂ψ̄c

)0GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0

= [xn]
C(x)2

x
C≥2(t)

t2
t=C(x)2/x

, or equivalently

U20(x) = C(x)2 C≥2(t)
t2

t=C(x)2/x

.





• Theorem 3.4: Let be the class of Yukawa 1PI graphs generated 
by and let  be their 

generating series, counted by the number of all boson edges. Then  

𝒰11

∂1
ϕc

(∂ψc
∂ψ̄c

)1GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0

U11(x)

U11(x) = x
C≥2(t)

t2
t=C(x)2/x

.

Yukawa Graphs ∂1
ϕc

(∂ψc
∂ψ̄c

)1GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0



Yukawa Graphs ∂1
ϕc

(∂ψc
∂ψ̄c

)1GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0

• Examples:


• Note also that the following is not considered as it is not 1PI:


• Again one can prove that the loop number for these graphs is 
equal to the number of internal boson edges.



• Theorem 3.5: A Yukawa 1PI tadpole graph can be decomposed as  a boson leg together 
with a list of graphs from . In particular, on the level of generating functions we will have 

    Then
𝒰01

T(x) =
x

1 − U01(x)
.

U01(x) = 2xC′ (x) − C(x) = C(x)2 C≥2(t)
t2

t=C(x)2/x

= U20(x) .

Yukawa Graphs ∂0
ϕc

(∂ψc
∂ψ̄c

)1GYuk(ℏ, ϕc, ψc)
ϕc=ψc=0



• First note that, by the previous slides,  counts 1PI primitive 
QED graphs with no fermion loops. The power of  is the loop number.


• One shows that the loop number for such graphs is the same as the 
number of internal photon edges.


• Finally, we will need to prove that subdivergences exactly correspond to 
reasons for connectivity-1.

zϕc|ψc|
2(ℏren)

ℏren

• Theorem 3.1: The generating series and 
count 2-connected chord diagrams. More 

precisely, 

zϕc|ψc|
2(ℏren)

z|ψc|
2(ℏren)

[ℏn−1
ren] zϕc|ψc|

2(ℏren) = [ℏn
ren] z|ψc|

2(ℏren) = [xn] C≥2(x) .

Sketch of proof:



• By obtaining the previous relations, we can readily 
get the asymptotic information using what we know 
about chord diagrams. 



References

• [MBor1]    M. Borinsky,    Generating asymptotics for factorially divergent sequences,  2016, 	 arXiv preprint 
arXiv:1603.01236.


• [MBor2]    M. Borinsky, 	 Algebraic lattices in QFT renormalization, 2016, Letters in Mathematical Physics,  
Volume 106, Issue 7, pp 879-911.


• [MBor3]    M. Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, 2017, arXiv: 1703.00840v2.


• [Frab]    A. Frabetti and D. Perrot, Renormalization Hopf algebras and combinatorial groups, 2018, 
arXiv:0805.4385v2.


• [Kleit]   D. Kleitman, Proportions of irreducible diagrams, Studies in Applied Mathematics 49.3, pp. 297–299, 
1970.


• [Krei]    D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, 1998", Adv. Theor. Math. 
Phys. 2(2), 303-334.


• [DJBr] D. J. Broadhurst, Four-Loop Dyson Schwinger-Johnson anatomy, 1999, arXiv:hep-ph/9909336v1



• [JeGe]   J.-L. Gervais and A. Jevicki, Point canonical transformations in the path integral, 
Nuclear Physics B, Volume 110, Issue 1, 12 July 1976, Pages 93-112.


• [KrVe]   D. Kreimer and Andrea Velenich, Field diffeomorphisms and the algebraic structure 
of perturbative expansions, 2013, Lett. Math. Phys., 103:171–181.


• [KrKa]   D. Kreimer and Karen Yeats, Diffeomorphisms of quantum fields, 2017, Math. Phys. 
Anal. Geom.


• [Cvij]   D. Cvijovic, New identities for the partial Bell polynomials. Appl. Math. Lett. 
24(9):1544-1547.



Thank you!



Quenched QED

• We will calculate the asymptotics of in quenched 
QED using the results we have about 2-connected chord 
diagrams and without any reference to singularity analysis.


• The partition function for QED-type theories is generally of the 

form  .  

Quenched QED is an approximation of QED where fermion 
loops are not present. So the term  does not appear 
in the partition function.


• The theory has a unique vertex type, which is cubic:

zϕc|ψc|
2(ℏren)

Z(ℏ, j, η) = ∫ℝ

1

2πℏ
e

1
ℏ (− x2

2 + jx + |η |2
1 − x + ℏ log 1

1 − x )dx

ℏ log 1
1 − x



• In this case the partition function becomes an ordinary integral.


• The amplitude for every diagram is 1. The Feynman rules are represented by 
the character  that sends .


• The benefit of this model lies in the interpretation of observables as 
combinatorial generating functions, and has been extensively studied since 
the 1950’s.


• We will set (where the sign is for edge-type residues): 

                         .

ϕ Γ ↦ ℏℓ(Γ)

Xr = 1 ± ∑
1PI graphs Γ
with residue r

1
Sym Γ

Γ



• It can be shown that (see [MBor3]), in this case, the counter-terms 
 satisfy 

                                             ,  

where  is the proper green function for residue , and  is 
called the renormalized expansion parameter, which we need not 
define here.


• Theorem ([MBor2]): In a theory with a cubic vertex-type, the numeric 
coefficients of  count the number of primitive diagrams if  is 
vertex-type.

zr := Sϕ{Xr}

zr(ℏren) =
1

gr(ℏ(ℏren))
gr(ℏ) r ℏren

zr(ℏren) r



• As is customary in QFT, to move to the quantum effective 
action , which generates 1PI diagrams, one takes the 
Legendre transform of the free energy :    
                              
where . The coefficients  are the (proper) Green 
functions. 


• The order of the derivative    determines the 
number of external legs.


•  If residue  is the  external legs residue, then .

G
W(ℏ, j)

G(ℏ, φc) := W − jφc,
φc := ∂jW [φn

c ]G

∂n
φc

G |φc=0 = [φn
c ]G

r k gr = ∂k
φc

G |φc=0


