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Introduction I: Groups



Automorphisms of groups

• Take a group G

• An automorphism of G, ⇢ 2 Aut(G ) is a bijection

⇢ : G ! G

such that ⇢(x · y) = ⇢(x) · ⇢(y) for all x , y 2 G

• Normal subgroup: Inn(G ) / Aut(G ), the inner automorphisms.

• We have, ⇢h 2 Inn(G )

⇢h :G ! G ,

g 7! h
�1

gh

for each h 2 G .

• Outer automorphisms: Out(G ) = Aut(G )/ Inn(G )

2
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Automorphisms of the free group

• Consider the free group with n generators

Fn = ha1, . . . , ani

E.g. a1a
�5
3 a2 2 F3

• The group Out(Fn) is our main object of interest.

• Generated by

a1 7! a1a2 a2 7! a2 a3 7! a3 . . .

and a1 7! a
�1
1 a2 7! a2 a3 7! a3 . . .

and permutations of the letters.
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Mapping class group

• Another example of an outer automorphism group:

the mapping class group

• The group of homeomorphisms of a closed, connected and

orientable surface Sg of genus g up to isotopies

MCG(Sg ) := Out(⇡1(Sg ))

4
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Example: Mapping class group of the torus

MCG(T2) = Out(⇡1(T2))

The group of homeomorphisms T2 ! T2 up to an isotopy:

5
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Introduction II: Spaces



How to study such groups?

How to study groups such as MCG(S) or Out(Fn)?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, . . . (1970-)
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For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

) A point in Teichmüller space T (S) is a pair, (X , µ)
• A Riemann surface X .

• A marking : a homeomorphism µ : S ! X .

MCG(S) acts on T (S) by composing to the marking:

(X , µ) 7! (X , µ � g�1) for some g 2 MCG(S).
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For Out(Fn): Outer space

Idea: Mimic previous construction for Out(Fn).

Culler, Vogtmann (1986)

Let Rn be the rose with n petals.

) A point in Outer space On is a pair, (G , µ)
• A connected graph G with a length assigned to each edge.

• A marking: a homotopy µ : Rn ! G .

Out(Fn) acts on On by composing to the marking:

(�, µ) 7! (�, µ � g�1) for some g 2 Out(Fn) = Out(⇡1(Rn)).
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O2

Put picture of Outer space here

9
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Examples of applications of Outer space

• The group Out(Fn)

• Moduli spaces of punctured surfaces

• Tropical curves

• Invariants of symplectic manifolds

• Classical modular forms

• (Mathematical) physics

:

Scalar QFT ⇠ Integrals overOn /Out(Fn)

analogous to

2D Quantum gravity ⇠ Integral overT (S)/MCG(S)

10

Marko's talk

Graph complexes Francis talk



Invariants



Algebraic invariants

• H•(Out(Fn);Q) ' H•(On /Out(Fn);Q) = H•(Gn;Q),

as On is contractible Culler, Vogtmann (1986).

) Study Out(Fn) using Gn!

• One simple invariant: Euler characteristic

13
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Further motivation to look at Euler characteristic of Out(Fn)

Consider the abelization map Fn ! Zn.

) Induces a group homomorphism

1 ! T n !

Out(Fn) ! Out(Zn)

| {z }
=GL(n,Z)

! 1

• T n the ‘non-abelian’ part of Out(Fn) is interesting.

• By the short exact sequence above

�(Out(Fn)) = �(GL(n,Z))

| {z }
=0

�(T n)

n � 3

) T n does not have finitely-generated homology for n � 3 if

�(Out(Fn)) 6= 0.

14
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Conjectures

Conjecture Smillie-Vogtmann (1987)

�(Out(Fn)) 6= 0 for all n � 2

and |�(Out(Fn))| grows exponentially for n ! 1.

based on initial computations by Smillie-Vogtmann (1987) up

to n  11. Later strengthened by Zagier (1989) up to n  100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) = 1,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.

15
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Results: �(Out(Fn)) 6= 0



Theorem A MB-Vogtmann (2019)

�(Out(Fn)) < 0 for all n � 2

�(Out(Fn)) ⇠ � 1p
2⇡

�(n � 3/2)

log2 n
as n ! 1.

which settles the initial conjecture by

Smillie-Vogtmann (1987). Immediate questions:

) Huge amount of unstable homology in odd dimensions.

• Only one odd-dimensional class known Bartholdi (2016).

• Where does all this homology come from?

16
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This Theorem A follows from an implicit expression for

�(Out(Fn)):

Theorem B MB-Vogtmann (2019)

p
2⇡e�N

N
N ⇠

X

k�0

ak(�1)k�(N + 1/2� k) as N ! 1

where
X

k�0

akz
k = exp

0

@
X

n�0

�(Out(Fn+1))z
n

1

A

) �(Out(Fn)) are the coe�cients of an asymptotic expansion.

• An analytic argument is needed to prove Theorem A from

Theorem B.

• In this talk: Focus on proof of Theorem B

17
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Analogy to the mapping class group



Harer-Zagier formula for �(MCG(Sg ))

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

�(Mg ) = �(MCG(Sg )) =
B2g

4g(g � 1)
g � 2

• Original proof by Harer and Zagier in 1986.

• Alternative proof using topological field theory (TFT) by

Penner (1988).

• Simplified proof by Kontsevich (1992) based on TFT’s.

) Kontsevich’s proof served as a blueprint for �(Out(Fn)).

18
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Kontsevich’s argument

• We have the identity by Kontsevich (1992):

X

g ,n

�(Mg ,n)

n!
z
2�2g�n =

X

connected graphs G

(�1)|VG |

|AutG | z
�(G).

• Kontsevich proved this using a combinatorial model of Mg ,n

by Penner (1986) based on ribbon graphs.

• The expression on the right hand side can be evaluated using

a ‘topological field theory’:

X

connected graphs G

(�1)|VG |

|AutG | z
�(G) = log

⇣ 1p
2⇡z

Z

R
e
z(1+x�ex )

dx

⌘

=
X

k�1

⇣(�k)

�k
z
�k

• The formula for �(Mg ,n) follows via the short exact sequence

1 ! ⇡1(Sg ,n) ! Mg ,n+1 ! Mg ,n ! 1
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An algebraic viewpoint

• Let H be the Q-vector space spanned by a set of graphs:

H = Q ;|{z}
=:I

+Q +Q + . . .

• Here: only connected graphs with 3-or-higher-valent vertices.

X

g ,n

�(Mg ,n)

n!
z
2�2g�n = �(X )

where

X :=
X

G

G

|AutG |z
�(G) 2 H[[z�1]]

and � : H ! Q,G ! (�1)|VG |

) � is very simple and easy to handle via topological field theory.

20
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• For Out(Fn), we find that

X

n�1

�(Out(Fn+1))z
�n = ⌧(X )

with X as before and

⌧ : H ! Q,G !
X

f⇢G

(�1)|Ef |

where the sum is over all forests (acyclic subgraphs) of G .

) Not directly approachable with a TFT...

• The necessary combinatorial model is the ‘forest collapse’

construction by Culler-Vogtmann (1986).
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The Hopf algebra of graphs

• With disjoint union of graphs

m : H⌦H ! H,G1 ⌦ G2 7! G1 ] G2 as multiplication, the

empty graph ; associated with the neutral element I,
• and the coproduct � : H ! H⌦H,

� : G 7!
X

g⇢G
bridgeless g

g ⌦ G/g ,

where the sum is over all bridgeless subgraphs,

• the vector space H becomes the core Hopf algebra of graphs

Kreimer (2009), which is closely related to the Hopf algebra

of renormalization in quantum field theory.
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� =
X

g⇢

g ⌦ /g = 4 ⌦ + 4 ⌦ +

+ 3 ⌦ + 6 ⌦ + ⌦

23



• Characters, i.e. linear maps  : H ! A which fulfill

 (I) = IA form a group under the convolution product,

 ? µ = m � ( ⌦ µ) ��

Theorem MB-Vogtmann (2020)

The map � associated to Mg ,n and the map ⌧ associated to

Out(Fn) are mutually inverse elements under this group:

⌧ = �?�1 � = ⌧?�1

• That means ⌧ is the renormalized version of �.
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• Recall that �(Mg ,n) is explicitly encoded by a TFT:

X

g ,n

�(Mg ,n)

n!
z
2�2g�n = �(X ) = log

⇣ 1p
2⇡z

Z

R
e
z(1+x�ex )

dx

⌘

• The duality between � and ⌧ implies that �(Out(Fn)) is

encoded by the renormalization of the same TFT:

0 = log
⇣ 1p

2⇡z

Z

R
e
z(1+x�ex )+ x

2+T (�zex )
dx

⌘

where T (z) =
P

n�1 �(Out(Fn+1))z�n.

• This TFT encodes the statement of Theorem 2 and gives an

implicit encoding of the numbers �(Out(Fn)).
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Outlook: The naive Euler characteristic

The ‘naive’ Euler characteristic

e�(OutFn) =
X

k

(�1)k dimHk(OutFn;Q)

is harder to analyse than the rational Euler characteristic.

e�(OutFn) =
X

h�i

�(C�)

sum over conjugacy elements of finite order in OutFn and C�

is the centralizer corresponding � Brown (1982).

) Preliminary investigations on C� indicate that

lim
n!1

e�(OutFn)
�(OutFn)

= c > 0
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Euler characteristics of Kontsevich’s graph complexes

A missing piece:

complex rational: � integral: e

associative/Mg ,n Harer, Zagier 1986 Harer, Zagier 1986

commutative Kontsevich 1993 Willwacher, Živković 2015

Lie/Out(Fn) Kontsevich 1993 ?

Lie/Out(Fn) integral case e(Out(Fn)) only known for n  11.

Thanks to a supercomputer calculation by Morita 2014.
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Missing Euler characteristic of the Lie case

Theorem MB, Vogtmann 2020 (in preparation)

Y

n�1

✓
1

1� z�n

◆e(Out(Fn+1))

=

0

@
Y

k�1

Z
d xkp
2⇡k/zk

1

A e

P
k�1

zk

k

 
ck�

c2k
2 +

c2k
2 � x2k

2 �(1+ck )
P
j�1

µ(j)
j log(1+cjk )

!

where c2k = x2k + z
�k and c2k�1 = x2k�1 for all k � 1.

) ‘Explicit’ formula for e(Out(Fn)).

(Can be ‘easily’ computed up to n = 40 vs 11 known values.)
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Contributions and open questions

Short summary:

• �(Out(Fn)) 6= 0

Open questions:

• The rapid growth of �(Out(Fn)) indicates that there is much

unstable homology.

Preliminary investigations into the e�(Out(Fn)) support this.
What generates it?

• The TFT analysis indicates a non-trivial ‘duality’ between

MCG(Sg ) and Out(Fn). Obvious candidate: Koszul duality (?)

• Can renormalized TFT arguments also be used for other

groups and for finer invariants? For instance RAAGs or

explicit homology groups.
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Bonus: Sketch of Kontsevich’s TFT

proof of the Harer-Zagier formula



Step 1 of Kontsevich’s proof

Generalize from Mg to Mg ,n, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 ! ⇡1(Sg ,n) !

MCG(Sg ,n+1) ! MCG(Sg ,n)

! 1

) �(MCG(Sg ,n+1)) = �(Mg ,n+1) = �(⇡1(Sg ,n))

| {z }
=2�2g�n

�(Mg ,n)

30



Step 1 of Kontsevich’s proof

Generalize from Mg to Mg ,n, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 ! ⇡1(Sg ,n) !

MCG(Sg ,n+1) ! MCG(Sg ,n)

! 1

) �(MCG(Sg ,n+1)) = �(Mg ,n+1) = �(⇡1(Sg ,n))

| {z }
=2�2g�n

�(Mg ,n)

30



Step 1 of Kontsevich’s proof

Generalize from Mg to Mg ,n, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 ! ⇡1(Sg ,n) ! MCG(Sg ,n+1) ! MCG(Sg ,n) ! 1

) �(MCG(Sg ,n+1)) = �(Mg ,n+1) = �(⇡1(Sg ,n))

| {z }
=2�2g�n

�(Mg ,n)

30



Step 1 of Kontsevich’s proof

Generalize from Mg to Mg ,n, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 ! ⇡1(Sg ,n) ! MCG(Sg ,n+1) ! MCG(Sg ,n) ! 1

) �(MCG(Sg ,n+1)) = �(Mg ,n+1) = �(⇡1(Sg ,n))| {z }
=2�2g�n

�(Mg ,n)

30



Step 2 of Kontsevich’s proof

• Use a combinatorial model for Mg ,n

) Ribbon graphs Penner (1986)

Every point in Mg ,n can be associated with a ribbon graph � such

that

• � has n boundary components: h0(@�) = n

• �(�) = |V�|� |E�| = 2� 2g � n.

) � can be interpreted as a surface of genus g with n punctures.
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Step 3 of Kontsevich’s proof

�(Mg ,n) =
X

�

(�1)dim(�)

| Stab(�)|

=
X

�
h0(@�)=n

�(�)=2�2g�n

(�1)|V�|

|Aut �|

Used by Penner (1988) to calculate �(Mg ) with Matrix models.
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Step 4 of Kontsevich’s proof

Kontsevich’s simplification:

X

g ,n

�(Mg ,n)

n!
z
2�2g�n

=
X

g ,n

X

ribbon graphs �
h0(@�)=n

�(�)=2�2g�n

(�1)|V�|

|Aut �|
1

n!
z
�(�)

=
X

graphs G

(�1)|VG |

|AutG | z
�(G)

This is the perturbative series of a simple TFT:

= log
⇣ 1p

2⇡z

Z

R
e
z(1+x�ex )

dx

⌘

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

=
X

k�1

⇣(�k)

�k
z
�k
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Last step of Kontsevich’s proof

X

g ,n
2�2g�n=k

�(Mg ,n)

n!
=

Bk+1

k(k + 1)

) recover Harer-Zagier formula using the identity

�(Mg ,n+1) = (2� 2g � n)�(Mg ,n)
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Analogous proof strategy for

�(Out(Fn)) using renormalized TFTs



Step 1

Generalize from Out(Fn) to An,s and from On to On,s , Outer

space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

1 ! Fn ! An,s ! An,s�1 ! 1
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Step 2

• Use a combinatorial model for Gn,s

) graphs with a forest Smillie-Vogtmann (1987):

A point in Gn,s can be associated with a pair of a graph G and a

forest f ⇢ G .

(G , f )
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Step 3

�(An,s) =
X

�

(�1)dim(�)

| Stab(�)|

=
X

graphs G
with s legs

rank(⇡1(G))=n

X

forests f⇢G

(�1)|Ef |

|AutG |
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Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

�(An,s) =
X

graphs G
with s legs

rank(⇡1(G))=n

1

|AutG |
X

forests f⇢G

(�1)|Ef |

| {z }
=:⌧(G)

⌧ fulfills the identities ⌧(;) = 1 and

X

g⇢G
g bridgeless

⌧(g)(�1)|EG/g | = 0 for all G 6= ;

) ⌧ is an inverse of a character in a Connes-Kreimer-type

renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants �(An,s) are encoded in a renormalized TFT.

38
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TFT evaluation

Let T (z , x) =
X

n,s�0

�(An,s)z
1�n x

s

s!

then 1 =
1p
2⇡z

Z

R
e
T (z,x)

dx

Using the short exact sequence, 1 ! Fn ! An,s ! An,s�1 ! 1

results in the action

1 =
1p
2⇡z

Z

R
e
z(1+x�ex )+ x

2+T (�zex )
dx

where T (z) =
P

n�1 �(Out(Fn+1))z�n.

This gives the implicit result in Theorem B.

39



TFT evaluation

Let T (z , x) =
X

n,s�0

�(An,s)z
1�n x

s

s!

then 1 =
1p
2⇡z

Z

R
e
T (z,x)

dx

Using the short exact sequence, 1 ! Fn ! An,s ! An,s�1 ! 1

results in the action

1 =
1p
2⇡z

Z

R
e
z(1+x�ex )+ x

2+T (�zex )
dx

where T (z) =
P

n�1 �(Out(Fn+1))z�n.

This gives the implicit result in Theorem B.

39



TFT evaluation

Let T (z , x) =
X

n,s�0

�(An,s)z
1�n x

s

s!

then 1 =
1p
2⇡z

Z

R
e
T (z,x)

dx

Using the short exact sequence, 1 ! Fn ! An,s ! An,s�1 ! 1

results in the action

1 =
1p
2⇡z

Z

R
e
z(1+x�ex )+ x

2+T (�zex )
dx

where T (z) =
P

n�1 �(Out(Fn+1))z�n.

This gives the implicit result in Theorem B.

39



TFT evaluation

Let T (z , x) =
X

n,s�0

�(An,s)z
1�n x

s

s!

then 1 =
1p
2⇡z

Z

R
e
T (z,x)

dx

Using the short exact sequence, 1 ! Fn ! An,s ! An,s�1 ! 1

results in the action

1 =
1p
2⇡z

Z

R
e
z(1+x�ex )+ x

2+T (�zex )
dx

where T (z) =
P

n�1 �(Out(Fn+1))z�n.

This gives the implicit result in Theorem B.

39








