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at Algebraic Structures in Perturbative Quantum Field Theory,
a celebration of Dirk Kreimer’s work, hosted by IHES, Bures-sur-Yvette

I report on two adventures with Dirk Kreimer in Tasmania, 25 years ago.

One of these, concerning knots, is not even wrong. The other, concerning

a conjectural 4-term relation, is either wrong or right. I suggest that

younger colleagues have powerful tools that might be brought to bear on

this 4-term conjecture.

1. Some of Dirk’s achievements prior to Tasmania

2. Knots ands numbers

3. 4-term relations
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1 Some of Dirk’s achievements prior to Tasmania

We have heard much at this conference of the influence that Dirk has had since his
discovery of the Hopf algebra of renormalization, first revealed to John Gracey and
me in August 1997 at a private meeting in St Andrews, Scotland.

In this talk I call attention to some of his work before that memorable occasion.

I begin with some recollections of his graduate studies, from which I learnt a lot.

1. The problem of γ5 in weak interactions: innovation and staying calm.

2. Two-loop propagators, form factors and double boxes, with general
kinematics: deft analysis and good programming.

3. Systematic understanding of generalized hypergeometric functions.

4. Regularization, by Hadamard’s finite part.
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2 Knots and numbers

1. Dirk decorated the braids of positive knots and obtained Feynman diagrams
with trivalent vertices. He shrank enough edges to obtain subdivergence-free
counterterms of forms that I was able to evaluate. [Show Dirk’s figures.]

2. We associated families of positive knots with combinations of multiple zeta
values (MZVs). Our dictionary between knots and numbers exploited the
pushdown of MZVs to alternating sums of lesser depth. This led to our
conjecture for the number Dn,k of primitive MZVs of weight n and depth k:

1− x3y

1− x2
+

x12y2(1− y2)
(1− x4)(1− x6)

=
∏
n≥3

∏
k≥1

(1− xnyk)Dn,k.

3. Our results included all the primitive contributions to the beta-function of φ4

theory at 6 loops. We were keen to accomplish as much as possible at 7 loops.

4. Going from 7-loop φ4 counterterms to knots was much more difficult: 4-valent
vertices can be opened in 3 ways. Dirk had to consider a multiplicity of
momentum routings, with link diagrams that he skeined to get positive knots,
not all of which had been found to give MZVs. [Recall bushfire and lawn.]
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2.1 MZVs associated with positive knots via counterterms

The (2, 2k + 1) torus knot with braid word σ2k+1
1 is associated with ζ2k+1.

The (3, 4) torus knot, with braid word (σ1σ2)
4, called 819 in the knot tables, is

associated with N5,3, where

Na,b ≡ ζ(a, b)− ζ(b, a)

with bars denoting signs alternating sums: ζ(5, 3) =
∑

m>n>0(−1)m/(m5n3). Then
N5,3 gives a combination of ζ5,3, ζ8 and ζ5ζ3 at 6 loops

The (3, 5) torus knot, 10124 = (σ1σ2)
5, is associated with N7,3 at 7 loops, or beyond.

N2k+5,3 occurs at (k + 6) loop, or beyond. At 8 loops, or beyond, we encounter N9,3

and N7,5 − π12/(2510!) in counterterms. The latter gives MZVs of depth 4.

At 9 loops, or beyond, we encounter weight-14 depth-4 MZVs We found these
three knot-numbers at 14 crossings:

N11,3, N9,5 + 5π14

7032946176 , ζ5,3,3,3 + ζ3,5,3,3 − ζ5,3,3ζ3 + 24785168π14

4331237155245 .
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At 7 loops, a depth-3 combination N3,5,3 ≡ ζ3,5,3− ζ3ζ5,3 occurs, associated with the
4-braid 11-crossing positive knot σ1σ

3
2σ

2
3σ

2
1σ

2
2σ3.

At higher loops, we found these families of depth-3 combinations in counterterms:

N2m+1,2n+1,2m+1 = ζ(2m+ 1, 2n+ 1, 2m+ 1)− ζ(2m+ 1) ζ(2m+ 1, 2n+ 1)

+
m−1∑
k=1

(
2n+ 2k

2k

)
ζP (2n+ 2k + 1, 2m− 2k + 1, 2m+ 1)

−
n−1∑
k=0

(
2m+ 2k

2k

)
ζP (2m+ 2k + 1, 2n− 2k + 1, 2m+ 1) ,

N2m,2n+1,2m = ζ(2m, 2n+ 1, 2m) + ζ(2m) {ζ(2m, 2n+ 1) + ζ(2m+ 2n+ 1)}

+
m−1∑
k=1

(
2n+ 2k

2k

)
ζP (2n+ 2k + 1, 2m− 2k, 2m)

+
n−1∑
k=0

(
2m+ 2k

2k + 1

)
ζP (2m+ 2k + 1, 2n− 2k, 2m) ,

where ζP (a, b, c) = ζ(a) {2 ζ(b, c) + ζ(b+ c)}.
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We identified braid words of 5 classes of positive knots K associated with MZVs,
along with their HOMFLY polynomials, XK(q, λ):

K XK(q, λ)

T2k+1 = σ2k+1
1 T2k+1 = λk(1 + q2(1− λ)pk)

Rk,m = σ1σ
2k+1
2 σ1σ

2m+1
2 Rk,m = T2k+2m+3 + q3pkpmΛk+m+1

Rk,m,n = σ1σ
2k
2 σ1σ

2m
2 σ1σ

2n+1
2 Rk,m,n = R1,k+m+n−1 + q6pk−1pm−1rnΛk+m+n+1

Sk = σ1σ
3
2σ

2
3σ

2
1σ

2k
2 σ3 Sk = T 2

3T2k+3 + q2pkr2(q
2(λ− 2) + q − 2)Λk+3

Sk,m,n = σ1σ
2k+1
2 σ3σ

2m
1 σ2n+1

2 σ3 Sk,m,n = T2k+2m+2n+3 + q3(pkpm + pmpn + pnpk
+ (q2(3− λ)− 2q)pkpmpn)Λk+m+n+1

with pn = (1− q2n)/(1− q2), rn = (1 + q2n−1)/(1 + q), Λn = λn(1− λ)(1− λq2).
Noting that S1,1,1 = S1 and Sm,n,0 = Rm,n,0 = Rm,n, we obtained the third row of
these enumerations by crossing number and weight:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

positive n-crossing knots 1 0 1 0 1 1 1 3 2 7 9 17 47 ? ?
primitive weight-n MZVs 1 0 1 0 1 1 1 1 2 2 3 3 4 5 7

identified n-crossing knots 1 0 1 0 1 1 1 1 2 2 3 3 4 5 5

with two associations missing for MZVs of weight 17, at 10 loops.

6



2.2 What really happens at 7 loops and beyond?

There were two positive positive knots with 10 crossings which we could not
associate to MZVs. There were three φ4 counterterms at 7 loops that we could not
identify. We concluded that MZVs would not suffice for φ4 counterterms.

Positive knots, and hence the transcendentals associated with them by field theory,
are richer in structure than MZVs. [arXiv:hep-th/9609128]

Maxim Konstsevich did not heed this and made a strong conjecture for Symanzik
polynomials over Fq, disproven by Prakash Belkale and Patrick Brosnan.

Later, I found that two unidentified counterterms are reducible to MZVs, namely

P7,8 =
22383

20
ζ11 +

4572

5
(ζ3,5,3 − ζ3ζ5,3)− 700ζ23ζ5

+ 1792ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
,

P7,9 =
92943

160
ζ11 +

3381

20
(ζ3,5,3 − ζ3ζ5,3)−

1155

4
ζ23ζ5

+ 896ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
.
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These two reductions to MZVs, at 7 loops, are somewhat surprising. Francis
Brown had predicted that alternating sums would suffice. Erik Panzer and Oliver
Schnetz proved this, obtaining ornate combinations of alternating sums. Then the
MZV datamine, developed by Johannes Blümlein, Jos Vermaseren and me, proves
the two reductions to MZVs that I had found empirically.

The remaining 7-loop counterterm, now called P7,11 in the census of Schnetz, was
predicted by Brown to reduce to polylogarithms of the sixth root of unity and was
proven to do so by Panzer, in an amazing feat of analysis.

At 8 loops, polylogarithms fail to deliver all of the counterterms. There is a period
whose obstruction to polylogarithmic reduction comes from a singular K3 surface
associated to a cusp form with modular weight 3, coming from the symmetric
square of an elliptic curve with conductor 49, as shown by Brown and Schnetz.

My subjective summary: Dirk’s intuition that MZVs would not suffice at 7 loops
and beyond was borne out by later analysis.
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3 4-terms relations
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These four subgraphs generate every four-term relation. In each case, three arcs of
a circle are indicated, with a chord connecting the upper pair. These arcs form
part of a hamiltonian circuit that passes through every vertex of each diagram.
The connections of vertices on other parts of the hamiltonian circuit need not yet
concern us. From the bottom arc, connections are made, in turn, to the four parts
of the hamiltonian circuit that are adjacent to the chord.
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We assume that the four terms:

(i) are free of subdivergences;

(ii) differ only by the subgraphs shown;

(iii) have trivial vertices, involving no vectorial (or higher tensorial) structure;

(iv) involve no propagator with spin s > 1
2 ;

(v) modify one of the dimensionless couplings of a renormalizable theory.

The necessity of this set of provisos is not established. In a paper by Dirk Kreimer
it is, however, claimed to be sufficient to derive the four-term relation

〈G1 −G2 +G3 −G4〉 = 0

where 〈Gk〉 is the corresponding counterterm, i.e. the coefficient of overall
logarithmic divergence of the k-th of the four diagrams, numbered in cyclic order,
These counterterms may be calculated by nullifying external momenta and internal
masses, and cutting the diagram wheresoever one pleases, since infrared problems
are excluded by the provisos.
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To generate the four-loop test, consider the figure below, whose four blobs indicate
the connections that will be made to the origin O. The horizontal double line
represents the propagation of a Dirac fermion field, ψ, with a Yukawa coupling,
ψφψ, to a scalar boson field, φ. At X there is a Yukawa coupling to an external
boson, which prevents subdivergences. The asymmetry which it introduces also
guarantees non-triviality of the four-term relation. Now we connect the origin O to
each of the four blobs, in turn, so that O becomes a φ4 vertex. Masses are then set
to zero, and the external momenta at A, B and X are nullified, to give the 4 terms.

#  

�
�
�
�
��

Q
Q

Q
Q
QQ
ss s sA B

O

X

11



The four terms, after nullification, cut at convenient places:#  
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#  
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〈G3〉

×
#  
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Q
Q

Q
Q
QQ

| s

〈G4〉

×

Explicit expressions for the four counterterms may be compactly written using

dµn =
(p20)

1+nε

(pn − p0)2
n∏
k=1

dDpk
πD/2

G(1 + ε)

[G(1)]2
1

p2k

1

(pk−1 − pk)2

as a n-loop integration measure in D ≡ 4− 2ε euclidean dimensions, with p0 as the
cut momentum, and G(α) ≡ Γ(D/2− α)/Γ(α).
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The four terms of are given by

〈G1〉 = 1
4 lim
ε→0

Tr

∫
dµ2

1

p/1
p/02

〈G2〉 = 1
4 lim
ε→0

Tr

∫
dµ3

1

p/10
p/1p/2

1

p/30

〈G3〉 = 1
4 lim
ε→0

Tr

∫
dµ3

1

p/10
p/1p/3

1

p/30

〈G4〉 = 1
4 lim
ε→0

Tr

∫
dµ2

1

p/1
p/12

with pij ≡ pi − pj.
To proceed, we use the following properties of the measures:∫

dµ1 = −1

ε

lim
ε→0

∫
dµn =

(
2n

n

)
ζ2n−1∫

dµ2
p0 · p1
p21

=
1 + 2ε

2

∫
dµ2∫

dµ2
p1 · p2
p21

=
1 + ε

2

∫
dµ2
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These results lead to immediate evaluation of 〈G1〉 = 0 and 〈G4〉 = 3ζ3.

To complete the experimentum crucis, we use integration by parts on the central
triangles of 〈G2〉 and 〈G3〉 Each term so generated lacks a fermion propagator.
Subintegration then reduces the integrals to combinations of terms of two-loop
form, each with a propagator raised to a non-integer power. This method is
intrinsically D-dimensional; at ε = 0 separate contributions diverge. Performing
the subintegrations and relabelling momenta, we obtain∫

dµ3
1

p/10
p/1p/k

1

p/30
=

∫
dµ2

1

p/10
Hk

1

p/20

for k = 2, 3, with

(D − 3)H2 =
p/1(p/1 + p/2)(E10 − E12)

ε
+ (p/0p/1 + p/1p/2)E10

(D − 4)H3 =
2p/1p/2(E10 − E12)

ε
+ 2p/0p/2E10

and Eij ≡ (p20/p
2
ij)

ε. Evaluation of 〈G3〉, from H3, thus requires one to expand
two-loop integrals to O(ε2). However, we found that this did not generate ζ5.
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The final step was accomplished by developing ε-expansions of Saalschützian 3F2

series, as in my work with Gracey and Kreimer on critical exponents. This gives
〈G2〉 = 3ζ3 and 〈G3〉 = 6ζ3 and verifies the four-term relation in its sole non-trivial
appearance below five loops:

〈G1 −G2 +G3 −G4〉 = 0− 3ζ3 + 6ζ3 − 3ζ3 = 0.

3.1 Vector couplings and vector propagators

If we replace the Yukawa coupling by γµ, there is no 4-term relation:

〈G̃1〉 = 1
16 lim

ε→0
Tr γµ

∫
dµ2

1

p/1
p/12γµ

1

p/12
p/02 =

3ζ3 − 1

2

〈G̃2〉 = 1
16 lim

ε→0
Tr γµ

∫
dµ3

1

p/10
p/1p/2p/3γµ

1

p/3

1

p/30
=

3ζ3 + 1

2

〈G̃3〉 = 1
16 lim

ε→0
Tr γµ

∫
dµ3

1

p/10
p/1p/2γµ

1

p/2
p/3

1

p/30
= −3ζ3

〈G̃4〉 = 1
16 lim

ε→0
Tr γµ

∫
dµ2

1

p/1
p/12p/02γµ

1

p/02
= −3

2ζ3

Similarly, there is no four-term relation when the chord is a vector boson.
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3.2 Indications of richer structure at five loops

There is a class of five-loop subdivergence-free counterterms that may be obtained
from integration by parts: those whose momentum flow is that of the wheel with
five spokes. Consider a putative 4-term relation, generated as follows.

To generate four terms, at five loops, connect O to each blob, in turn.

#  

A
A
A
A

�
�
�
�

��
�
��

�
��

HH
H

HH
H
HH
s s s sA B

O

X Y

Each term is a radiative correction to a ψφ2ψ coupling, induced by Yukawa
couplings and a non-renormalizable φ5 interaction. Thanks to ideas from John
Gracey, we evaluated the terms using integration by parts for five-spoke wheels,
via recurrence relations on 15 exponents of Lorentz scalars.
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We found that the counterterms

〈G1〉 = 1
4 lim
ε→0

Tr

∫
dµ3p/1

1

p/30
= −2ζ3

〈G2〉 = 1
4 lim
ε→0

Tr

∫
dµ4

1

p/10
p/1p/2

1

p/40
= 4ζ3

〈G3〉 = 1
4 lim
ε→0

Tr

∫
dµ4

1

p/10
p/1p/4

1

p/40
= 20ζ5

〈G4〉 = 1
4 lim
ε→0

Tr

∫
dµ3

1

p/10
p/1 = 10ζ5

fail to satisfy a four-term relation. This failure was the origin of proviso that
four-term relations are associated with renormalizable field theories.

Remarkably, a four-term relation is obtained, if one moves the external vertex Y,
on the p4 line of 〈G2〉, to the p3 line where X resides, giving

〈G ∗2 〉 = 1
4 lim
ε→0

Tr

∫
dµ4

1

p/10
p/1p/2

1

p/3
p/4

1

p/40
= 10ζ5 − 2ζ3

and hence non-trivial five-loop cancellation

〈G1 −G
∗
2 +G3 −G4〉 = −2ζ3 − (10ζ5 − 2ζ3) + 20ζ5 − 10ζ5 = 0.
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3.3 Exercise for modern quantum computation

Question for Dirk: Is each of the 4 terms indicated below free of subdivergences?

� �#  

!!
!!

!!
!!

!!

Q
Q

Q
Q
QQ
s s s sA B

O

X

Questions for Erik, Michi, Oliver, et alia: Does Dirk’s 4-term relation hold at 5
loops in Yukawa plus φ4 theory? How about φ3 theory in 6 dimensions?

Summary

Dirk is a skillful analyst, an inspiring combinatoricist and a deeply influential
algebraic thinker. He combines all of this with a quiet self-confidence and a concern
for colleagues that has enriched my life and many others. Thank you, kind friend.
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