The Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$ and the Hopf algebra of graphs

Michael Borinsky, Nikhef
November 20, IHES

Algebraic Structures in Perturbative Quantum Field Theory
joint work with Karen Vogtmann
arXiv:1907. 03543

Happy birthday Dirk!

Introduction I: Groups

Automorphisms of groups

- Take a group G

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.
- We have, $\rho_{h} \in \operatorname{Inn}(G)$

$$
\begin{aligned}
\rho_{h}: G & \rightarrow G, \\
g & \mapsto h^{-1} g h
\end{aligned}
$$

for each $h \in G$.

Automorphisms of groups

- Take a group G
- An automorphism of $G, \rho \in \operatorname{Aut}(G)$ is a bijection

$$
\begin{gathered}
\rho: G \rightarrow G \\
\text { such that } \rho(x \cdot y)=\rho(x) \cdot \rho(y) \text { for all } x, y \in G
\end{gathered}
$$

- Normal subgroup: $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$, the inner automorphisms.
- We have, $\rho_{h} \in \operatorname{Inn}(G)$

$$
\begin{aligned}
\rho_{h}: G & \rightarrow G, \\
g & \mapsto h^{-1} g h
\end{aligned}
$$

for each $h \in G$.

- Outer automorphisms: Out $(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$

Automorphisms of the free group

- Consider the free group with n generators

$$
F_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

E.g. $a_{1} a_{3}^{-5} a_{2} \in F_{3}$

Automorphisms of the free group

- Consider the free group with n generators

$$
F_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

E.g. $a_{1} a_{3}^{-5} a_{2} \in F_{3}$

- The group $\operatorname{Out}\left(F_{n}\right)$ is our main object of interest.

Automorphisms of the free group

- Consider the free group with n generators

$$
F_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle
$$

E.g. $a_{1} a_{3}^{-5} a_{2} \in F_{3}$

- The group $\operatorname{Out}\left(F_{n}\right)$ is our main object of interest.
- Generated by

$$
\begin{array}{llll}
& a_{1} \mapsto a_{1} a_{2} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3} \\
\text { and } & a_{1} \mapsto a_{1}^{-1} & a_{2} \mapsto a_{2} & a_{3} \mapsto a_{3}
\end{array}
$$

and permutations of the letters.

Mapping class group

- Another example of an outer automorphism group: the mapping class group

Mapping class group

- Another example of an outer automorphism group: the mapping class group
- The group of homeomorphisms of a closed, connected and orientable surface S_{g} of genus g up to isotopies

$$
\operatorname{MCG}\left(S_{g}\right):=\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)
$$

Example: Mapping class group of the torus

$$
\operatorname{MCG}\left(\mathbb{T}^{2}\right)=\operatorname{Out}\left(\pi_{1}\left(\mathbb{T}^{2}\right)\right)
$$

The group of homeomorphisms $\mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ up to an isotopy:

Introduction II: Spaces

How to study such groups?

How to study groups such as $\operatorname{MCG}(S)$ or $\operatorname{Out}\left(F_{n}\right)$?

How to study such groups?

How to study groups such as $\operatorname{MCG}(S)$ or $\operatorname{Out}\left(F_{n}\right)$?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, ... (1970-)

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.
\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu: S \rightarrow X$.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.
\Rightarrow A point in Teichmüller space $T(S)$ is a pair, (X, μ)

- A Riemann surface X.
- A marking: a homeomorphism $\mu: S \rightarrow X$.

$\operatorname{MCG}(S)$ acts on $T(S)$ by composing to the marking:

$$
(X, \mu) \mapsto\left(X, \mu \circ g^{-1}\right) \text { for some } g \in \operatorname{MCG}(S)
$$

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$. Culler, Vogtmann (1986)

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

\Rightarrow A point in Outer space \mathcal{O}_{n} is a pair, (G, μ)

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu: R_{n} \rightarrow G$.

For Out $\left(F_{n}\right)$: Outer space

Idea: Mimic previous construction for $\operatorname{Out}\left(F_{n}\right)$.
Culler, Vogtmann (1986)
Let R_{n} be the rose with n petals.

\Rightarrow A point in Outer space \mathcal{O}_{n} is a pair, (G, μ)

- A connected graph G with a length assigned to each edge.
- A marking: a homotopy $\mu: R_{n} \rightarrow G$.

Out $\left(F_{n}\right)$ acts on \mathcal{O}_{n} by composing to the marking:

$$
(\mathbf{G}, \mu) \mapsto\left(G, \mu \circ g^{-1}\right) \text { for some } g \in \operatorname{Out}\left(F_{n}\right)=\operatorname{Out}\left(\pi_{1}\left(R_{n}\right)\right) .
$$

\mathcal{O}_{2}

Vogtmann 2008

Examples of applications of Outer space

- The group Out $\left(F_{n}\right)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics \rightarrow Mocks's table
- Graph complexes \rightarrow Francis' talk

Invariants

Algebraic invariants

- $H_{\bullet}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{\bullet}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{\bullet}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).

Algebraic invariants

- $H_{0}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{0}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{0}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).
\Rightarrow Study $\operatorname{Out}\left(F_{n}\right)$ using \mathcal{G}_{n} !

Algebraic invariants

- $H_{\bullet}\left(\operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right) \simeq H_{\bullet}\left(\mathcal{O}_{n} / \operatorname{Out}\left(F_{n}\right) ; \mathbb{Q}\right)=H_{\bullet}\left(\mathcal{G}_{n} ; \mathbb{Q}\right)$, as \mathcal{O}_{n} is contractible Culler, Vogtmann (1986).
\Rightarrow Study Out $\left(F_{n}\right)$ using \mathcal{G}_{n} !
- One simple invariant: Euler characteristic

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
\operatorname{Out}\left(F_{n}\right) \rightarrow \operatorname{Out}\left(\mathbb{Z}^{n}\right)
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
\operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})}
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=G L(n, \mathbb{Z})} \rightarrow 1
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\chi(\operatorname{GL}(n, \mathbb{Z})) \chi\left(\mathcal{T}_{n}\right)
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\underbrace{\chi(\mathrm{GL}(n, \mathbb{Z}))}_{=0} \chi\left(\mathcal{T}_{n}\right) \quad n \geq 3
$$

Further motivation to look at Euler characteristic of $\operatorname{Out}\left(F_{n}\right)$

Consider the abelization map $F_{n} \rightarrow \mathbb{Z}^{n}$.
\Rightarrow Induces a group homomorphism

$$
1 \rightarrow \mathcal{T}_{n} \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow \underbrace{\operatorname{Out}\left(\mathbb{Z}^{n}\right)}_{=\operatorname{GL}(n, \mathbb{Z})} \rightarrow 1
$$

- \mathcal{T}_{n} the 'non-abelian' part of $\operatorname{Out}\left(F_{n}\right)$ is interesting.
- By the short exact sequence above

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)=\underbrace{\chi(\mathrm{GL}(n, \mathbb{Z}))}_{=0} \chi\left(\mathcal{T}_{n}\right) \quad n \geq 3
$$

$\Rightarrow \mathcal{T}_{n}$ does not have finitely-generated homology for $n \geq 3$ if $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\begin{aligned}
& \qquad \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2 \\
& \text { and }\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right| \text { grows exponentially for } n \rightarrow \infty
\end{aligned}
$$

based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)

\mathcal{T}_{n} is not finitely presentable.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)

\mathcal{T}_{n} is not finitely presentable.
In topological terms, i.e. $\operatorname{dim}\left(H_{2}\left(\mathcal{T}_{n}\right)\right)=\infty$,
which implies that \mathcal{T}_{n} does not have finitely-generated homology.

Conjectures

Conjecture Smillie-Vogtmann (1987)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0 \text { for all } n \geq 2
$$

and $\left|\chi\left(\operatorname{Out}\left(F_{n}\right)\right)\right|$ grows exponentially for $n \rightarrow \infty$.
based on initial computations by Smillie-Vogtmann (1987) up to $n \leq 11$. Later strengthened by Zagier (1989) up to $n \leq 100$.

Conjecture Magnus (1934)

\mathcal{T}_{n} is not finitely presentable.
In topological terms, i.e. $\operatorname{dim}\left(H_{2}\left(\mathcal{T}_{n}\right)\right)=\infty$,
which implies that \mathcal{T}_{n} does not have finitely-generated homology.
Theorem Bestvina, Bux, Margalit (2007)
\mathcal{T}_{n} does not have finitely-generated homology.

Results: $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Theorem A MB-Vogtmann (2019)

$$
\chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2
$$

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by
Smillie-Vogtmann (1987). Immediate questions:

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

- Only one odd-dimensional class known Bartholdi (2016).

Theorem A MB-Vogtmann (2019)

$$
\begin{aligned}
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right)<0 \text { for all } n \geq 2 \\
& \chi\left(\operatorname{Out}\left(F_{n}\right)\right) \sim-\frac{1}{\sqrt{2 \pi}} \frac{\Gamma(n-3 / 2)}{\log ^{2} n} \text { as } n \rightarrow \infty .
\end{aligned}
$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:
\Rightarrow Huge amount of unstable homology in odd dimensions.

- Only one odd-dimensional class known Bartholdi (2016).
- Where does all this homology come from?

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.

This Theorem A follows from an implicit expression for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$:

Theorem B MB-Vogtmann (2019)

$$
\begin{gathered}
\sqrt{2 \pi} e^{-N} N^{N} \sim \sum_{k \geq 0} a_{k}(-1)^{k} \Gamma(N+1 / 2-k) \text { as } N \rightarrow \infty \\
\text { where } \sum_{k \geq 0} a_{k} z^{k}=\exp \left(\sum_{n \geq 0} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{n}\right)
\end{gathered}
$$

$\Rightarrow \chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ are the coefficients of an asymptotic expansion.

- An analytic argument is needed to prove Theorem A from Theorem B.
- In this talk: Focus on proof of Theorem B

Analogy to the mapping class group

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.

Harer-Zagier formula for $\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$
\chi\left(\mathcal{M}_{g}\right)=\chi\left(\operatorname{MCG}\left(S_{g}\right)\right)=\frac{B_{2 g}}{4 g(g-1)} \quad g \geq 2
$$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.
\Rightarrow Kontsevich's proof served as a blueprint for $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$.

Kontsevich's argument

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
$$

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
$$

- Kontsevich proved this using a combinatorial model of $\mathcal{M}_{g, n}$ by Penner (1986) based on ribbon graphs.

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Put } G \mid} z^{\chi(G)}
$$

- Kontsevich proved this using a combinatorial model of $\mathcal{M}_{g, n}$ by Penner (1986) based on ribbon graphs.
For instance:

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
$$

- Kontsevich proved this using a combinatorial model of $\mathcal{M}_{g, n}$ by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':
connected graphs G

$$
\frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

$$
=\sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
$$

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
$$

- Kontsevich proved this using a combinatorial model of $\mathcal{M}_{g, n}$ by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':

$$
\begin{aligned}
\sum_{\text {ected graphs G }} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)} & =\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{\chi}\right)} d x\right) \\
& =\sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
\end{aligned}
$$

- The formula for $\chi\left(\mathcal{M}_{g, n}\right)$ follows via the short exact sequence

$$
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \mathcal{M}_{g, n+1} \rightarrow \mathcal{M}_{g, n} \rightarrow 1
$$

Kontsevich's argument

- We have the identity by Kontsevich (1992):

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\text {connected graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
$$

- Kontsevich proved this using a combinatorial model of $\mathcal{M}_{g, n}$ by Penner (1986) based on ribbon graphs.
- The expression on the right hand side can be evaluated using a 'topological field theory':

$$
\begin{aligned}
\sum_{\text {ected graphs G }} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)} & =\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{\chi}\right)} d x\right) \\
& =\sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
\end{aligned}
$$

- The formula for $\chi\left(\mathcal{M}_{g, n}\right)$ follows via the short exact sequence

$$
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \mathcal{M}_{g, n+1} \rightarrow \mathcal{M}_{g, n} \rightarrow 1
$$

An algebraic viewpoint

An algebraic viewpoint

- Let \mathcal{H} be the \mathbb{Q}-vector space spanned by a set of graphs:

$$
\mathcal{H}=\mathbb{Q} \underbrace{\emptyset}_{=: \mathbb{I}}+\mathbb{Q} \bigcirc-0+\mathbb{Q} \Theta+\ldots
$$

An algebraic viewpoint

- Let \mathcal{H} be the \mathbb{Q}-vector space spanned by a set of graphs:

$$
\mathcal{H}=\mathbb{Q} \underbrace{\emptyset}_{=: \mathbb{I}}+\mathbb{Q} \bigcirc-O+\mathbb{Q} \Theta+\ldots
$$

- Here: only connected graphs with 3-or-higher-valent vertices.

An algebraic viewpoint

- Let \mathcal{H} be the \mathbb{Q}-vector space spanned by a set of graphs:

$$
\mathcal{H}=\mathbb{Q} \underbrace{\emptyset}_{=: \mathbb{I}}+\mathbb{Q} \bigcirc-\mathbb{O}+\mathbb{Q} \bigcirc+\ldots
$$

- Here: only connected graphs with 3-or-higher-valent vertices.

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\phi(\mathcal{X})
$$

where

$$
\begin{aligned}
& \mathcal{X}:=\sum_{G} \frac{G}{\mid \text { Aut } G \mid} z^{\chi(G)} \in \mathcal{H}\left[\left[z^{-1}\right]\right] \\
& \quad \text { and } \phi: \mathcal{H} \rightarrow \mathbb{Q}, G \rightarrow(-1)^{\left|V_{G}\right|}
\end{aligned}
$$

An algebraic viewpoint

- Let \mathcal{H} be the \mathbb{Q}-vector space spanned by a set of graphs:

$$
\mathcal{H}=\mathbb{Q} \underbrace{\emptyset}_{=: \mathbb{I}}+\mathbb{Q} \bigcirc-O+\mathbb{Q} \Theta+\ldots
$$

- Here: only connected graphs with 3-or-higher-valent vertices.

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\phi(\mathcal{X})
$$

where

$$
\begin{aligned}
& \mathcal{X}:=\sum_{G} \frac{G}{\mid \text { Aut } G \mid} z^{\chi(G)} \in \mathcal{H}\left[\left[z^{-1}\right]\right] \\
& \quad \text { and } \phi: \mathcal{H} \rightarrow \mathbb{Q}, G \rightarrow(-1)^{\left|V_{G}\right|}
\end{aligned}
$$

$\Rightarrow \phi$ is very simple and easy to handle via topological field theory.

- For $\operatorname{Out}\left(F_{n}\right)$, we find that

$$
\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}=\tau(\mathcal{X})
$$

with \mathcal{X} as before and

$$
\tau: \mathcal{H} \rightarrow \mathbb{Q}, G \rightarrow \sum_{f \subset G}(-1)^{\left|E_{f}\right|}
$$

where the sum is over all forests (acyclic subgraphs) of G.

- For $\operatorname{Out}\left(F_{n}\right)$, we find that

$$
\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}=\tau(\mathcal{X})
$$

with \mathcal{X} as before and

$$
\tau: \mathcal{H} \rightarrow \mathbb{Q}, G \rightarrow \sum_{f \subset G}(-1)^{\left|E_{f}\right|}
$$

where the sum is over all forests (acyclic subgraphs) of G.
\Rightarrow Not directly approachable with a TFT...

- For $\operatorname{Out}\left(F_{n}\right)$, we find that

$$
\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}=\tau(\mathcal{X})
$$

with \mathcal{X} as before and

$$
\tau: \mathcal{H} \rightarrow \mathbb{Q}, G \rightarrow \sum_{f \subset G}(-1)^{\left|E_{f}\right|}
$$

where the sum is over all forests (acyclic subgraphs) of G.
\Rightarrow Not directly approachable with a TFT...

- The necessary combinatorial model is the 'forest collapse' construction by Culler-Vogtmann (1986).

The Hopf algebra of graphs

The Hopf algebra of graphs

- With disjoint union of graphs $m: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}, G_{1} \otimes G_{2} \mapsto G_{1} \uplus G_{2}$ as multiplication, the empty graph \emptyset associated with the neutral element \mathbb{I},

The Hopf algebra of graphs

- With disjoint union of graphs
$m: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}, G_{1} \otimes G_{2} \mapsto G_{1} \uplus G_{2}$ as multiplication, the empty graph \emptyset associated with the neutral element \mathbb{I},
- and the coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$,

$$
\Delta: G \mapsto \sum_{\substack{g \subset G \\ \text { bridgeless } g}} g \otimes G / g
$$

where the sum is over all bridgeless subgraphs,

The Hopf algebra of graphs

- With disjoint union of graphs
$m: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}, G_{1} \otimes G_{2} \mapsto G_{1} \uplus G_{2}$ as multiplication, the empty graph \emptyset associated with the neutral element \mathbb{I},
- and the coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$,

$$
\Delta: G \mapsto \sum_{\substack{g \subset G \\ \text { bridgeless } g}} g \otimes G / g
$$

where the sum is over all bridgeless subgraphs,

- the vector space \mathcal{H} becomes the core Hopf algebra of graphs Kreimer (2009), which is closely related to the Hopf algebra of renormalization in quantum field theory.

$$
\begin{aligned}
\Delta A= & \sum_{g \subset \otimes} g \otimes Q / g=\alpha^{4} \otimes A+4-4 \otimes \theta+ \\
& +3 M \otimes \infty+6 \Delta \Delta \otimes Q+A \otimes .
\end{aligned}
$$

- Characters, i.e. linear maps $\psi: \mathcal{H} \rightarrow \mathcal{A}$ which fulfill $\psi(\mathbb{I})=\mathbb{I}_{\mathcal{A}}$ form a group under the convolution product,

$$
\psi \star \mu=m \circ(\psi \otimes \mu) \circ \Delta
$$

- Characters, i.e. linear maps $\psi: \mathcal{H} \rightarrow \mathcal{A}$ which fulfill $\psi(\mathbb{I})=\mathbb{I}_{\mathcal{A}}$ form a group under the convolution product,

$$
\psi \star \mu=m \circ(\psi \otimes \mu) \circ \Delta
$$

Theorem MB-Vogtmann (2019)

The map ϕ associated to $\mathcal{M}_{g, n}$ and the map τ associated to Out $\left(F_{n}\right)$ are mutually inverse elements under this group:

$$
\tau=\phi^{\star-1} \quad \phi=\tau^{\star-1}
$$

- Characters, i.e. linear maps $\psi: \mathcal{H} \rightarrow \mathcal{A}$ which fulfill $\psi(\mathbb{I})=\mathbb{I}_{\mathcal{A}}$ form a group under the convolution product,

$$
\psi \star \mu=m \circ(\psi \otimes \mu) \circ \Delta
$$

Theorem MB-Vogtmann (2019)

The map ϕ associated to $\mathcal{M}_{g, n}$ and the map τ associated to Out $\left(F_{n}\right)$ are mutually inverse elements under this group:

$$
\tau=\phi^{\star-1} \quad \phi=\tau^{\star-1}
$$

- That means τ is the renormalized version of ϕ.
- Recall that $\chi\left(\mathcal{M}_{g, n}\right)$ is explicitly encoded by a TFT:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\phi(\mathcal{X})=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

- Recall that $\chi\left(\mathcal{M}_{g, n}\right)$ is explicitly encoded by a TFT:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\phi(\mathcal{X})=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

- The duality between ϕ and τ implies that $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ is encoded by the renormalization of the same TFT:

$$
0=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{x}{2}+T\left(-z e^{x}\right)} d x\right)
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.

- Recall that $\chi\left(\mathcal{M}_{g, n}\right)$ is explicitly encoded by a TFT:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\phi(\mathcal{X})=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

- The duality between ϕ and τ implies that $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ is encoded by the renormalization of the same TFT:

$$
0=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{x}{2}+T\left(-z e^{x}\right)} d x\right)
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.

- This TFT encodes the statement of Theorem 2 and gives an implicit encoding of the numbers $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$.

Outlook: The naive Euler characteristic

Outlook: The naive Euler characteristic

The 'naive' Euler characteristic

$$
\widetilde{\chi}\left(\text { Out } F_{n}\right)=\sum_{k}(-1)^{k} \operatorname{dim} H_{k}\left(\text { Out } F_{n} ; \mathbb{Q}\right)
$$

is harder to analyse than the rational Euler characteristic.

Outlook: The naive Euler characteristic

The 'naive' Euler characteristic

$$
\widetilde{\chi}\left(\text { Out } F_{n}\right)=\sum_{k}(-1)^{k} \operatorname{dim} H_{k}\left(\text { Out } F_{n} ; \mathbb{Q}\right)
$$

is harder to analyse than the rational Euler characteristic.

$$
\tilde{\chi}\left(\text { Out } F_{n}\right)=\sum_{\langle\sigma\rangle} \chi\left(C_{\sigma}\right)
$$

sum over conjugacy elements of finite order in Out F_{n} and C_{σ} is the centralizer corresponding σ Brown (1982).

Outlook: The naive Euler characteristic

The 'naive' Euler characteristic

$$
\widetilde{\chi}\left(\text { Out } F_{n}\right)=\sum_{k}(-1)^{k} \operatorname{dim} H_{k}\left(\text { Out } F_{n} ; \mathbb{Q}\right)
$$

is harder to analyse than the rational Euler characteristic.

$$
\tilde{\chi}\left(\text { Out } F_{n}\right)=\sum_{\langle\sigma\rangle} \chi\left(C_{\sigma}\right)
$$

sum over conjugacy elements of finite order in Out F_{n} and C_{σ} is the centralizer corresponding σ Brown (1982).
\Rightarrow Preliminary investigations on C_{σ} indicate that

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{\chi}\left(\text { Out } F_{n}\right)}{\chi\left(\operatorname{Out} F_{n}\right)}=c>0
$$

Euler characteristics of Kontsevich's graph complexes

A missing piece:

complex	rational: χ	integral: e
associative $/ \mathcal{M}_{g, n}$	Harer, Zagier 1986	Harer, Zagier 1986
commutative	Kontsevich 1993	Willwacher, Živković
Lie/Out $\left(F_{n}\right)$	Kontsevich 1993	?

Lie/Out $\left(F_{n}\right)$ integral case $e\left(\operatorname{Out}\left(F_{n}\right)\right)$ only known for $n \leq 11$. Thanks to a supercomputer calculation by Morita 2014.

Missing Euler characteristic of the Lie case

Theorem MB, Vogtmann 2020 (in preparation)

$$
\begin{gathered}
\prod_{n \geq 1}\left(\frac{1}{1-z^{-n}}\right)^{e\left(\operatorname{Out}\left(F_{n+1}\right)\right)}= \\
\left(\prod_{k \geq 1} \int \frac{d x_{k}}{\sqrt{2 \pi k / z^{k}}}\right) e^{\sum_{k \geq 1}^{\frac{z}{k}^{k}}\left(c_{k}-\frac{c_{2 k}}{2}+\frac{c_{k}^{2}}{2}-\frac{x_{k}^{2}}{2}-\left(1+c_{k}\right) \sum_{j \geq 1} \frac{\mu(j)}{j} \log \left(1+c_{j k}\right)\right)}
\end{gathered}
$$

$$
\text { where } c_{2 k}=x_{2 k}+z^{-k} \text { and } c_{2 k-1}=x_{2 k-1} \text { for all } k \geq 1
$$

\Rightarrow 'Explicit' formula for $e\left(\operatorname{Out}\left(F_{n}\right)\right)$.
(Can be 'easily' computed up to $n=40$ vs 11 known values.)

Contributions and open questions

Short summary:

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology.

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology.
Preliminary investigations into the $\widetilde{\chi}\left(\operatorname{Out}\left(F_{n}\right)\right)$ support this.

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology.
Preliminary investigations into the $\widetilde{\chi}\left(\operatorname{Out}\left(F_{n}\right)\right)$ support this. What generates it?

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology.
Preliminary investigations into the $\widetilde{\chi}\left(\operatorname{Out}\left(F_{n}\right)\right)$ support this. What generates it?
- The TFT analysis indicates a non-trivial 'duality' between $\operatorname{MCG}\left(S_{g}\right)$ and $\operatorname{Out}\left(F_{n}\right)$. Obvious candidate: Koszul duality (?)

Contributions and open questions

Short summary:

- $\chi\left(\operatorname{Out}\left(F_{n}\right)\right) \neq 0$

Open questions:

- The rapid growth of $\chi\left(\operatorname{Out}\left(F_{n}\right)\right)$ indicates that there is much unstable homology.
Preliminary investigations into the $\widetilde{\chi}\left(\operatorname{Out}\left(F_{n}\right)\right)$ support this. What generates it?
- The TFT analysis indicates a non-trivial 'duality' between $\operatorname{MCG}\left(S_{g}\right)$ and $\operatorname{Out}\left(F_{n}\right) \ldots \quad$ Koszul duality (?)
- Can renormalized TFT arguments also be used for other groups and for finer invariants? For instance RAAGs or explicit homology groups.

Bonus: Sketch of Kontsevich's TFT proof of the Harer-Zagier formula

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.
We can 'forget one puncture':

$$
\operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right)
$$

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.
We can 'forget one puncture':

$$
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right) \rightarrow 1
$$

$$
\Rightarrow \chi\left(\operatorname{MCG}\left(S_{g, n+1}\right)\right)=\chi\left(\mathcal{M}_{g, n+1}\right)=\chi\left(\pi_{1}\left(S_{g, n}\right)\right) \chi\left(\mathcal{M}_{g, n}\right)
$$

Step 1 of Kontsevich's proof

Generalize from \mathcal{M}_{g} to $\mathcal{M}_{g, n}$, the moduli space of surfaces of genus g and n punctures.
We can 'forget one puncture':

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \operatorname{MCG}\left(S_{g, n+1}\right) \rightarrow \operatorname{MCG}\left(S_{g, n}\right) \rightarrow 1 \\
\Rightarrow \\
\chi\left(\operatorname{MCG}\left(S_{g, n+1}\right)\right)=\chi\left(\mathcal{M}_{g, n+1}\right)=\underbrace{\chi\left(\pi_{1}\left(S_{g, n}\right)\right)}_{=2-2 g-n} \chi\left(\mathcal{M}_{g, n}\right)
\end{gathered}
$$

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph「 such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph「 such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.
\Rightarrow 「 can be interpreted as a surface of genus g with n punctures.

Step 2 of Kontsevich's proof

- Use a combinatorial model for $\mathcal{M}_{g, n}$
\Rightarrow Ribbon graphs Penner (1986)
Every point in $\mathcal{M}_{g, n}$ can be associated with a ribbon graph「 such that
- Γ has n boundary components: $h_{0}(\partial \Gamma)=n$
- $\chi(\Gamma)=\left|V_{\Gamma}\right|-\left|E_{\Gamma}\right|=2-2 g-n$.
\Rightarrow 「 can be interpreted as a surface of genus g with n punctures.

Step 3 of Kontsevich's proof

$$
\chi\left(\mathcal{M}_{g, n}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3 of Kontsevich's proof

$$
\chi\left(\mathcal{M}_{g, n}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3 of Kontsevich's proof

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, n}\right)= & \sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
= & \sum_{\substack{\Gamma \\
h_{0}(\partial \Gamma)=n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{|\operatorname{Aut} \Gamma|} \\
& \chi(\Gamma)=2-2 g-n
\end{aligned}
$$

Step 3 of Kontsevich's proof

$$
\begin{aligned}
\chi\left(\mathcal{M}_{g, n}\right)= & \sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
= & \sum_{\substack{\Gamma \\
h_{0}(\partial \Gamma)=n\\
}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{|\operatorname{Aut} \Gamma|} \\
& \chi(\Gamma)=2-2 g-n
\end{aligned}
$$

Used by Penner (1988) to calculate $\chi\left(\mathcal{M}_{g}\right)$ with Matrix models.

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n}=\sum_{\substack{g, n}} \sum_{\begin{array}{c}
\text { ribbon graphs } \Gamma \\
h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n
\end{array}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{g, n} \sum_{\substack{\text { ribbon graphs } \Gamma \\
h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{g, n \text { ribbon graphs } \Gamma} \sum_{\substack{h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

This is the perturbative series of a simple TFT:

$$
=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

Step 4 of Kontsevich's proof

Kontsevich's simplification:

$$
\begin{aligned}
\sum_{g, n} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!} z^{2-2 g-n} & =\sum_{\substack{g, n \\
\text { ribbon graphs } \Gamma \\
h_{0}(\partial \Gamma)=n \\
\chi(\Gamma)=2-2 g-n}} \frac{(-1)^{\left|V_{\Gamma}\right|}}{\mid \text { Aut } \Gamma \mid} \frac{1}{n!} z^{\chi(\Gamma)} \\
& =\sum_{\text {graphs } G} \frac{(-1)^{\left|V_{G}\right|}}{\mid \text { Aut } G \mid} z^{\chi(G)}
\end{aligned}
$$

This is the perturbative series of a simple TFT:

$$
=\log \left(\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)} d x\right)
$$

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

$$
=\sum_{k \geq 1} \frac{\zeta(-k)}{-k} z^{-k}
$$

Last step of Kontsevich's proof

$$
\sum_{\substack{g, n \\ 2-2 g-n=k}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!}=\frac{B_{k+1}}{k(k+1)}
$$

Last step of Kontsevich's proof

$$
\sum_{\substack{g, n \\ 2-2 g-n=k}} \frac{\chi\left(\mathcal{M}_{g, n}\right)}{n!}=\frac{B_{k+1}}{k(k+1)}
$$

\Rightarrow recover Harer-Zagier formula using the identity

$$
\chi\left(\mathcal{M}_{g, n+1}\right)=(2-2 g-n) \chi\left(\mathcal{M}_{g, n}\right)
$$

Analogous proof strategy for $\chi\left(\right.$ Out $\left.\left(F_{n}\right)\right)$ using renormalized TFTs

Step 1

Generalize from $\operatorname{Out}\left(F_{n}\right)$ to $A_{n, s}$ and from \mathcal{O}_{n} to $\mathcal{O}_{n, s}$, Outer space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Step 1

Generalize from $\operatorname{Out}\left(F_{n}\right)$ to $A_{n, s}$ and from \mathcal{O}_{n} to $\mathcal{O}_{n, s}$, Outer space of graphs of rank n and s legs.
Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

$$
1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1
$$

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):
A point in $\mathcal{G}_{n, s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

Step 2

- Use a combinatorial model for $\mathcal{G}_{n, s}$
\Rightarrow graphs with a forest Smillie-Vogtmann (1987):
A point in $\mathcal{G}_{n, s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

$$
(G, f)
$$

Step 3

$$
\chi\left(A_{n, s}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3

$$
\chi\left(A_{n, s}\right)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|}
$$

Step 3

$$
\begin{aligned}
\chi\left(A_{n, s}\right) & =\sum_{\sigma} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\
& =\sum_{\substack{\text { graphs } G \\
\text { with s legs } \\
\operatorname{rank}\left(\pi_{1}(G)\right)=n}} \sum_{\text {forests } f \subset G} \frac{(-1)^{\left|E_{f}\right|}}{\mid \text { Aut } G \mid}
\end{aligned}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \sum_{\text {forests } f \subset G}(-1)^{\left|E_{f}\right|}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with } s \text { legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{\sum_{\text {forests } f \subset G}(-1)^{\left|E_{f}\right|}}_{=: \tau(G)}
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{}_{=: \tau(G)} \sum_{\text {forests } f \subset G(-1)^{\left|E_{f}\right|}}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum_{\substack{g \subset G \\ g \text { bridgeless }}} \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{}_{=: \tau(G)}(-1)^{\left|E_{f}\right|}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

$\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

$$
\chi\left(A_{n, s}\right)=\sum_{\substack{\text { graphs } G \\ \text { with s legs } \\ \operatorname{rank}\left(\pi_{1}(G)\right)=n}} \frac{1}{\mid \text { Aut } G \mid} \underbrace{}_{=: \tau(G)}(-1)^{\left|E_{f}\right|}
$$

τ fulfills the identities $\tau(\emptyset)=1$ and

$$
\sum \tau(g)(-1)^{\left|E_{G / g}\right|}=0 \quad \text { for all } G \neq \emptyset
$$

$\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants $\chi\left(A_{n, s}\right)$ are encoded in a renormalized TFT.

TFT evaluation

Let

$$
T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!}
$$

Let

$$
T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!}
$$

then

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
$$

TFT evaluation

Let

$$
\begin{aligned}
& T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!} \\
& 1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
\end{aligned}
$$

Using the short exact sequence, $1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1$ results in the action

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{\chi}{2}+T\left(-z e^{x}\right)} d x
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.

TFT evaluation

Let

$$
\begin{aligned}
& T(z, x)=\sum_{n, s \geq 0} \chi\left(A_{n, s}\right) z^{1-n} \frac{x^{s}}{s!} \\
& 1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{T(z, x)} d x
\end{aligned}
$$

Using the short exact sequence, $1 \rightarrow F_{n} \rightarrow A_{n, s} \rightarrow A_{n, s-1} \rightarrow 1$ results in the action

$$
1=\frac{1}{\sqrt{2 \pi z}} \int_{\mathbb{R}} e^{z\left(1+x-e^{x}\right)+\frac{\chi}{2}+T\left(-z e^{x}\right)} d x
$$

where $T(z)=\sum_{n \geq 1} \chi\left(\operatorname{Out}\left(F_{n+1}\right)\right) z^{-n}$.
This gives the implicit result in Theorem B.

